Jean-Baptiste Hiriart-Urruty 
  
Lassère Patrice 
  
When is L r (R) contained in L p (R) + L q (R) ?

We prove a necessary and sufficient condition on the exponents p, q, r ≥ 1 such that L r (R) ⊂ L p (R)+L q (R). In doing so, we explore the structure of L p (R) + L q (R) as a normed vector space.

1 Introduction.

In a recent mathematical note aimed at undergraduate students and their teachers ([3]), J.-B. Hiriart-Urruty and M. Pradel proposed a way to extend the Fourier transformation to all the spaces L r (R) with 1 ≤ r ≤ 2 in the following manner.

-First, they classically define the Fourier transformation on L 1 (R). Then they define it on L 2 (R) using in that case the much less known Wiener's approach which relies on a specific Hilbertian basis made of the so-called Bernstein functions.

-After having checked the coherence of both definitions on L 1 (R) ∩ L 2 (R), they extend the definition of the Fourier transformation to the space L 1 (R) + L 2 (R).

-Finally, and this is the key-point, they prove the inclusion L r (R) ⊂ L 1 (R) + L 2 (R) for all 1 ≤ r ≤ 2, so that the Fourier transformation can be extended to all the Lebesgue spaces L r (R).

An obvious question which arises is, what happens if r ∈ [1, 2] ? For example, is the inclusion L 3 (R) ⊂ L 1 (R) + L 2 (R) true or not ? The objective of the present mathematical note is to answer this question. We provide a necessary and sufficient condition for the inclusion L r (R) ⊂ L p (R) + L q (R) to hold true. For that purpose, concentrate on the sum L p (R) + L q (R) and see how it is structured as a normed vector space.

2 How to norm a sum of normed vector spaces ?

Let V and W be two vector subspaces of a "holdall" vector space, E. If V is equipped with a norm • 1 and W with a norm • 2 , is there a natural way to define a norm on the vector subspace V + W ? Of course, we do not assume that V ∩ W = {O E }. If this was the case, a natural way to define a norm N on V + W would be N (u) = v 1 + w 2 , whenever u ∈ V + W is (uniquely) decomposed as u = v + w, with v ∈ V and w ∈ W . What we have in mind is indeed V = L p (R), W = L q (R) and E = L(R) as the "holdall" vector space (L(R) stands for the set of all Lebesgue classes of mesurable functions on R).

The theorem below answers the question posed above. It does not seem to be well-known, except by people who have to deal with the interpolation of functional spaces (like in [START_REF] Bergh | Interpolation Spaces, Grundlehren der mathematischen Wissenschaften[END_REF]).

Theorem 1 Let N be defined on V + W as follows N (u) := inf{ v 1 + w 2 ; u = v + w with v ∈ V and w ∈ W }.

(1)

Then, N is a semi-norm on V + W . It is a norm under the following "compatibility" assumption :

(T )

z k ∈ V ∩ W, z k -→ a in (V, ||.|| 1 ) z k -→ b in (W, ||.|| 2 )    =⇒ a = b. Proof : To check that N (O E ) = 0, N (λu) = |λ|N (u) for all λ ∈ R, u ∈ V +W ,
and N (u 1 + u 2 ) ≤ N (u 1 ) + N (u 2 ) for all u 1 and u 2 in V + W , does not raise any difficulty. It suffices to use the definition of the lower bound (or infimum) of a set of real numbers.

To prove that N (u) = 0 implies that u = O E is a bit more tricky. Our experience with that question with undergraduate students shows that they usually fail to answer it correctly. Their common mistake is to deduce that a sequence (v k + w k ) k converges to O E using the fact that (v k ) k converges to O E in V and (w k ) k converges to O E in W . We therefore provide a proof here.

We first begin by observing that

ν : V ∩ W u → ν(u) := max( u 1 , u 2 ) ( 2 
)
is a norm on V ∩ W ; this is an easy result to prove. Consider therefore, u ∈ V + W such that N (u) = 0. We take for example

u = v + w, with v ∈ V and w ∈ W. (3) 
Due to the definition (1) of N (u), for all positive integers k, there exists

v k ∈ V and w k ∈ W such that u = v k + w k , and (4) 
v k 1 + w k 2 ≤ N (u) + 1 k = 1 k . ( 5 
) Thus, (v k ) k converges to O E in V and (w k ) k converges to O E in w. But what about (v k + w k ) k ?
Recall that no norm, hence, no topology, has yet been defined on V + W . We infer from (3) and (4) that

v + w = v k + w k , and thus v -v k = w k -w. (6) 
As a consequence, this common vector

z k := v -v k = w k -w lies in V ∩ W and, since ν(z k ) = v -v k 1 or w k -w 2 , z k → v in (V, • 1 ) and z k → -w in (W, • 2 ).
The assumption (T ) then ensures that

v = -w, that is u = v + w = O E .
Note that the technical "compatibility" assumption (T ) is satisfied -trivially if V ∩ W = {O E } (in that case it amounts to 0 = 0).

-in the cases where

V = L p (R), W = L q (R) (indeed, convergence of (f k ) k towards f in L p (R) implies convergence almost everywhere of a subsequence of (f k ) k towards f ).
-when the "holdall" vector space E is a Hausdorff topological vector space in which V and W are continuously imbedded.

We suppose that (T ) is in force for the rest of the section.

The vector space V +W , equipped with the norm N as defined in (1), inherits some properties of (V, • 1 ) and (W, • 2 ). Here is one.

Theorem 2 If (V, • 1 ) and (W, • 2 ) are Banach spaces, then so is (V +W, N ).
Proof : The proof of this theorem offers the opportunity to use a caracterization of completeness of normed vector spaces which is not well-known. Let (X, • ) be a normed space. We have indeed

((X, • ) is complete ) ⇐⇒   Every series in X, of general term a k , for which ∞ k=0 a k < +∞ does converges in X (toward a sum denoted as ∞ k=0 a k )   . (7)
The implication (⇒) is classical, it is the most often used. The converse implication (⇐) is not often used, but we have an opportunity to do that here. For a proof of the equivalence [START_REF] Sonntag | Topologie et Analyse Fonctionnelle[END_REF], see for example ([6], Theorems 2-XIV-2.1 and 2.2, pages 164-165), ( [START_REF] Megginson | An Introduction to Banach Space Theory[END_REF], page 20) or ( [START_REF] Sonntag | Topologie et Analyse Fonctionnelle[END_REF], pages 262 and 270); it is also sketched in ( [START_REF] Bergh | Interpolation Spaces, Grundlehren der mathematischen Wissenschaften[END_REF], page 24). The proof is not very difficult however, but readers are encouraged to work through it themselves. We now proceed in this manner to a proof of Theorem 2.

Consider a series in V + W , of general term u k for which

∞ k=0 N (u k ) < ∞.
We have to prove that n k=0 u k converges as n → +∞, to some element u ∈ V + W . In view of the definition (1) of N , for all positive integer k, there exist v k ∈ V and w k ∈ W satisfying

u k = v k + w k , and (8) 
v k 1 + w k 2 ≤ N (u k ) + 1 k 2 . (9)
Thus,

∞ k=0 v k 1 < +∞ and ∞ k=0 w k 2 < +∞. Since both (V, • 1
) and (W, • 2 ) have been assumed to be complete, there exist v ∈ V and w ∈ W such that

n k=0 v k -→ n→+∞ v in V, and n k=0 w k -→ n→+∞ w in W. ( 10 
) Let u := v + w ∈ V + W . Let us check that, as expected, n k=0 u k converges to u in (V + W, N ). Indeed, N u - n k=0 u k = N u + v - n k=0 (v k + w k ) ≤ v - n k=0 v k 1 + w - n k=0 w k 2 .
It remains to apply (10) to get the desired result, N (u -

n k=0 u k ) -→ n→+∞ 0.
Comments : The construction of the norm ν on V ∩ W and N on V + W deserves some geometrical interpretation. Even if • 1 (resp. • 2 ) is only defined on V ⊂ E (resp. on W ⊂ E), we can extend it to the whole of E by setting u 1 = +∞ if u ∈ V (resp. u 2 = +∞ if u ∈ W ). We still denote by

• 1 and • 2 the extended functions.

Clearly, • 1 and • 2 are convex positively homogeneous functions on E. Modern convex analysis accepts and can handle convex functions possibly taking the value +∞ ( [START_REF] Rockafellar | Convex Analysis[END_REF]). An important geometrical object associated with a convex function 

f : E → R ∪ {+∞} is its so-called strict epigraph epi s f := {(x, r) ∈ E × R : f (x) < r}
epi s N = (epi s • 1 ) + (epi s • 2 ). ( 11 
)
The sets where ν (resp. N ) is finite, called the domain of ν (resp. of N ) in convex analysis, is just V ∩ W (resp. V + W ).

The binary operation which builds a convex function f from two other ones f 1 and f 2 , via the geometric construction [START_REF] Rockafellar | Convex Analysis[END_REF]). This operation enjoys properties similar to the usual (integral) convolution in classical analysis.

epi s f = epi s f 1 + epi s f 2 is called the infimal convolution of f 1 and f 2 ([2],
In brief, the norm N has been designed as an infimal convolution of the norms • 1 and • 2 .

Returning to our particular setting E = L(R), V = L p (R) and W = L q (R) with 1 ≤ p, q < +∞, the vector space L p (R) + L q (R) can be equipped with a norm that we denote • p,q as follows,

f p,q = inf{ g p + h q ; f = g + h with g ∈ L p (R) and h ∈ L q (R)}. (12)
As proved in Theorem 2, (L p (R) + L q (R), • p,q ) is a Banach space.

3 Comparing L r (R) with L p (R) + L q (R)

We know that the Lebesgue spaces L r (R) and L s (R) (for 1 ≤ r = s < +∞) cannot be compared. Neither L r (R) is contained in L s (R) nor the converse. A direct comparison is however possible if we deal with the sum of these spaces. Here is the main result of this section.

Theorem 3 If 1 ≤ p < q < +∞, then we have the following :

1. L r (R) is contained in L p (R) + L q (R) whenever r ∈ [p, q], 2. if 1 ≤ r < +∞ does not lie in [p, q], then L r (R) is not contained in L p (R) + L q (R).
Proof : (1) Let f ∈ L r (R) and consider X := {x ∈ R : |f (x)| > 1} (a measurable set defined within a set of null measure) as well as X c = R \ X (the complementary set of X in R). We decompose f as follows :

f = f 1 + f 2 , with f 1 = f • 1 X and f 2 = f • 1 X c . ( 13 
)
We claim that (13) provides an explicit decomposition of f in L p (R) + L q (R), that is to say f 1 ∈ L p (R) and f 2 ∈ L q (R). We first prove that,

R |f 1 (x)| p dλ(x) = X |f (x)| p dλ(x) = X |f (x)| p-r • |f (x)| r dλ(x). (14) 
For x ∈ X, |f (x)| > 1 and, since the exponent p-r is nonpositive, |f (x)| p-r ≤ 1.

Consequently, the last integral in the string of equalities ( 14) is bounded above by X |f (x)| r dλ(x). Finally,

(14 ) R |f 1 (x)| p dλ(x) ≤ X |f (x)| r dλ(x) ≤ R |f (x)| r dλ(x) < +∞.
We thus have proved that

f 1 ∈ L p (R).
Second, we prove that

f 2 ∈ L q (R). Indeed, R |f 2 (x)| q dλ(x) = X c |f (x)| q dλ(x) = X c |f (x)| q-r • |f (x)| r dλ(x). (15) For x ∈ X c , |f (x)| ≤ 1 and, since the exponent q-r is nonegative, |f (x)| q-r ≤ 1.
Again, the last integral in the string of equalities (15) is bounded above by

X c |f (x)| r dλ(x). As a result, R |f 2 (x)| q dλ(x) = X c |f (x)| r dλ(x) = R |f (x)| r dλ(x) < +∞. ( 16 
)
We therefore, have proved that f 2 ∈ L q (R).

(2) The second part of Theorem 3 is a bit harder to prove (like most of the negative results in mathematics). We actually have to distinguish two cases for r in the segment [p, q] : r < p and r > q.

Case 1 : r < p. Choose α satisfying 1/p < α < 1/r and let f be defined on R by f (x) = x -α 1 (0,1] (x). Since |f (x)| r = x -αr for x ∈ (0, 1] and 0 elsewhere, the choice of α implies that f ∈ L r (R) (since αr < 1). The same argument shows that f ∈ L p (R) (since αp > 1).

Suppose now that L r (R) ⊂ L p (R) + L q (R). Then

f ∈ L r (R) ⊂ L p (R) + L q (R) ⊂ L p ([0, 1]) + L q ([0, 1]). (17) 
But since [0, 1] is of Lebesgue finite measure and p < q, L q ([0, 1]) is contained in L p ([0, 1]), so that (17) yields that f ∈ L p ([0, 1]). This is not the case. Thus we have proved that L r (R) is not contained in L p (R) + L q (R).

Case 2 : r > q. Our proof in this case relies on a technical lemma that we present separately.

Lemma 1 Let 1 ≤ p < q < +∞, let Ω be a mesurable subset of R, and let f ∈ L p (Ω) + L q (Ω). Then f ∈ L q (Ω) whenever it is essentially bounded on Ω.

Proof of the Lemma : Let f be decomposed as f = f p + f q , with f p ∈ L p (Ω) and f q ∈ L q (Ω). So, to prove that f ∈ L q (Ω) amounts to proving that f p ∈ L q (Ω).

Let X := {x ∈ R : |f p (x)| > 1}. To show that Ω |f p (x)| q dλ(x) is finite, we cut it into two pieces : Ω∩X c |f p (x)| q dλ(x) and Ω∩X |f p (x)| q dλ(x).

Consider the first piece. Since f p ∈ L p (R), the set X is of finite (Lebesgue) measure. Now with the definition of X and the fact that q -p > 0, we obtain

Ω∩X c |f p (x)| q dλ(x) = Ω∩X c |f p (x)| q-p • |f p (x)| p dλ(x) ≤ Ω∩X c |f p (x)| p dλ(x) ≤ R |f p (x)| p dλ(x) < +∞.
This concludes the argument for the first piece.

Consider now the second piece. Since f has been assumed essentially bounded on Ω,

|f p (x)| ≤ |f (x) -f q (x)| ≤ f ∞ + |f q (x)| for almost all x in Ω. Consequently, Ω∩X |f p (x)| q dλ(x) ≤ Ω∩X ( f ∞ + |f q (x)|) q dλ(x). (18) 
The convexity of the function t → t q on [0, +∞) implies that (

f ∞ + |f q (x)|) q ≤ 2 q-1 ( f q ∞ + |f q (x)| q )
. So, we pursue the string of inequalites (18) with

Ω∩X |f p (x)| q dλ(x) ≤ 2 q-1 Ω∩X ( f q ∞ + |f q (x)| q ) dλ(x) ≤ 2 q-1 [ λ(X) f q ∞ + ( f q q ) q ] .
To summarize, we have proved that

Ω |f p (x)| q dλ(x) = Ω∩X c |f p (x)| q dλ(x) + Ω∩X |f p (x)| q dλ(x) < +∞.
Thus, f p ∈ L p (Ω), which was our objective. That concludes the proof of the technical lemma.

Let us go back to the second part of the proof of Theorem 3, the case where r > q. Choose α satisfying 1/r < α < 1/q and let f be defined on R by f

(x) = x -α 1 [1,+∞) (x).
Since |f (x)| r = x -αr for x ∈ [1, +∞) and 0 elsewhere, the choice of α implies that f ∈ L r (Ω) (since αr > 1). But also f is essentially bounded on R. If f were in L p (R) + L q (R), the technical lemma would imply that f ∈ L q (R). But, this is not the case since |f (x)| q = x -αq for x ∈ [1, +∞) and 0 elsewhere, the choice of α implies that αq < 1.

Thus, again in the case where r > q, L r (R) is not contained in L p (R) + L q (R).

We end this note with the following observation, which links sections 2 and 3. In the first part of Theorem 3, we have proved that L r (R) ⊂ L p (R) + L q (R) whenever r ∈ [p, q]. In the course of its proof, a simple explicit decomposition of f ∈ L r (R) as f = f 1 + f 2 , with f 1 ∈ L p (R) and f 2 ∈ L q (R) has been provided (see (13) and the upper bounds (14') and ( 16)). Indeed, as a consequence of ( 14) and (16), f p,q ≤ f 1 p + f 2 q ≤ f r/p r + f r/q r .

Hence, the injection of L r (R) into L p (R) + L q (R) is continuous ; therefore, there exists C > 0 such that

f p,q ≤ C f r . (20) 
Indeed, using the inequality (19), we can get an upper bound for the norm of this injection (a somewhat complicated expression in terms of p, q, r). This result complements a more classical one which says that, when r ∈ [p, q], L p (R)∩L q (R) is contained in L r (R), then the injection is continuous.

(
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