
HAL Id: hal-00966086
https://hal.science/hal-00966086

Submitted on 6 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

When Is Lr(R) Contained in Lp(R) + Lq(R) ?
Jean-Baptiste Hiriart-Urruty, Patrice Lassère

To cite this version:
Jean-Baptiste Hiriart-Urruty, Patrice Lassère. When Is Lr(R) Contained in Lp(R) + Lq(R) ?. The
American Mathematical Monthly, 2013, 120 (1), p. 55-61. �10.4169/amer.math.monthly.120.01.055�.
�hal-00966086�

https://hal.science/hal-00966086
https://hal.archives-ouvertes.fr


When is Lr(R) contained in Lp(R) + Lq(R) ?

Jean-Baptiste Hiriart-Urruty and Lassère Patrice

Abstract

We prove a necessary and sufficient condition on the exponents p, q, r ≥
1 such that Lr(R) ⊂ Lp(R)+Lq(R). In doing so, we explore the structure
of Lp(R) + Lq(R) as a normed vector space.

1 Introduction.

In a recent mathematical note aimed at undergraduate students and their teach-
ers ([3]), J.-B. Hiriart-Urruty and M. Pradel proposed a way to extend the
Fourier transformation to all the spaces Lr(R) with 1 ≤ r ≤ 2 in the following
manner.

– First, they classically define the Fourier transformation on L1(R). Then
they define it on L2(R) using in that case the much less known Wiener’s ap-
proach which relies on a specific Hilbertian basis made of the so-called Bernstein
functions.

– After having checked the coherence of both definitions on L1(R)∩L2(R),
they extend the definition of the Fourier transformation to the space L1(R) +
L2(R).

– Finally, and this is the key-point, they prove the inclusion Lr(R) ⊂
L1(R) + L2(R) for all 1 ≤ r ≤ 2, so that the Fourier transformation can be
extended to all the Lebesgue spaces Lr(R).

An obvious question which arises is, what happens if r 6∈ [1, 2] ? For example,
is the inclusion L3(R) ⊂ L1(R) + L2(R) true or not ? The objective of the
present mathematical note is to answer this question. We provide a necessary
and sufficient condition for the inclusion Lr(R) ⊂ Lp(R) +Lq(R) to hold true.
For that purpose, concentrate on the sum Lp(R) + Lq(R) and see how it is
structured as a normed vector space.

2 How to norm a sum of normed vector spaces
?

Let V and W be two vector subspaces of a ”holdall” vector space, E. If V is
equipped with a norm ‖ · ‖1 and W with a norm ‖ · ‖2, is there a natural way
to define a norm on the vector subspace V +W ? Of course, we do not assume

1



that V ∩W = {OE}. If this was the case, a natural way to define a norm N on
V +W would be

N(u) = ‖v‖1 + ‖w‖2,

whenever u ∈ V + W is (uniquely) decomposed as u = v + w, with v ∈ V and
w ∈W .

What we have in mind is indeed V = Lp(R), W = Lq(R) and E = L(R)
as the “holdall” vector space (L(R) stands for the set of all Lebesgue classes of
mesurable functions on R).

The theorem below answers the question posed above. It does not seem
to be well-known, except by people who have to deal with the interpolation of
functional spaces (like in [1]).

Theorem 1 Let N be defined on V +W as follows

N(u) := inf{‖v‖1 + ‖w‖2 ; u = v + w with v ∈ V and w ∈W}. (1)

Then, N is a semi-norm on V +W . It is a norm under the following “compat-
ibility” assumption :

(T )
zk ∈ V ∩W,
zk −→ a in (V, ||.||1)
zk −→ b in (W, ||.||2)

 =⇒ a = b.

Proof : To check that N(OE) = 0, N(λu) = |λ|N(u) for all λ ∈ R, u ∈ V +W ,
and N(u1 + u2) ≤ N(u1) + N(u2) for all u1 and u2 in V + W , does not raise
any difficulty. It suffices to use the definition of the lower bound (or infimum)
of a set of real numbers.

To prove that N(u) = 0 implies that u = OE is a bit more tricky. Our
experience with that question with undergraduate students shows that they
usually fail to answer it correctly. Their common mistake is to deduce that a
sequence (vk +wk)k converges to OE using the fact that (vk)k converges to OE
in V and (wk)k converges to OE in W . We therefore provide a proof here.

We first begin by observing that

ν : V ∩W 3 u 7→ ν(u) := max(‖u‖1, ‖u‖2) (2)

is a norm on V ∩W ; this is an easy result to prove.
Consider therefore, u ∈ V +W such that N(u) = 0. We take for example

u = v + w, with v ∈ V and w ∈W. (3)

Due to the definition (1) of N(u), for all positive integers k, there exists vk ∈ V
and wk ∈W such that

u = vk + wk, and (4)

‖vk‖1 + ‖wk‖2 ≤ N(u) +
1

k
=

1

k
. (5)
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Thus, (vk)k converges to OE in V and (wk)k converges to OE in w. But what
about (vk + wk)k ? Recall that no norm, hence, no topology, has yet been
defined on V +W . We infer from (3) and (4) that

v + w = vk + wk,

and thus
v − vk = wk − w. (6)

As a consequence, this common vector zk := v−vk = wk−w lies in V ∩W and,
since ν(zk) = ‖v − vk‖1 or ‖wk − w‖2,

zk → v in (V, ‖ · ‖1) and zk → −w in (W, ‖ · ‖2).

The assumption (T ) then ensures that

v = −w, that is u = v + w = OE .

�

Note that the technical “compatibility” assumption (T ) is satisfied
– trivially if V ∩W = {OE} (in that case it amounts to 0 = 0).
– in the cases where V = Lp(R), W = Lq(R) (indeed, convergence of (fk)k

towards f in Lp(R) implies convergence almost everywhere of a subsequence of
(fk)k towards f).

– when the “holdall” vector space E is a Hausdorff topological vector space
in which V and W are continuously imbedded.

We suppose that (T ) is in force for the rest of the section.

The vector space V +W , equipped with the norm N as defined in (1), inherits
some properties of (V, ‖ · ‖1) and (W, ‖ · ‖2). Here is one.

Theorem 2 If (V, ‖·‖1) and (W, ‖·‖2) are Banach spaces, then so is (V +W,N).

Proof : The proof of this theorem offers the opportunity to use a caracter-
ization of completeness of normed vector spaces which is not well-known. Let
(X, ‖ · ‖) be a normed space. We have indeed

((X, ‖ · ‖) is complete ) ⇐⇒

 Every series in X, of general term ak, for
which

∑∞
k=0 ‖ak‖ < +∞ does converges in X

(toward a sum denoted as
∑∞
k=0 ak)

 .

(7)
The implication (⇒) is classical, it is the most often used. The converse im-
plication (⇐) is not often used, but we have an opportunity to do that here.
For a proof of the equivalence (7), see for example ([6], Theorems 2-XIV-2.1
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and 2.2, pages 164-165), ([4], page 20) or ([7], pages 262 and 270); it is also
sketched in ([1], page 24). The proof is not very difficult however, but readers
are encouraged to work through it themselves. We now proceed in this manner
to a proof of Theorem 2.

Consider a series in V +W , of general term uk for which
∑∞
k=0N(uk) <∞.

We have to prove that
∑n
k=0 uk converges as n → +∞, to some element u ∈

V +W . In view of the definition (1) of N , for all positive integer k, there exist
vk ∈ V and wk ∈W satisfying

uk = vk + wk, and (8)

‖vk‖1 + ‖wk‖2 ≤ N(uk) +
1

k2
. (9)

Thus,
∑∞
k=0 ‖vk‖1 < +∞ and

∑∞
k=0 ‖wk‖2 < +∞. Since both (V, ‖ · ‖1) and

(W, ‖ · ‖2) have been assumed to be complete, there exist v ∈ V and w ∈ W
such that

n∑
k=0

vk −→
n→+∞

v in V, and

n∑
k=0

wk −→
n→+∞

w in W. (10)

Let u := v+w ∈ V +W . Let us check that, as expected,
∑n
k=0 uk converges to

u in (V +W,N). Indeed,

N

(
u−

n∑
k=0

uk

)
= N

(
u+ v −

n∑
k=0

(vk + wk)

)
≤

∥∥∥∥∥v −
n∑
k=0

vk

∥∥∥∥∥
1

+

∥∥∥∥∥w −
n∑
k=0

wk

∥∥∥∥∥
2

.

It remains to apply (10) to get the desired result, N (u−
∑n
k=0 uk) −→

n→+∞
0. �

Comments : The construction of the norm ν on V ∩W and N on V + W
deserves some geometrical interpretation. Even if ‖ · ‖1 (resp. ‖ · ‖2) is only
defined on V ⊂ E (resp. on W ⊂ E), we can extend it to the whole of E by
setting ‖u‖1 = +∞ if u 6∈ V (resp. ‖u‖2 = +∞ if u 6∈ W ). We still denote by
‖ · ‖1 and ‖ · ‖2 the extended functions.

Clearly, ‖ · ‖1 and ‖ · ‖2 are convex positively homogeneous functions on
E. Modern convex analysis accepts and can handle convex functions possibly
taking the value +∞ ([5]). An important geometrical object associated with a
convex function f : E → R ∪ {+∞} is its so-called strict epigraph

episf := {(x, r) ∈ E ×R : f(x) < r}

(literally, what is strictly above the graph of f). In our situation, K1 := epis‖·‖1
and K2 := epis‖·‖2 are open convex cones of E. So, what are the strict epigraphs
of the norm functions ν and N ? One easily checks the following

episν = (epis‖ · ‖1) ∩ (epis‖ · ‖2), and

episN = (epis‖ · ‖1) + (epis‖ · ‖2).
(11)
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The sets where ν (resp. N) is finite, called the domain of ν (resp. of N) in
convex analysis, is just V ∩W (resp. V +W ).

The binary operation which builds a convex function f from two other ones
f1 and f2, via the geometric construction

episf = episf1 + episf2

is called the infimal convolution of f1 and f2 ([2],[5]). This operation enjoys
properties similar to the usual (integral) convolution in classical analysis.

In brief, the norm N has been designed as an infimal convolution of the
norms ‖ · ‖1 and ‖ · ‖2.

Returning to our particular setting E = L(R), V = Lp(R) and W = Lq(R)
with 1 ≤ p, q < +∞, the vector space Lp(R) + Lq(R) can be equipped with a
norm that we denote ‖ · ‖p,q as follows,

‖f‖p,q = inf{‖g‖p + ‖h‖q ; f = g + h with g ∈ Lp(R) and h ∈ Lq(R)}. (12)

As proved in Theorem 2, (Lp(R) + Lq(R), ‖ · ‖p,q) is a Banach space.

3 Comparing Lr(R) with Lp(R) + Lq(R)

We know that the Lebesgue spaces Lr(R) and Ls(R) (for 1 ≤ r 6= s < +∞)
cannot be compared. Neither Lr(R) is contained in Ls(R) nor the converse. A
direct comparison is however possible if we deal with the sum of these spaces.
Here is the main result of this section.

Theorem 3 If 1 ≤ p < q < +∞, then we have the following :

1. Lr(R) is contained in Lp(R) + Lq(R) whenever r ∈ [p, q],

2. if 1 ≤ r < +∞ does not lie in [p, q], then Lr(R) is not contained in
Lp(R) + Lq(R).

Proof : (1) Let f ∈ Lr(R) and consider X := {x ∈ R : |f(x)| > 1} (a
measurable set defined within a set of null measure) as well as Xc = R \X (the
complementary set of X in R). We decompose f as follows :

f = f1 + f2, with f1 = f · 1X and f2 = f · 1Xc . (13)

We claim that (13) provides an explicit decomposition of f in Lp(R) + Lq(R),
that is to say f1 ∈ Lp(R) and f2 ∈ Lq(R). We first prove that,∫

R

|f1(x)|pdλ(x) =

∫
X

|f(x)|pdλ(x) =

∫
X

|f(x)|p−r · |f(x)|rdλ(x). (14)
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For x ∈ X, |f(x)| > 1 and, since the exponent p−r is nonpositive, |f(x)|p−r ≤ 1.
Consequently, the last integral in the string of equalities (14) is bounded above
by
∫
X
|f(x)|rdλ(x). Finally,

(14′)

∫
R

|f1(x)|pdλ(x) ≤
∫
X

|f(x)|rdλ(x) ≤
∫
R

|f(x)|rdλ(x) < +∞.

We thus have proved that f1 ∈ Lp(R).
Second, we prove that f2 ∈ Lq(R). Indeed,∫
R

|f2(x)|qdλ(x) =

∫
Xc

|f(x)|qdλ(x) =

∫
Xc

|f(x)|q−r · |f(x)|rdλ(x). (15)

For x ∈ Xc, |f(x)| ≤ 1 and, since the exponent q−r is nonegative, |f(x)|q−r ≤ 1.
Again, the last integral in the string of equalities (15) is bounded above by∫
Xc |f(x)|rdλ(x). As a result,∫

R

|f2(x)|qdλ(x) =

∫
Xc

|f(x)|rdλ(x) =

∫
R

|f(x)|rdλ(x) < +∞. (16)

We therefore, have proved that f2 ∈ Lq(R).
(2) The second part of Theorem 3 is a bit harder to prove (like most of the
negative results in mathematics). We actually have to distinguish two cases for
r in the segment [p, q] : r < p and r > q.

Case 1 : r < p. Choose α satisfying 1/p < α < 1/r and let f be defined on
R by f(x) = x−α1(0,1](x).

Since |f(x)|r = x−αr for x ∈ (0, 1] and 0 elsewhere, the choice of α implies
that f ∈ Lr(R) (since αr < 1). The same argument shows that f 6∈ Lp(R)
(since αp > 1).

Suppose now that Lr(R) ⊂ Lp(R) + Lq(R). Then

f ∈ Lr(R) ⊂ Lp(R) + Lq(R) ⊂ Lp([0, 1]) + Lq([0, 1]). (17)

But since [0, 1] is of Lebesgue finite measure and p < q, Lq([0, 1]) is contained
in Lp([0, 1]), so that (17) yields that f ∈ Lp([0, 1]). This is not the case.

Thus we have proved that Lr(R) is not contained in Lp(R) + Lq(R).

Case 2 : r > q. Our proof in this case relies on a technical lemma that we
present separately.

Lemma 1 Let 1 ≤ p < q < +∞, let Ω be a mesurable subset of R, and let
f ∈ Lp(Ω) + Lq(Ω). Then f ∈ Lq(Ω) whenever it is essentially bounded on Ω.

Proof of the Lemma : Let f be decomposed as f = fp + fq, with fp ∈
Lp(Ω) and fq ∈ Lq(Ω). So, to prove that f ∈ Lq(Ω) amounts to proving that
fp ∈ Lq(Ω).
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Let X := {x ∈ R : |fp(x)| > 1}. To show that
∫

Ω
|fp(x)|qdλ(x) is finite,

we cut it into two pieces :
∫

Ω∩Xc |fp(x)|qdλ(x) and
∫

Ω∩X |fp(x)|qdλ(x).
Consider the first piece. Since fp ∈ Lp(R), the set X is of finite (Lebesgue)

measure. Now with the definition of X and the fact that q − p > 0, we obtain∫
Ω∩Xc

|fp(x)|qdλ(x) =

∫
Ω∩Xc

|fp(x)|q−p · |fp(x)|pdλ(x)

≤
∫

Ω∩Xc

|fp(x)|pdλ(x) ≤
∫
R

|fp(x)|pdλ(x) < +∞.

This concludes the argument for the first piece.
Consider now the second piece. Since f has been assumed essentially bounded

on Ω,

|fp(x)| ≤ |f(x)− fq(x)| ≤ ‖f‖∞ + |fq(x)| for almost all x in Ω.

Consequently,∫
Ω∩X

|fp(x)|qdλ(x) ≤
∫

Ω∩X
(‖f‖∞ + |fq(x)|)q dλ(x). (18)

The convexity of the function t 7→ tq on [0,+∞) implies that (‖f‖∞ + |fq(x)|)q ≤
2q−1 (‖f‖q∞ + |fq(x)|q). So, we pursue the string of inequalites (18) with∫

Ω∩X
|fp(x)|qdλ(x) ≤ 2q−1

∫
Ω∩X

(‖f‖q∞ + |fq(x)|q) dλ(x)

≤ 2q−1 [λ(X)‖f‖q∞ + (‖fq‖q)q] .

To summarize, we have proved that∫
Ω

|fp(x)|qdλ(x) =

∫
Ω∩Xc

|fp(x)|qdλ(x) +

∫
Ω∩X

|fp(x)|qdλ(x) < +∞.

Thus, fp ∈ Lp(Ω), which was our objective. That concludes the proof of the
technical lemma. �

Let us go back to the second part of the proof of Theorem 3, the case where
r > q. Choose α satisfying 1/r < α < 1/q and let f be defined on R by
f(x) = x−α1[1,+∞)(x).

Since |f(x)|r = x−αr for x ∈ [1,+∞) and 0 elsewhere, the choice of α implies
that f ∈ Lr(Ω) (since αr > 1). But also f is essentially bounded on R. If f
were in Lp(R)+Lq(R), the technical lemma would imply that f ∈ Lq(R). But,
this is not the case since |f(x)|q = x−αq for x ∈ [1,+∞) and 0 elsewhere, the
choice of α implies that αq < 1.

Thus, again in the case where r > q, Lr(R) is not contained in Lp(R) +
Lq(R). �

We end this note with the following observation, which links sections 2 and
3. In the first part of Theorem 3, we have proved that Lr(R) ⊂ Lp(R) +Lq(R)

7



whenever r ∈ [p, q]. In the course of its proof, a simple explicit decomposition of
f ∈ Lr(R) as f = f1 + f2, with f1 ∈ Lp(R) and f2 ∈ Lq(R) has been provided
(see (13) and the upper bounds (14’) and (16)). Indeed, as a consequence of
(14) and (16),

‖f‖p,q ≤ ‖f1‖p + ‖f2‖q ≤ ‖f‖r/pr + ‖f‖r/qr . (19)

Hence, the injection of Lr(R) into Lp(R) + Lq(R) is continuous ; therefore,
there exists C > 0 such that

‖f‖p,q ≤ C‖f‖r. (20)

Indeed, using the inequality (19), we can get an upper bound for the norm of this
injection (a somewhat complicated expression in terms of p, q, r). This result
complements a more classical one which says that, when r ∈ [p, q], Lp(R)∩Lq(R)
is contained in Lr(R), then the injection is continuous.

References
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