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Abstract

This paper is devoted to the semiclassical magnetic Laplacian. Until now WKB
expansions for the eigenfunctions were only established in presence of a non-zero elec-
tric potential. Here we tackle the pure magnetic case. Thanks to Feynman-Hellmann
type formulas and coherent states decomposition, we develop here a magnetic Born-
Oppenheimer theory. Exploiting the multiple scales of the problem, we are led to solve
an effective eikonal equation in pure magnetic cases and to obtain WKB expansions.
We also investigate explicit examples for which we can improve our general theorem:
global WKB expansions, quasi-optimal estimates of Agmon and upper bound of the
tunelling effect (in symmetric cases). We also apply our strategy to get more accurate
descriptions of the eigenfunctions in a wide range of situations analyzed in the last
two decades.
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1 Motivation and main results

1.1 Context and motivation

This paper is devoted to the analysis of the self-adjoint operators on L2(Rm
s × Rn

t , ds dt)
of the following type

Lh = (hDs +A1(s, t))
2 + (Dt +A2(s, t))

2, (1.1)

where A1 and A2 are polynomial, D = −i∇, and where the space L2(Rm
s × Rn

t , ds dt) is
equipped with the standard scalar product:

〈ψ1, ψ2〉L2(Rm
s ×Rn

t , ds dt)
=

∫

Rm×Rn

ψ1ψ2 ds dt.

The corresponding quadratic form is denoted by Qh. We would like to describe the lowest
eigenpairs (eigenvalues and eigenfunctions) of this operator in the limit h → 0 under
elementary confining assumptions.

1.1.1 The Born-Oppenheimer strategy

The problem of considering partial semiclassical problems appears for instance in the
context of [34, 32] where the main issue is to approximate the eigenpairs of operators with
electrical potentials in the form:

− h2∆s −∆t + V (s, t). (1.2)

The main idea, due to Born and Oppenheimer in [11], is to replace, for fixed s, the operator
−∆t+V (s, t) by its eigenvalues µk(s). Then we are led to consider for instance the reduced
operator (called Born-Oppenheimer approximation)

−h2∆s + µ1(s),

and to apply the semiclassical techniques à la Helffer-Sjöstrand [28, 29] to analyze in
particular the tunnel effect when the potential µ1 admits symmetries. The main point
is to make the reduction of dimension rigorous. Note that we have always the following
lower bound

− h2∆s −∆t + V (s, t) ≥ −h2∆s + µ1(s), (1.3)

which involves accurate estimates of Agmon with respect to s.
Our paper aims at understanding the analogy between magnetic case (1.1) and electric

case (1.2). In particular even the formal dimensional reduction seems to be a little more
problematic than in the electric case. Let us write the operator valued symbol of Lh. For
(x, ξ) ∈ Rm × Rm, we introduce the electro-magnetic Laplacian acting on L2(Rn, dt):

Mx,ξ = (Dt +A2(x, t))
2 + (ξ +A1(x, t))

2.

Denoting by µ1(x, ξ) its lowest eigenvalue we would like to replace Lh by them-dimensional
pseudo-differential operator:

µ1(s, hDs).
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Such reductions are considered in [36, Theorem 2.1 and remark thereafter] where it is
proved that the spectrum of Lh is completely determined by an effective Hamiltonian (a
matrix of pseudo-differential operators) whose principal symbol can be described thanks
to the spectral invariants of the operator valued symbol of Lh. For the present situation
the low lying spectrum of Lh could be described by the one of µ1(s, hDs) modulo O(h)
and we will see that, under generic assumptions, O(h) is precisely the order of the spectral
gap between the first eigenvalues in the simple well case.

1.1.2 Multiple scales induced by the fully semiclassical magnetic Laplacian

Another important motivation to analyze partially semiclassical problems with magnetic
fields comes in fact from the fully semiclassical case (i.e. when the parameter h lies
in front of all derivatives). Let us now explain in which sense. The study of the discrete
spectrum magnetic Laplacian (−ih∇+A)2 has given rise to many contributions in the last
twenty years, especially in the semiclassical limit. To have an overview on the subject one
may refer to the book by Fournais and Helffer [19], the survey by Helffer and Kordyukov
[24] and the lecture notes by Raymond [47]. Many papers are concerned with finding
approximations of the first eigenmodes. Such approximations are difficult to obtain due
to the geometry of a possible boundary (carrying in general a Neumann type condition)
and to the eventual variations of the magnetic field B = ∇ × A. In dimension two the
case of the disk is investigated in [3, 5, 4, 14] and generalized to smooth domains in [26]
where it is proved that

λ1(h) = Θ0h− C1κmaxh
3/2 + o(h3/2), (1.4)

where κmax is the maximal curvature of the boundary and where Θ0 > 0 and C1 > 0 will
be defined later. An important point to notice is that, in the above mentioned papers,
nothing is told about the simplicity of the first eigenvalue or about the approximation of the
eigenfunctions. A reason for this is that the spirit of the analysis is essentially variational:
it is based on the construction of appropriate test functions for the first Rayleigh quotient
so that, even if the simplicity of the eigenfunctions were known, nothing could be deduced
for the approximation of the eigenfunctions.

The paper [18] is the first one to establish, in a smooth case and under non-degeneracy
assumptions, the approximation of the eigenfunctions and the simplicity of the lowest
eigenvalues. The crucial idea to get such results is to understand a double scale structure
due to the inhomogeneity of the pure magnetic Laplacian, which is specific to problems
with smooth boundaries or without boundary, and to apply the spectral mapping theorem.
In such situations it appears that the microlocalization (on possibly different scales) of the
eigenfunctions plays an important role in the determination of the spectral asymptotics.
In particular the papers [45, 16, 43], which are concerned with varying magnetic fields,
establish full asymptotic expansions of the low lying eigenvalues and eigenfunctions by
the reduction to the (electric) Born-Oppenheimer approximation which naturally involves
different scales. The analysis of [16], related to vanishing magnetic fields, is motivated by
the papers [38, 25, 21, 23] and solves one of their conjectures on the asymptotic simplicity
of the eigenvalues. This paper will provide simple examples suggested by all the above
mentioned models. Moreover, as we will see, the proof of the simplicity of the eigenvalues
as well as the expansions of the eigenfunctions strongly relies on microlocal considerations
in the spirit of hypoellipticity. We will see that an analysis à la Born-Oppenheimer will
allow us to deal with all the above mentioned situations.
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1.1.3 Magnetic WKB expansions and estimates of Agmon

In all the papers about asymptotic expansions of the magnetic eigenfunctions, one of
the methods consists in using a formal power series expansion. It turns out that these
constructions are never in the famous WKB form, but in a weaker and somehow more
flexible one. When there is an additional electric potential, the WKB expansions are
possible as we can see in [30] and [37]. The reason for which we would like to have a
WKB description of the eigenfunctions is to get a precise estimate of the magnetic tunnel
effect in the case of symmetries. Until now, such estimates are only investigated in two
dimensional corner domains in [7] and [8] for the numerical counterpart. It turns out that
the crucial point to get an accurate estimate of the exponentially small splitting of the
eigenvalues is to establish exponential decay estimates of Agmon type. These localization
estimates are rather easy to obtain (at least to get the good scale in the exponential
decay) in the corner cases due to the fact that the operator is “more elliptic” than in the
regular case in the following sense: the spectral asymptotics is completely drifted by the
principal symbol. Nevertheless, let us notice here that, on the one hand, the numerics
suggests that the eigenvalues do not seem to be simple (see for instance the case of the
square in [8]) and, on the other hand, that establishing the optimal estimates of Agmon
is still an open problem. In smooth cases, due to a lack of ellipticity and to the multiple
scales, the localization estimates obtained in the literature are in general not optimal or
rely on the presence of an electric potential (see [39, 40]): the principal symbol provides
only a partial confinement whereas the precise localization of the eigenfunctions seem to
be determined by the subprincipal terms. As far as we know, the present paper provides
the first examples of WKB expansions in pure magnetic situations as well as quasi-optimal
– optimal in terms of power of h but with no exhibited distance of Agmon – estimates
of Agmon in model situations. In particular, we prove for a wide range of situations
analyzed in the past decades that the magnetic eigenfunctions are in the WKB form
under generic assumptions. This paper can be considered as the first necessary step (WKB
expansions and rather accurate Agmon estimates) towards the complete comprehension of
the magnetic tunnel effect.

1.2 Main results and strategy of the proofs

1.2.1 Spectrum of the simple magnetic wells

In the simple well situation, we will work under the following assumptions. The first
assumption states that the lowest eigenvalue of the operator symbol of Lh admits a unique
and non degenerate minimum and the second one concerns the simplicity of the spectrum
of the effective harmonic oscillator.

Assumption 1.1 We assume that, for all (x, ξ) ∈ Rm×Rm, the bottom of the spectrum of
Mx,ξ is a simple eigenvalue denoted by µ1(x, ξ) and that (x, ξ) 7→ µ1(x, ξ) is analytic and
associated with a L2-normalized eigenfunction ux,ξ ∈ S(Rn) which also analytically depends
on (x, ξ). Moreover we assume that µ1 admits a unique and non degenerate minimum at
point denoted by (x0, ξ0). We let µ0 = µ1(x0, ξ0).

Remark 1.2 In a neighborhood of (x0, ξ0), we still denote by ux,ξ and µ1(x, ξ) the analytic
continuations of u and µ1 and we have locally:

∫

Rn

ux,ξux,ξ dt = 1. (1.5)

Note that the analytic continuation of u is not always L2-normalized.
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Assumption 1.3 Under Assumption 1.1, let us denote by Hess µ1(x0, ξ0) the Hessian ma-
trix of µ1 at (x0, ξ0). We assume that the spectrum of the operator Hess µ1(x0, ξ0)(σ,Dσ)
is simple.

Remark 1.4 Assumption 1.3 is automatically satisfied when n = 1.

The last assumption is a spectral confinement.

Assumption 1.5 For R ≥ 0, we let ΩR = Rm+n \ B(0, R). We denote by L
Dir,ΩR

h the
Dirichlet realization on ΩR of (−i∇t + A2(s, t))

2 + (−ih∇s + A1(s, t))
2. We assume that

there exist R0 ≥ 0, h0 > 0 and µ∗0 > µ0 such that for all h ∈ (0, h0), the first eigenvalue of

L
Dir,ΩR0
h satisfies:

λ
Dir,ΩR0
1 (h) ≥ µ∗0.

Remark 1.6 In particular, due to the monotonicity of the Dirichlet realization with re-
spect to the domain, Assumption 1.5 implies that there exist R0 > 0 and h0 > 0 such that
for all R ≥ R0 and h ∈ (0, h0):

λDir,ΩR
1 (h) ≥ λ

Dir,ΩR0
1 (h) ≥ µ∗0.

By using the Persson’s theorem (see [41]), we have the following proposition.

Proposition 1.7 Under Assumption 1.5, there exists h0 > 0 such that for all h ∈ (0, hJ):

inf spess(Lh) ≥ µ∗0.

Theorem 1.8 Let us assume Assumptions 1.1, 1.3 and 1.5. For all n ≥ 1, there exists
h0 > 0 such that for all h ∈ (0, h0) the n-th eigenvalue of Lh exists and satisfies

λn(h) = λn,0 + λn,1h+ o(h),

where λn,0 = µ0 and λn,1 is the n-th eigenvalue of 1
2Hess µ1(x0, ξ0)(σ,Dσ).

Remark 1.9 In fact using the double scale construction developed in the proof of the
previous theorem, it is possible to get a complete asymptotic expansion of the following
type

λn(h) ∼
h→0

∑

j≥0

ln,jh
j/2,

where ln,0 = µ0, ln,1 = 0 and ln,2 = λn,1. This double scale construction can be continued
at any order by using the same kind of double scale procedure which can be found in
[45, 44, 16] (see also [18] more in the Grushin spirit or [9] in an electric case). Anyway
as we will see in Theorem 1.10 and thanks to a WKB construction, we can get a complete
asymptotic expansion of λn(h) in powers of h.

Strategy of the proof of Theorem 1.8. The proof of Theorem 1.8 is divided into
two main steps. The first step is to construct quasimodes as formal series expansions and
to apply the spectral theorem. In order to succeed we will establish Feynman-Hellmann
formulas with multiple parameters which are consequences of the perturbation theory of
Kato. The second step which is slightly more difficult is to get an equivalent of the spectral
splitting between the eigenvalues. For that purpose, we will follow the strategy of [46] by
using a partial coherent states decomposition with respect to the semiclassical variables
s and use it to establish polynomial estimates (in the spirit of [44] and also [22]) in the
phase space satisfied by the eigenfunctions. Then the Feshbach-Grushin type reduction is
used to rigorously reduce the dimension and get the spectral splitting. Proof of Theorem
1.8 is the aim of Section 2.
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1.2.2 Magnetic WKB expansions: simple well case

We provide now WKB expansions of the lowest eigenpairs in a pure magnetic case. We
reduce here our study to the case when A2 = 0 for reasons motivated in Remark 1.12. We
therefore focus now on operators of the form

Lh = D2
t + (hDs +A1(s, t))

2. (1.6)

Let us state one of the most important results of this paper.

Theorem 1.10 We assume A2 = 0. Under Assumptions 1.1, 1.3 and 1.5, there exist a
function Φ = Φ(s) defined in a neighborhood V of x0 with ReHessΦ(x0) > 0 and, for any
n ≥ 1, a sequence of real numbers (λn,j)j≥0 such that

λn(h) ∼
h→0

∑

j≥0

λn,jh
j ,

in the sense of formal series, with λn,0 = µ0. Besides there exists a formal series of smooth
functions on V × Rn

t

an(.;h) ∼
h→0

∑

j≥0

an,jh
j

with an,0 6= 0 such that

(Lh − λn(h))
(
an(.;h)e

−Φ/h
)
= O (h∞) e−Φ/h.

Furthermore the functions t 7→ an,j(s, t) belong to the Schwartz class uniformly in s ∈ V.
In addition, there exists c0 > 0 such that for all h ∈ (0, h0)

B
(
λn,0 + λn,1h, c0h

)
∩ sp (Lh) = {λn(h)},

and λn(h) is a simple eigenvalue.

In the previous theorem we used the following definition of formal series of functions.

Notation 1.11 Let n ≥ 1. We write an(s, t;h) ∼
h→0

∑
j≥0 an,j(s, t)h

j when for all J ≥ 0

and α ∈ Nn+m, there exist hJ,α > 0 and CJ,α > 0 such that for all h ∈ (0, hJ,α), we have

∣∣∣∣∂
α
(
an(s, t;h)−

J∑

j=0

an,j(s, t)h
j
)∣∣∣∣ ≤ CJ,αh

J+1 locally in (s, t) ∈ V × Rn
t .

We also write a = O(h∞) when a ∼ 0. The case of formal series of numbers is similar.

Let us also recall that for any arbitrary sequence of smooth functions aj one can always
find, by a procedure of Borel type, a unique smooth function a(s, t;h) (called a realization)
(up to O(h∞)) such that a(s, t;h) ∼

h→0

∑
j≥0 aj(s, t)h

j (see e.g. [35]). We call this function

a a realization.

Remark 1.12 When A2 is not zero, it appears that the dimensional reduction is prevented
by the oscillations of the eigenfunctions of the model operator Mx,ξ. The problem already
appears in the case n = 1: we can gauge out A2 at the price to replace A1 by A1+h∇sϕ(s, t)
which is h dependent. As a consequence of our analysis, we can check that the spectrum
associated with the potential (A1+h∇sϕ, 0) is shifted by a factor O(h) compared to the one
associated with (A1, 0). When n = 1 we can even prove with our method (and a change of
gauge) that the phase Φ in the WKB expansion is (s, t)-dependent.
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Strategy of the proof of Theorem 1.10. Thanks to Theorem 1.8, we have sharp
asymptotic expansions of the eigenvalues. In particular, one knows that they become
simple in the semiclassical limit. Therefore, to get the (WKB) approximation of the corre-
sponding eigenfunctions, we have just to use an appropriate Ansatz for our quasimodes and
to apply the spectral theorem. The new Ansatz considered here will be given by a partial
WKB expansion with respect to the variable s. Under some analyticity assumptions, the
effective eikonal equation will be solved thanks to the classical stable manifold theorem
and analytic extensions of the eigenpairs of some “model” operators. The corresponding
effective transport equation will be obtained as the Fredholm condition of an operator
valued transport equation jointly with the Feynman-Hellmann formulas. Theorem 1.10
will be proved in Section 3.

1.2.3 Generalized Montgomery operators: towards the magnetic tunnel effect

Let us introduce a family of magnetic Laplacians in dimension two which is related to [27]
and the more recent result by Fournais and Persson [20]. For k ∈ N \ {0}, we consider the
operator on L2(R2, ds dt):

L[k],gM
~ = ~2D2

t +

(
~Ds − γ(s)

tk+1

k + 1

)2

,

where γ does not vanish. We call λ
[k],gM
n,~ the n-th eigenvalue (if exists) of this operator.

In order to stick to the previous analysis, we start by the following naive but fundamental
rescaling

s = s, t = ~
1

k+2 t. (1.7)

The operator becomes

~
2k+2
k+2

(
D2

t +

(
~

1
k+2Ds − γ(s)

tk+1

k + 1

)2
)
.

The investigation is then reduced to the one of

L
[k]
h = D2

t +

(
hDs − γ(s)

tk+1

k + 1

)2

, (1.8)

with h = ~
1

k+2 . Let us now introduce one of the generic assumptions, corresponding to
the simple well case, under which we will work.

Assumption 1.13 (simple well) The function γ admits a unique minimum γ0 > 0 at
s0 = 0 which is non degenerate and lim

s→±∞
γ(s) = γ±∞ with γ0 < γ±∞ < +∞.

Under this assumption, the operator L
[k]
h is a particular case of the previous theory. We

will see in Section 4.1 (Proposition 4.1) that operator L
[k]
h satisfies Assumptions 1.1, 1.3

and 1.5. As a consequence, we could directly apply Theorem 1.10. But, at least in the
case when the amplitude of the function γ is small enough, we can prove that the first
eigenfunctions are globally in the WKB form:

Proposition 1.14 Suppose Assumption 1.13. Then there exists ε0 > 0 such that for all

ε ∈ (0, ε0), if
∣∣∣1− γ0

γ

∣∣∣ ≤ ε, we can take x0 = s0, V = R in Theorem 1.10.
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As a direct reformulation and using the rescaling (1.7), we get the following result in
the original variables

Corollary 1.15 The n-th eigenvalue of L
[k],gM
~ and the corresponding WKB solution are

given on R2
s,t by

λ
[k],gM
n,~ = ~

2k+2
k+2 λn(~

j
k+2 ) ∼ ~

2k+2
k+2

∑

j≥0

λn,j~
j

k+2 ,

and

u
[k],gM
n,~ (s, t) ∼ an(s, ~

− 1
k+2 t; ~

1
k+2 )e−Φ(s)/~

1
k+2

where an and λn are given by Theorem 1.10.

In the perspective of the analysis of the magnetic tunnelling, we will now suppose that
γ, instead of having a unique non degenerate minimum, satisfies the following assumption
of double well type:

Assumption 1.16 (double well) The function γ is even and has two non degenerate
minima at s− < 0 and s+ = −s− > 0.

Proposition 1.17 We assume Assumption 1.16. Let us fix δ ∈ (0, s+) and let

z(s) = χδ,−(s)

∣∣∣∣∣

∫ s

s−

χ̃(s′)

√
γ(s′)

2
k+2 − γ

2
k+2

0 ds′
∣∣∣∣∣+ χδ,+(s)

∣∣∣∣∣

∫ s

s+

χ̃(s′)

√
γ(s′)

2
k+2 − γ

2
k+2

0 ds′
∣∣∣∣∣,

where 0 ≤ χ̃ ≤ 1 is a smooth cutoff function whose support contains s− and s+ and where
χδ,− and χδ,+ are smooth cutoff functions such that

χδ,−(s) =

{
1 for s ≤ δ

2 ,

0 for s ≥ δ,
and χδ,+(s) =

{
1 for s ≥ − δ

2 ,

0 for s ≤ −δ.

Let us consider C0 > 0. There exist ε0 > 0, C > 0 and h0 > 0 such that for all eigenpairs

(λ, ψ) of L
[k]
h satisfying λ ≤ µ0 + C0h we have, for all h ∈ (0, h0),

‖eε0z/hψ‖ ≤ C‖ψ‖ and Q
[k]
h (eε0z/hψ) ≤ C‖ψ‖2.

We can now deal with the tunnel effect for the rescaled Montgomery models. For that
purpose, let us fix δ ∈ (0, s+) and define the two symmetric model wells. We assume that γ
satisfies Assumption 1.16. We consider the Dirichlet realizations on L2((−∞, s−+ δ)×R)

and L2((s+ − δ)× R,+∞)) of D2
t +

(
hDs − γ(s) t

k+1

k+1

)2
respectively denoted by HDir

h,− and

HDir
h,+. These operators are isospectral by symmetry. We want to compare the spectrum of

L
[k]
h with the one of the direct sum Hh = HDir

h,− ⊕ HDir
h,+.

Theorem 1.18 Let us consider C0 > 0. There exist c > 0, C > 0, h0 > 0 such that for

all µ ∈ sp (Hh) and λ ∈ sp
(
L
[k]
h

)
such that µ, λ ≤ µ0 + C0h, we have, for all h ∈ (0, h0),

range
(
1[µ−Ce−c/h,µ+Ce−c/h](L

[k]
h )
)
= 2

and
dist (λ, sp (Hh)) ≤ Ce−c/h.
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The following corollary is a direct consequence of the previous theorem

Corollary 1.19 In terms of operator L[k],gM
~ the gap between pairs of eigenvalues is given

by

λ
[k],gM
2n,~ − λ

[k],gM
2n−1,~ = O(e−c/~

1
k+2

).

for h small enough depending on n.

Strategy of the analysis of L
[k]
h In the simple well case the study of L

[k]
h follows

the same lines as for Theorem 1.10 jointly with a normal form argument inspired by
[45, 16, 48] which permits simultaneously to make the WKB expansions global and to
get quasi-optimal estimates of Agmon. Concerning the double case, in order to get the
tunneling effect, we can follow the classical procedure based on the spectral theorem and
the previous estimates of Agmon.

1.3 WKB constructions: influence of the geometry

This section is devoted to the fully semiclassical magnetic Laplacian (~Dx+A)2 on L2(R2).
We now investigate three kinds of models for which the geometry is more intricate and
for which our theorems do not directly apply. Nevertheless, our WKB strategy is robust
enough and still effective: we are able to exhibit WKB expansions. Note that all the
forthcoming situations have been already studied in the literature but never from the
WKB point of view. The geometric perturbations at stake are: vanishing magnetic fields
on curves or possibly singular boundary.

1.3.1 Vanishing magnetic fields... or not

We will work under the following assumption on B as in [21] and [16].

Assumption 1.20 The zero locus of B is a smooth closed non empty curve Γ:

Γ = {B(x) = 0},

and B vanishes exactly at the order k ≥ 1 on Γ. Moreover we assume that the k-th normal
derivative of B admits a non degenerate minimum on Γ at x0.

Remark 1.21 Here we work in dimension two, but there is no doubt that we could adapt
the presentation, modulo a few technicalities, to cover the case of magnetic fields vanishing
at a given order on hypersurfaces as in [21].

In Section 5.1 we will construct, in a neighborhood of x0 and in normal coordinates, WKB

expansions which come within the study of the generalized Montgomery operator L[k],gM
~ .

Under the additional assumption that the minimum is uniquely reached at x0, the splitting
between the lowest eigenvalues has been established in [16] (for the case k = 1 and the
proof is completely similar for k ≥ 2) so that these WKB expansions are local (in the sense
of Theorem 1.10) approximations of the true eigenfunctions.

These considerations can be extended to the case k = 0 which can be interpreted
as follows. The curve Γ represents the boundary of an enclosed open set Ω carrying a
magnetic Neumann condition (with a magnetic field which does not vanish on Ω). In
other words, we can perform a WKB construction, for the Neumann realization on Ω of

10



(~Dx + A)2, near each x0 where B|∂Ω is non degenerately minimal. Assuming moreover
that

Θ0min
∂Ω

B < min
Ω

B,

and that B|∂Ω admits a unique and non degenerate minimum, we can get, by using the
spectral splitting proved in [45], the local WKB approximation of the lowest eigenfunctions.
All the scaling properties, stated in normal coordinates, will be addressed in Section 5.1.

1.3.2 Varying edge

The strategy of this paper can also deal with more singular situations in dimension three.
Such a situation is described in the paper [43] where the semiclassical analysis is done when
the boundary of the domain contains a varying edge. We propose to perform the WKB
constructions for a simplified version of the operator introduced there. We are interested
in the operator defined on L2(Wα, ds dt dz) and with Neumann conditions

Le
~ = ~2D2

t + ~2D2
z + (~Ds − t)2,

where
Wα =

{
(s, t, z) ∈ R3 : |z| ≤ T (s)t

}
,

with T (s) = tan
(
α(s)
2

)
and where α : R → R is a smooth function which represents the

(varying) opening of the wedge Wα. We will work under the following assumption.

Assumption 1.22 The function s 7→ α(s) admits a unique and non degenerate maximum
α0 at s = 0.

In Section 5.2, we will provide local (near the point of the edge giving the maximal aper-
ture) WKB expansions of the lowest eigenfunctions.

1.3.3 Curvature induced magnetic bound states

As we have seen, in many situations the spectral splitting appears in the second term
of the asymptotic expansion of the eigenvalues. It turns out that we can also deal with
more degenerate situations. The next lines are motivated by the initial paper [26] whose
main result is recalled in (1.4). Their fundamental result establishes that a smooth Neu-
mann boundary can trap the lowest eigenfunctions near the points of maximal curvature.
These considerations are generalized in [18, Theorem 1.1] where the complete asymptotic
expansion of the eigenpairs is proved

λcn,~ = Θ0~− C1κmax~
3/2 + (2n− 1)C1Θ

1/4
0

√
3k2
2

~7/4 + o(~7/4), (1.9)

where k2 = −κ′′(0). In our paper, as in [18], we will consider the magnetic Neumann
Laplacian on a smooth domain Ω such that the algebraic curvature κ satisfies the following
assumption.

Assumption 1.23 The function κ is smooth and admits a unique and non degenerate
maximum.

We will prove that the lowest eigenfunctions are approximated by local WKB expansions
which can be made global when for instance ∂Ω is the graph of a smooth function. In

particular we will recover the term C1Θ
1/4
0

√
3k2
2 by another method.

11



1.4 Organization of the paper

The paper is organized as follows. Section 2 is devoted to models with simple magnetic
wells and to the proof of Theorem 1.8. Section 3 is concerned with the proof of Theorem
1.10. In Section 4 we establish that the Montgomery operators satisfy the assumption of
Theorem 1.10, we prove that the WKB expansions are global (Proposition 1.14) and we
give an upper bound of the tunnel effect (proof of Theorem 1.18). These theoretical results
are illustrated by numerical simulations. Section 5 deals with the geometrical examples
introduced in Section 1.3.

2 Simple magnetic wells

This section is devoted to the proof of Theorem 1.8. In order to perform the investigation
we use the following rescaling

s = x0 + h1/2σ, t = τ, (2.1)

and a gauge transform eiξ0σ/h
1/2

, so that Lh becomes

Lh = (−i∇τ +A2(x0 + h1/2σ, τ))2 + (ξ0 − ih1/2∇σ +A1(x0 + h1/2σ, τ))2. (2.2)

The corresponding quadratic form is denoted by Qh.

2.1 Formal series and general Feynman-Hellmann formulas

This section is devoted to the proof of the following proposition.

Proposition 2.1 Let us assume Assumption 1.1. For all n ≥ 1, there exist C > 0 and
h0 > 0 such that, for h ∈ (0, h0),

dist




2∑

j=0

ln,jh
j/2, sp(Lh)


 ≤ Ch3/2,

where ln,0 = µ0, ln,1 = 0 and ln,2 is the n-th eigenvalue of 1
2Hess µ1(x0, ξ0)(σ,Dσ).

We will need the so-called Feynman-Hellmann formulas which are obtained by taking the
derivative of the eigenvalue equation

Mx,ξux,ξ = µ1(x, ξ)ux,ξ,

with respect to xj and ξk.

Proposition 2.2 Let η and θ denote one of the xj or ξk. Then we have

(Mx,ξ − µ1(x, ξ))(∂ηu)x,ξ = (∂ηµ1(x, ξ)− ∂ηMx,ξ)ux,ξ (2.3)

and

(Mx0,ξ0 − µ0)(∂η∂θu)x0,ξ0

= ∂η∂θµ1(x0, ξ0)ux0,ξ0 − ∂ηMx0,ξ0(∂θu)x0,ξ0 − ∂θMx0,ξ0(∂ηu)x0,ξ0 − ∂η∂θMx0,ξ0ux0,ξ0 ,
(2.4)
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where (∂ηu)x0,ξ0 denotes (∂ηux,ξ)|(x,ξ)=(x0,ξ0) and similarly for the other derivatives of ux,ξ.
In a neighborhood of (x0, ξ0) in Rm × Cm, we have,

∂ηµ1(x, ξ) =

∫

Rn

∂ηMx,ξ ux,ξ(τ)ux,ξ(τ) dτ. (2.5)

Proof of Proposition 2.1: Since A1 and A2 are polynomial, we can write, for some
M ∈ N,

Lh =

M∑

j=0

hj/2Lj ,

with

L0 = Mx0,ξ0 , L1 =
m∑

k=1

(∂xk
M)x0,ξ0σk +

m∑

k=1

(∂ξkM)x0,ξ0Dσk
,

L2 =
1

2

m∑

k,j=1

(
(∂xj∂xk

M)x0,ξ0σjσk + (∂ξj∂ξkM)x0,ξ0DσjDσk
+ (∂ξj∂xk

M)x0,ξ0Dσjσk

+(∂xk
∂ξjM)x0,ξ0σkDσj

)
.

We look for quasimodes in the form

ψ =

2∑

j=0

hj/2ψj and l =

2∑

j=0

hj/2lj ,

so that they solve in the sense of formal series

Lhψ = lψ +O(h3/2).

Let us now deal with each power of h.

Terms of order h0. By collecting the terms of order h0, we get the equation

Mx0,ξ0ψ0 = l0ψ0.

This leads to take
l0 = µ0 and ψ0(σ, τ) = f0(σ)u0(τ),

where u0 = ux0,ξ0 and f0 is a function to be determined in the Schwartz class.

Terms of order h1/2. By collecting the terms of order h1/2, we find

(Mx0,ξ0 − µ1(x0, ξ0))ψ1 = (l1 − L1)ψ0.

By using (2.3) and the Fredholm alternative (applied for σ fixed) we get l1 = 0 and

ψ1(σ, τ) =
m∑

k=1

(∂xk
u)x0,ξ0(τ)σkf0(σ) +

m∑

k=1

(∂ξku)x0,ξ0(τ)Dσk
f0(σ) + f1(σ)u0(τ), (2.6)

where f1 is a function to be determined in the Schwartz class.
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Terms of order h. The equation reads

(Mx0,ξ0 − µ1(x0, ξ0))ψ2 = (l2 − L2)ψ0 − L1ψ1.

The Fredholm condition gives

〈L2ψ0 + L1ψ1, u0〉L2(Rn, dτ) = l2f0. (2.7)

Let us examine each term which appears when computing the l.h.s. and recall that Propo-
sition 2.2 holds (especially the Fredholm condition of (2.4)).
The coefficient in front of σjσkf0 is

〈(∂xjM)x0,ξ0(∂xk
u)x0,ξ0 , u0〉L2(Rn, dτ) + 〈(∂xk

M)x0,ξ0(∂xju)x0,ξ0 , u0〉L2(Rn, dτ)

+ 〈(∂xj∂xk
M)x0,ξ0u0, u0〉L2(Rn, dτ) = ∂xj∂xk

µ1(x0, ξ0).

The coefficient in front of DσjDσk
is

〈(∂ξjM)x0,ξ0(∂ξku)x0,ξ0 , u0〉L2(Rn, dτ) + 〈(∂ξkM)x0,ξ0(∂ξju)x0,ξ0 , u0〉L2(Rn, dτ)

+ 〈(∂ξj∂ξkM)x0,ξ0u0, u0〉L2(Rn, dτ) = ∂ξj∂ξkµ1(x0, ξ0).

To deal with the coefficient in front of Dσjσk + σkDσj , we use the formula

〈(∂ξjM)x0,ξ0(∂xk
u)x0,ξ0 , u0〉L2(Rn, dτ) + 〈(∂xk

M)x0,ξ0(∂ξju)x0,ξ0 , u0〉L2(Rn, dτ)

+ 〈(∂ξj∂xk
M)x0,ξ0u0, u0〉L2(Rn, dτ) + 〈(∂ξkM)x0,ξ0(∂xju)x0,ξ0 , u0〉L2(Rn, dτ)

+ 〈(∂xjM)x0,ξ0(∂ξku)x0,ξ0 , u0〉L2(Rn, dτ) + 〈(∂ξk∂xjM)x0,ξ0u0, u0〉L2(Rn, dτ)

= ∂xj∂ξkµ1(x0, ξ0) + ∂xk
∂ξjµ1(x0, ξ0).

Therefore the Fredholm condition (2.7) becomes

1

2

m∑

j,k=1

(
∂xj∂xk

µ1σjσk + ∂ξj∂ξkµ1DσjDσk
+ ∂ξj∂xk

µ1Dσjσk + ∂xk
∂ξjµ1σkDσj

)
f0 = l2f0,

where for shortness, we write ∂η∂θµ1 := (∂η∂θµ1)(x0, ξ0). In other words, we have

1
2Hess µ1(x0, ξ0)(σ,Dσ)f0 = l2f0.

We take l2 = ln,2 the n-th eigenvalue of 1
2Hess µ1(x0, ξ0)(σ,Dσ) and we choose f0 a corre-

sponding normalized eigenfunction. The spectral theorem completes the proof of Propo-
sition 2.1.

Furthers terms As mentionned in the introduction, this double scale construction could
be continued at any order by using the same kind of procedure as in [45, 44, 16].
We deduce from Propositions 1.7 and 2.1:

Corollary 2.3 For all n ≥ 1 there exist h0 > 0 and C > 0 such that for all h ∈ (0, h0)
the n-th eigenvalue of Lh exists and satisfies:

λn(h) ≤ µ0 + Ch.
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2.2 Semiclassical estimates of Agmon-Persson

This section is devoted to the rough localization and microlocalization estimates satisfied
by the eigenfunctions and resulting from Assumptions 1.1 and 1.5 and Corollary 2.3.

Proposition 2.4 Let C0 > 0. There exist h0, C, ε0 > 0 such that for all eigenpairs (λ, ψ)
of Lh with λ ≤ µ0 + C0h, we have

∥∥∥eε0|t|ψ
∥∥∥
2
≤ C‖ψ‖2, Qh

(
eε0|t|ψ

)
≤ C‖ψ‖2.

Proof: The proof is standard but we recall it for completeness. We consider a smooth
cutoff function χ1 supported in a fixed neighborhood of 0 and, for ℓ ≥ 1, we introduce
χℓ(t) = χ1(ℓ

−1t). We let Φℓ(t) = ε0χℓ(t)|t| and we write the Agmon identity (see [1, 2])

Qh(e
Φℓψ) = λ‖eΦℓψ‖+ ‖ |∇Φℓ|eΦℓψ‖2.

There exists C > 0 such that for all ℓ ≥ 1 we have

‖ |∇Φℓ|eΦℓψ‖2 ≤ Cε20‖eΦℓψ‖2.

We infer that
Qh(e

Φℓψ) ≤ (µ0 + C0h+ Cε20)‖eΦℓψ‖2.
For R > 0, we introduce a partition of unity (χ1,R, χ2,R) in t-variables such that

χ2
1,R(t) + χ2

2,R(t) = 1, |∇χ1,R|2 + |∇χ2,R|2 ≤ CR−2 and suppχ2,R ∩ B(0, R) = ∅.

With the so-called IMS formula (see [13, Chapter 3]), we deduce

Qh(χ1,Re
Φℓψ) +Qh(χ2,Re

Φℓψ)− CR−2‖eΦℓψ‖2 ≤ (µ0 + C0h+ Cε20)‖eΦℓψ‖2.

Since eΦℓ is bounded on the support of χ1,R, we get the existence of C, C̃ > 0 such that
for all ℓ ≥ 1 and h ∈ (0, 1):

Qh(χ2,Re
Φℓψ)− (µ0 + C0h+ Cε20 + CR−2)‖χ2,Re

Φℓψ‖2 ≤ C̃‖ψ‖2.

By using Assumption 1.5 and Remark 1.6, there exist R0 > 0 and h0 > 0 such that for all
R ≥ R0 and h ∈ (0, h0) we have

Qh(χ2,Re
Φℓψ) ≥ µ∗0‖χ2,Re

Φℓψ‖2.

We infer the existence of c > 0 such that for h ∈ (0, h0)

c‖χ2,Re
Φℓψ‖2 ≤ C̃‖ψ‖2.

Then there exist C > 0 and h0 > 0 such that for all ℓ ≥ 1 and h ∈ (0, h0)

‖eΦℓψ‖2 ≤ C‖ψ‖2.

It remains to consider the limit ℓ→ +∞ and to use the Fatou lemma and the conclusion
follows.

Proposition 2.5 Let C0 > 0. There exist h0, C, ε0 > 0 such that for all eigenpairs (λ, ψ)
of Lh with λ ≤ µ0 + C0h, we have

∥∥∥eε0|s|ψ
∥∥∥
2
≤ C‖ψ‖2, Qh

(
eε0|s|ψ

)
≤ C‖ψ‖2.
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Proof: The proof is the same as that of Proposition 2.4 with Φ(s) = ε0χℓ(s)|s|.

We get the following.

Corollary 2.6 Let C0 > 0 and k, l, d ∈ N. There exist h0, C, ε0 > 0 such that for all
eigenpairs (λ, ψ) of Lh with λ ≤ µ0 + C0h and all h ∈ (0, h0), we have

‖tkslψ‖ ≤ C‖ψ‖, Qh(t
kslψ) ≤ C‖ψ‖2,

‖(−i∇τ )
dsltkψ‖ ≤ C‖ψ‖2, ‖(−ih∇s)

dsltkψ‖ ≤ C‖ψ‖2.

Proof: For d = 1, this is an immediate consequence of Propositions 2.4 and 2.5.
Taking successive derivatives of the eigenvalue equation Lhψ = λψ we deduce the result
for d ≥ 2.

For another purpose, we will need the following localization result which is again a conse-
quence of Propositions 2.4 and 2.5.

Proposition 2.7 Let k ∈ N. Let η > 0 and χ a smooth cutoff function defined on R+

and being zero in a neighborhood of 0. There exists h0 > 0 such that for all eigenpairs
(λ, ψ) of Lh with λ ≤ µ0 + C0h and all h ∈ (0, h0), we have

‖χ(hη|s|)ψ‖Bk(Rm+n) ≤ O(h∞)‖ψ‖, ‖χ(hη|t|)ψ‖Bk(Rm+n) ≤ O(h∞)‖ψ‖,

where ‖ · ‖Bk(Rn+m) is the standard norm on

Bk(Rm+n) = {ψ ∈ L2(Rm+n)|yqj∂pylψ ∈ L2(Rn+m), ∀j, l ∈ {1, . . . ,m+ n}, p+ q ≤ k}.

By using a rough pseudo-differential calculus jointly with the space localization of Propo-
sition 2.7 and standard elliptic estimates, we get

Proposition 2.8 Let k ∈ N. Let η > 0 and χ a smooth cutoff function being zero in a
neighborhood of 0. There exists h0 > 0 such that for all eigenpairs (λ, ψ) of Lh such that
λ ≤ µ0 + C0h, we have

‖χ(hηhDs)ψ‖Bk(Rm+n) ≤ O(h∞)‖ψ‖, ‖χ(hηDt)ψ‖Bk(Rm+n) ≤ O(h∞)‖ψ‖.

2.3 Microlocalization and coherent states

In this section we follow the same philosophy as in [46].

2.3.1 Formalism and application

Let us recall the formalism of coherent states (see for instance [17] and [12]). We define

g0(σ) = π−m/4e−|σ|2/2,

and the usual creation and annihilation operators

aj =
1√
2
(σj + ∂σj ), a∗j =

1√
2
(σj − ∂σj ),

which satisfy the commutator identities

[aj , a
∗
j ] = 1, [aj , a

∗
k] = 0 if k 6= j.
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We notice that

σj =
1√
2
(aj + a∗j ), ∂σj =

1√
2
(aj − a∗j ), aja

∗
j =

1
2(D

2
σj

+ σ2j + 1).

For (u, p) ∈ Rm × Rm, we introduce the coherent state

fu,p(σ) = eip·σg0(σ − u),

and the associated projection, defined for ψ ∈ L2(Rm × Rn) by

Πu,pψ = 〈ψ, fu,p〉L2(Rm, dσ)fu,p = ψu,pfu,p,

which satisfies

ψ =

∫

R2m

Πu,pψ du dp,

and the Parseval formula

‖ψ‖2 =
∫

Rn

∫

R2m

|ψu,p|2 du dp dτ.

We recall that

ajfu,p =
uj + ipj√

2
fu,p

and

(aj)
ℓ(a∗k)

qψ =

∫

R2m

(
uj + ipj√

2

)ℓ(uk − ipk√
2

)q

Πu,pψ du dp.

We recall that (see (2.2))

Lh =
(
− i∇τ +A2(x0 + h1/2σ, τ)

)2
+
(
ξ0 − ih1/2∇σ +A1(x0 + h1/2σ, τ)

)2

and
Lh = L0 + h1/2L1 + hL2 + . . .+ hM/2LM .

If we write the Wick ordered operator, we get

Lh = L0 + h1/2L1 + hLW
2 + . . .+ (h1/2)MLW

M︸ ︷︷ ︸
LW
h

+hR2 + . . .+ (h1/2)MRM︸ ︷︷ ︸
Rh

, (2.8)

where the Rd are the remainders in the Wick ordering and satisfy, for d ≥ 2,

hd/2Rd = hd/2Od−2(σ,Dσ), (2.9)

where the notation Od(σ,Dσ) stands for a polynomial operator with total degree in (σ,Dσ)
less than d. We recall that

LW
h =

∫

R2m

Mx0+h1/2u,ξ0+h1/2p du dp.

Proposition 2.9 There exist h0, C > 0 such that for all eigenpairs (λ, ψ) of Lh such that
λ ≤ µ0 + C0h and all h ∈ (0, h0), we have

Qh(ψ) ≥
∫

R2m

Qh,u,p(ψu,p) du dp− Ch‖ψ‖2 ≥ (µ0 − Ch)‖ψ‖2, (2.10)

where Qh,u,p is the quadratic form associated with the operator Mx0+h1/2u,ξ0+h1/2p.

Proof: We use (2.8). Then the terms of Rh (see (2.9)) are in the form hhd/2σlDq
σταD

β
τ

with l + q ≤ d and β = 0, 1. With Corollary 2.6 and the rescaling (2.1), we have

‖hd/2σlDq
στ

αDβ
τ ψ‖ ≤ C‖ψ‖

and the conclusion follows.
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2.3.2 Localization in the phase space

This section is devoted to elliptic regularity properties (both in space and frequency)
satisfied by the eigenfunctions. We will use the following generalization of the “IMS”
formula the proof of which can be found in [46].

Lemma 2.10 (“Localization” of P 2 with respect to A) Let H be a Hilbert space and
P and A be two unbounded operators defined on a domain D ⊂ H. We assume that P is
symmetric and that P (D) ⊂ D, A(D) ⊂ D, A∗(D) ⊂ D. Then, for ψ ∈ D, we have

Re 〈P 2ψ,AA∗ψ〉 = ‖P (A∗ψ)‖2 − ‖[A∗, P ]ψ‖2 +Re 〈Pψ, [[P,A],A∗]ψ〉
+Re

(
〈Pψ,A∗[P,A]ψ〉 − 〈Pψ,A[P,A∗]ψ〉

)
. (2.11)

The following lemma is a straightforward consequence of Assumption 1.1.

Lemma 2.11 Under Assumption 1.1, there exist ε0 > 0 and c > 0 such that

µ1(x0 + x, ξ0 + ξ)− µ1(x0, ξ0) ≥ c(|x|2 + |ξ|2), ∀(x, ξ) ∈ B(ε0),

and
µ1(x0 + x, ξ0 + ξ)− µ1(x0, ξ0) ≥ c, ∀(x, ξ) ∈ ∁B(ε0),

where B(ε0) = {(x, ξ), |x|+ |ξ| ≤ ε0} and ∁B(ε0) is its complement.

Notation 2.12 In what follows we will denote by η̃ > 0 all the quantities which are
multiples of η > 0,i.e. in the form jη for j ∈ N \ {0}. We recall that η > 0 can be chosen
arbitrarily small.

Proposition 2.13 There exist h0, C, ε0 > 0 such that for all eigenpairs (λ, ψ) of Lh with
λ ≤ µ0 + C0h, we have

‖σψ‖2 + ‖∇σψ‖2 ≤ C‖ψ‖2.

Proof: We recall that (2.10) holds. We have

Qh(ψ) = λ‖ψ‖2 ≤ (µ0 + C0h)‖ψ‖2.

We deduce that ∫

R2m

Qh,u,p(ψu,p)− µ0|ψu,p|2 du dp ≤ Ch‖ψ‖2

and thus by the min-max principle
∫

R2m

(
µ1(x0 + h1/2u, ξ0 + h1/2p)− µ0

)
|ψu,p|2 du dp ≤ Ch‖ψ‖2.

Let ε0 > 0 be given in Lemma 2.11. We split the integral into two parts and find
∫

B(h−1/2ε0)
(|u|2 + |p|2)|ψu,p|2 du dp ≤ C‖ψ‖2, (2.12)

∫

∁B(h−1/2ε0)
|ψu,p|2 du dp ≤ Ch‖ψ‖2. (2.13)

The first inequality is not enough to get the conclusion. We also need a control of momenta
in the region ∁B(h−1/2ε0). For that purpose, we write:

Qh(a
∗
jψ) =

∫

R2m

Qh,u,p

(
uj − ipj√

2
ψu,p

)
du dp+ 〈Rha

∗
jψ, a

∗
jψ〉. (2.14)
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Up to lower order terms we must estimate terms in the form:

h〈hd/2σlDq
στ

αDβ
τ a

∗
jψ, a

∗
jψ〉,

with l + q = d, α ∈ N and β = 0, 1. By using the a priori estimates of Propositions 2.7
and 2.8, we have

‖hd/2σlDq
στ

αDβ
τ a

∗
jψ‖ ≤ Ch−η̃‖a∗jψ‖.

The remainder is controlled by

|〈Rha
∗
jψ, a

∗
jψ〉| ≤ Ch1−η̃(‖∇σψ‖2 + ‖σψ‖2).

Then we analyze Qh(a
∗
jψ) by using Lemma 2.10 with A = aj . We need to estimate the

different remainder terms. We notice that

‖[a∗j , Pk,r,h]ψ‖ ≤ Ch1/2‖ψ‖,
|〈Pk,r,hψ, a

∗
j [Pk,r,h, aj ]ψ〉| ≤ ‖Pk,r,hψ‖ ‖a∗j [Pk,r,h, aj ]ψ‖,

|〈Pk,r,hψ, aj [Pk,r,h, a
∗
j ]ψ〉| ≤ ‖Pk,r,hψ‖ ‖aj [Pk,r,h, a

∗
j ]ψ‖,

|〈Pk,r,hψ, [[Pk,r,h, aj ], a
∗
j ]ψ〉| ≤ ‖Pk,r,hψ‖ ‖[[Pk,r,h, aj ], a

∗
j ]ψ‖,

where P1,r,h denotes the magnetic momentum h1/2Dσr + A1,r(x0 + h1/2σ, τ) and P2,r,h

denotes Dτr +A2,r(x0 + h1/2σ, τ). We have

‖Pk,r,hψ‖ ≤ C‖ψ‖

and
‖a∗j [Pk,r,h, aj ]ψ‖ ≤ Ch1/2‖a∗jQ(h1/2σ, τ)ψ‖,

where Q is polynomial. The other terms are bounded in the same way. We apply the
estimates of Propositions 2.7 and 2.8 to get

‖a∗jQ(h1/2σ, τ)ψ‖ ≤ Ch−η̃‖a∗jψ‖.

We have
Qh(a

∗
jψ) = λ‖a∗jψ‖2 +O(h)‖ψ‖2 +O(h

1
2
−η̃)(‖∇σψ‖2 + ‖σψ‖2),

so that
Qh(a

∗
jψ) ≤ µ0‖a∗jψ‖2 + Ch‖ψ‖2 +O(h

1
2
−η̃)(‖∇σψ‖2 + ‖σψ‖2).

By using (2.14) and splitting again the integral into two parts, it follows

∫

B(h−1/2ε0)
(|u|2 + |p|2)|(uj − ipj)ψu,p|2 du dp ≤ C‖ψ‖2 + Ch−

1
2
−η̃(‖∇σψ‖2 + ‖σψ‖2),

∫

∁B(h−1/2ε0)
|(uj − ipj)ψu,p|2 du dp ≤ Ch‖ψ‖2 + Ch

1
2
−η̃(‖∇σψ‖2 + ‖σψ‖2).

Combining the last inequality with the first one of (2.12) and the Parseval formula we get
the conclusion.

Proposition 2.14 Let P ∈ C2[X1, . . . , X2m]. There exist h0, C, ε0 > 0 such that for all
eigenpairs (λ, ψ) of Lh with λ ≤ µ0 + C0h, we have

‖P (σ,Dσ)ψ‖2 ≤ Ch−
1
2
−η̃‖ψ‖2.
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Proof: From the proof of Proposition 2.13, we infer
∫

B(h−1/2ε0)
(|u|2 + |p|2)|(uj − ipj)ψu,p|2 du dp ≤ Ch−

1
2
−η̃‖ψ‖2, (2.15)

∫

∁B(h−1/2ε0)
|(uj − ipj)ψu,p|2 du dp ≤ Ch

1
2
−η̃‖ψ‖2. (2.16)

Then we use Lemma 2.10 with A = ajaj . The worst remainders in (2.11) are

‖[Pk,r,h, a
∗
ja

∗
j ]ψ‖2 ≤ Ch‖ψ‖2,

|〈Pk,r,hψ, a
∗
ja

∗
j [Pk,r,h, ajaj ]ψ〉| ≤ Ch

1
2
−η̃‖ψ‖‖a∗ja∗jψ‖.

We infer
Qh(a

∗
ja

∗
jψ) ≤ µ0‖a∗ja∗jψ‖2 + Ch

1
2
−η̃‖ψ‖2 + Ch

1
2
−η̃‖a∗ja∗jψ‖2.

We deduce
∫

B(h−1/2ε0)
(|u|2 + |p|2)|(uj − ipj)

2ψu,p|2 du dp ≤ Ch−
1
2
−η̃‖ψ‖2 + Ch−

1
2
−η̃‖a∗ja∗jψ‖2,

∫

∁B(h−1/2ε0)
|(uj − ipj)

2ψu,p|2 du dp ≤ Ch
1
2
−η̃‖ψ‖2 + Ch

1
2
−η̃‖a∗ja∗jψ‖2. (2.17)

Jointly with Proposition 2.13, estimates (2.15) and (2.17) imply that
∫

R2m

(|u|4 + |p|4)|ψu,p|2 du dp ≤ Ch−
1
2
−η̃‖ψ‖2.

The conclusion follows from the Parseval formula and Proposition 2.13.

2.4 Spectral gap

We introduce the projection

Ψ0 = Π0ψ = 〈ψ, ux0,ξ0〉L2(Rn, dτ)ux0,ξ0

and, inspired by (2.6) where f0 is replaced by 〈ψ, ux0,ξ0〉L2(Rn, dτ) and f1 by 0,

Ψ1 =
m∑

j=1

(∂xju)x0,ξ0 σj〈ψ, ux0,ξ0〉L2(Rn, dτ) +
m∑

j=1

(∂ξju)x0,ξ0 Dσj 〈ψ, ux0,ξ0〉L2(Rn, dτ). (2.18)

This leads to defined the corrected Feshbach projection

Πhψ = Ψ0 + h1/2Ψ1 (2.19)

and
Rh = ψ −Πhψ

Note that the functions Ψ0 and Ψ1 will be a priori h-dependent. By the L2-normalization
of ux,ξ (when ξ ∈ Rm), Ψ1 and Rh are orthogonal (with respect to the τ -variable) to u0
(and Ψ0). Furthermore, we have by construction and Proposition 2.2

(L0 − µ0)Ψ1 = −L1Ψ0 (2.20)

and, by the Fredholm alternative,

〈L1Ψ0,Ψ0〉L2(Rn, dτ) = 0.
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2.4.1 Approximation results

We can prove a first approximation.

Proposition 2.15 There exist h0, C > 0 such that for all eigenpairs (λ, ψ) of Lh with
λ ≤ µ0 + C0h, we have

‖ψ −Π0ψ‖ ≤ Ch1/2−η̃‖ψ‖.

Proof: We can write

(L0 − µ0)ψ = (λ− µ0)ψ − h1/2L1ψ − hL2ψ + . . .− hM/2LMψ.

By using the rough microlocalization given in Propositions 2.7 and 2.8 and Proposition
2.14, we infer that for d ≥ 2

hd/2‖ταDβ
τ σ

lDq
σψ‖ ≤ Ch

d
2
− d−2

2
− 1

4
−η̃‖ψ‖ = Ch

3
4
−η̃‖ψ‖, (2.21)

and thanks to Proposition 2.13

‖L1ψ‖ ≤ Ch−η̃‖ψ‖,

so that
‖(L0 − µ0)ψ‖ ≤ Ch

1
2
−η̃‖ψ‖,

and the conclusion follows.

Corollary 2.16 There exist h0, C > 0 such that for all eigenpairs (λ, ψ) of Lh with λ ≤
µ0 + C0h, we have

‖σ(ψ −Π0ψ)‖ ≤ Ch
1
4
−η̃‖ψ‖, ‖Dσ(ψ −Π0ψ)‖ ≤ Ch

1
4
−η̃‖ψ‖.

We can now estimate ψ −Πhψ.

Proposition 2.17 There exist h0, C > 0 such that for all eigenpairs (λ, ψ) of Lh with
λ ≤ µ0 + C0h, we have

‖Rhψ‖ = ‖ψ −Πhψ‖ ≤ Ch
3
4
−η̃‖ψ‖.

Proof: Let us write
Lhψ = λψ.

We have
(L0 + h1/2L1)ψ = (µ0 +O(h))ψ − hL2ψ − . . .− hM/2LMψ.

Let us notice that, as in (2.21), we have, for d ≥ 2,

hd/2‖Ldψ‖ ≤ Ch
3
4
−η̃‖ψ‖.

We get

(L0 − µ0)Rh = −h1/2L1(ψ −Ψ0) +O(h)ψ − hL2ψ − . . .− hM/2LMψ

It remains to apply Corollary 2.16 and obtain

h1/2‖L1(ψ −Ψ0)‖ ≤ C̃h
3
4
−η̃‖ψ‖.

21



2.4.2 Proof of Theorem 1.8

Let us introduce a subspace of dimension P ≥ 1. For j ∈ {1, . . . , P} we can consider a
L2-normalized eigenfunction of Lh denoted by ψj,h and so that the family (ψj,h)j∈{1,...,P}
is orthogonal. We let

EP (h) = span
j∈{1,...,P}

ψj,h.

Remark 2.18 We can extend all the local and microlocal estimates as well as our approx-
imations to ψ ∈ EP (h).

Let us prove a lower bound for the quadratic form on EP (h):

Qh(ψ) = 〈L0ψ,ψ〉+ h1/2〈L1ψ, ψ〉+ h〈L2ψ,ψ〉+ . . .+ hp/2〈Lpψ,ψ〉+ . . .+ hM/2〈LMψ, ψ〉.

Using Propositions 2.13, 2.14, 2.7 and 2.8, we have, for d ≥ 3

|hd/2〈Ldψ, ψ〉| ≤ Ch
d
2
− d−3

2
−η̃− 1

4 ‖ψ‖2 = Ch
5
4
−η̃‖ψ‖2.

We infer
Qh(ψ) ≥ 〈L0ψ,ψ〉+ h1/2〈L1ψ, ψ〉+ h〈L2ψ, ψ〉 − Ch

5
4
−η̃‖ψ‖2.

It remains to analyze the different terms. We have

〈L0ψ, ψ〉 = 〈L0(Ψ0 + h1/2Ψ1 +Rh),Ψ0 + h1/2Ψ1 +Rh〉.

The orthogonality (with respect to τ) cancels the terms 〈L0Ψ1,Ψ0〉 and 〈Rh,Ψ0〉. More-
over, we have, with Propositions 2.7 and 2.8,

h1/2|〈L0Rh,Ψ1〉| ≤ h1/2−η̃‖Rh‖‖Ψ1‖,

and we use Proposition 2.13 to get

‖Ψ1‖ ≤ C‖ψ‖,

so that, with Proposition 2.17,

〈L0ψ,ψ〉 = µ0‖Ψ0‖2 + h〈L0Ψ1,Ψ1〉+O(h
5
4
−η̃)‖ψ‖2.

We have

〈L1ψ,ψ〉 = 〈L1Ψ0,Ψ0〉+ 2h1/2〈L1Ψ0,Ψ1〉+ h〈L1Ψ1,Ψ1〉+ 2〈L1ψ,Rh〉.

Then, a Feynman-Hellmann formula provides 〈L1Ψ0,Ψ0〉 = 0. Using again Propositions
2.7, 2.8, 2.13, 2.14 and 2.17, we notice that

〈L1ψ, ψ〉 = 2h1/2〈L1Ψ0,Ψ1〉+O(h
3
4
−η̃)‖ψ‖2.

We notice
〈L2ψ, ψ〉 = 〈L2Ψ0,Ψ0〉+ 〈L2(ψ −Ψ0), ψ〉+ 〈L2ψ,ψ −Ψ0〉.

Writing ψ −Ψ0 = h1/2Ψ1 +Rh, we have the estimate

|〈L2(ψ −Ψ0), ψ〉+ 〈L2ψ, ψ −Ψ0〉| ≤ Ch−
1
4
−η̃h

1
2
−η̃‖ψ‖2.
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We infer

Qh(ψ) ≥ µ0‖Ψ0‖2+h〈L0Ψ1,Ψ1〉+h〈L1Ψ0,Ψ1〉+h〈L1Ψ1,Ψ0〉+h〈L2Ψ0,Ψ0〉−Ch
5
4
−η̃‖ψ‖2.

Using (2.20), we get

h〈L0Ψ1,Ψ1〉+ h〈L1Ψ0,Ψ1〉 = hµ0‖Ψ1‖2,

so that, by orthogonality,

Qh(ψ) ≥ µ0‖Ψ0 + h1/2Ψ1‖2 + h〈L1Ψ1,Ψ0〉+ h〈L2Ψ0,Ψ0〉 − Ch
5
4
−η̃‖ψ‖2.

Since 〈Rh,Ψ0〉 = 0 we deduce that

‖Ψ0 + h1/2Ψ1‖2 = ‖Ψ0 + h1/2Ψ1 +Rh‖2 +O(h
5
4
−η̃)‖ψ‖2.

It follows that

Qh(ψ)− µ0‖ψ‖2 ≥ h〈L1Ψ1,Ψ0〉+ h〈L2Ψ0,Ψ0〉+O(h
5
4
−η̃)‖ψ‖2,

and, since Qh(ψ) ≤ λP (h)‖ψ‖2, we have

(λP (h)− µ0)‖ψ‖2 ≥ h〈L1Ψ1,Ψ0〉+ h〈L2Ψ0,Ψ0〉+O(h
5
4
−η̃)‖ψ‖2.

Thus we get

(λP (h)− µ0)‖Ψ0‖2 ≥ h〈L1Ψ1,Ψ0〉+ h〈L2Ψ0,Ψ0〉+O(h
5
4
−η̃)‖ψ‖2.

We recall that (see (2.7) and below)

〈L1Ψ1,Ψ0〉+ 〈L2Ψ0,Ψ0〉
=
〈
1
2Hess µ(x0, ξ0)(σ,Dσ)(〈ψ, u0〉L2(Rn, dτ)), 〈ψ, u0〉L2(Rn, dτ)

〉
L2(Rm, dσ)

.

Finally we apply the min-max principle to the P -dimensional space 〈EP (h), u0〉L2(Rn, dτ)

to get the spectral gap. Theorem 1.8 is a consequence of Proposition 2.1.

3 Magnetic WKB constructions

3.1 Stable manifold and eikonal equation

In this section we study the construction of WKB solutions in the general case

Lh = (hDs +A1(s, t))
2 + (Dt +A2(s, t))

2 with D = −i∇.

As mentionned in the introduction, for (x, ξ) ∈ Rm ×Rm, we are interested in the electro-
magnetic Laplacian acting on L2(Rn, dt), when looking at the partial semiclassical symbol
of Lh in variable s

Mx,ξ = (Dt +A2(x, t))
2 + (ξ +A1(x, t))

2. (3.1)

Denoting by µ1(x, ξ) its lowest eigenvalue, we would like to replace (in spirit) Lh by the
m-dimensional pseudo-differential operator (with the Weyl quantization) µ1(x, hDx). In
order to complete this program, the main assumption on the operator Mx,ξ in variable t
concerns its lowest eigenvalue µ1 and is stated in Assumption 1.1 in the introduction.
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In order to build suitable quasimodes for Lh, it will be of great use to first study the
following eikonal equation

µ1(x0 + x, ξ0 + i∇Φ(x)) = µ0, (3.2)

with unknown Φ, where we recall that (x0, ξ0) is the point where the minimum µ0 of µ1,
is attained (as a real function of (x, ξ) ∈ R2m). Although certainly well-known (see e.g.
[49]), in particular in the context of Sjöstrand’s theory of FIO with complex phases, we
recall in the next subsections this construction with elementary tools. In order to simplify
the notation, we denote in the following

p(x, ξ) = µ♯(x, ξ)− µ0 with µ♯(x, ξ) = µ1(x0 + x, ξ0 + ξ).

With these notations, we deal with a real analytic symbol p defined at least in a neigh-
borhood of (0, 0) in the complex plane, and such that

p(0, 0) = 0, ∇p(0, 0) = 0, and Hess p(0, 0) is (real) positive definite.

The point ρ0 = (0, 0) is then a so-called doubly characteristic point for p, and the eikonal
equation now reads

p(x, i∇Φ(x)) = 0.

In the next subsection, we recall the quadratic case for solving this equation, and in
the following one we study the general case.

3.1.1 The quadratic case

In this subsection we recall basic facts from [49] about the quadratic case and also about
symplectic geometry. Recall that T ∗Rm is endowed with the canonical symplectic 2-form
which writes ω =

∑
j dξj ∧ dxj in coordinates, and that this form naturally extends to a

symplectic 2-form in T ∗Cm with the same expression

ω
(
(x, ξ), (y, η)

)
= ξ · y − x · η, (x, ξ), (y, η) ∈ T ∗Cm.

Note that
1

i
ω(X,X) =

1

i
(ξ · x− ξ · x) = 2Im (ξ · x) ∈ R. (3.3)

We recall that an endomorphism κ0 of T ∗Rm is said to be symplectic if ω(κ0., κ0.) = ω(., .).
In coordinates, we get that ω is represented by a matrix

J =

(
0 I
−I 0

)
.

Posing X = (x, ξ) ∈ T ∗Cm, we consider here a quadratic form

x −→ p0(X,X) on T ∗Cm,

which is real definite positive when restricted to T ∗Rm. Note that this implies that

p0(X,X) > 0, ∀X ∈ T ∗Cm \ {0} .

We first recall that the fundamental matrix F0 of p0 may be defined through the symplectic
form via the following formula

p0(X,X) = ω(X,F0X), ∀X ∈ T ∗Cm.
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Let us recall some properties of F0 (see [15, 35]). LetM be the matrix of the quadratic form
p0. We have F0 = JM . Since M is positive, we may consider M1/2 and M1/2F0M

−1/2 =
M1/2JM1/2 is a real antisymmetric matrix. Its eigenvalues are purely imaginary and
conjugate (the matrices are real). We denote them by ±iλj with λj > 0.

Following [15], we introduce

Λ0
+ =

⊕

j

Eiλj
, Λ0

− =
⊕

j

E−iλj
,

and note that Λ0
+ and Λ0

− are Lagrangian vector spaces of T ∗Cm (just recall that this is
in particular linked to the fact that the family (E±iλk

)k is ω-orthogonal).
The next step is to show some transversality property.

Lemma 3.1 We have Λ0
+ ∩ T ∗Rm = {0}.

Proof: Let us take X ∈ Λ0
+ ∩ T ∗Rm. Then by stability of generalized eigenspaces, we

also have F0X ∈ Λ0
+ and we get

p0(X,X) = ω(X,F0X) = 0,

since Λ0
+ is isotropic (because lagrangian). On the other hand we know that p0 is positive

definite, and this implies X = 0.

We now show that

Lemma 3.2 For all X ∈ Λ0
+ \ {0}, we have 1

iω(X,X) > 0.

Proof: This is done by a perturbation argument. We denote p1(X,X) = ξ2 + x2 the
harmonic oscillator (here X = (x, ξ) ∈ T ∗Cm), and we introduce

pt = (1− t)p0 + tp1, ∀t ∈ [0, 1].

From direct computations we already know completely the description of the eigenvalues
and Lagrangian subspaces for p1 and its fundamental matrix Ft. The eigenvalues are of
the form ±i, and the lagrangian subspaces are given by

Λ1
+ = {ξ = ix} , Λ1

− = {ξ = −ix} .

In particular we have from (3.3) that for all X = (x, ix) ∈ Λ1
+ \ {0},

1

i
ω(X,X) =

1

i
ω((x, ix), (x, ix)) = 2Im (ix · x) = 2|x|2 > 0.

Now we can consider
Λt
+ =

⊕

j

Eiλt
j
,

where iλtj are the eigenvalues of the fundamental matrix of pt, which satisfy the same
properties as the ones of p0. The family Λt

+ is a continuous family of subspaces, defined
e.g. by

Λt
+ = range

1

2iπ

∫

γ
(z − Ft)

−1dz,

where γ is made of a segment [−R,R] and a semi-circle C(0, R) ∩ {Im z > 0}. For R
sufficiently large, the open semi-disc contains all eigenvalues iλtj , since λtj > 0 for all
t ∈ [0, 1].
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Now we want to show that for all X ∈ Λt
+ \ {0} we have 1

iω(X,X) > 0, and already
know that this is the case for t = 1. Suppose by contradiction that there is t0 ∈ [0, 1] and
X0 ∈ Λt0

+ \ {0} such that
1

i
ω(X0, X0) = 0

and that this t0 is the largest in [0, 1] for which this happens. In particular, by definition
of t0 and continuity this implies that (X,Y ) −→ 1

iω(X,Y ) is a positive semi-definite her-
mitian form Λt0

+ . Then we can use the following version of the Cauchy-Schwarz inequality,

∀X,Y ∈ Λt0
+ ,

∣∣∣1
i
ω(X,Y )

∣∣∣
2
≤ 1

i
ω(X,X)

1

i
ω(Y, Y ).

Applying this to Y = X0, we have for all X ∈ Λt0
+

ω(X,X0) = 0,

which implies X0 ∈ (Λt0
+)

⊥ω = Λt0
+ , where the last equality is due to the fact that Λt0

+ is
Lagrangian. As a consequence we get that

ReX0 =
1

2
(X0 +X0) ∈ Λt0

+ ∩ T ∗Rm, ImX0 =
1

2i
(X0 −X0) ∈ Λt0

+ ∩ T ∗Rm.

From Lemma 3.1, we get that X0 = 0, which gives a contradiction. We therefore can
conclude that for all t ∈ [0, 1], we have

X ∈ Λt
+ \ {0}, 1

i
ω(X,X) > 0

and taking t = 0 gives the lemma.

We want now to show that Λ0
+ is a graph. For this we show that

Lemma 3.3 Λ0
+ ∩ {x = 0} = {0}.

Proof: Suppose by contradiction that there exists 0 6= (0, ξ0) ∈ Λ0
+. Then one has

directly by computation
1

i
ω((0, ξ0), (0, ξ0)) = 0.

On the other hand we already have shown that 1
iω((0, ξ0), (0, ξ0)) > 0 since ξ0 6= 0. This

gives the contradiction.

We are therefore able to prove the following lemma.

Lemma 3.4 There exists a matrix B ∈Mm(C) with tB = B and ImB > 0 and such that
Λ0
+ = {(x,Bx), x ∈ Cm}.

Proof: From the previous transversality lemma, we already know that there exists
a matrix B such that Λ0

+ = {(x,Bx), x ∈ Cm}. We have to check that B satisfies the
required properties. We first note that since Λ0

+ is lagrangian, we have for all x ∈ C∗,

0 = ω((x,Bx), (y,By)) = Bx · y −By · x = x(tB −B)y.

This implies tB = B. On the other hand, we have also for all x ∈ Cm \ {0},

0 < 1
iω((x,Bx), (x,Bx)) =

1
i

(
Bx · x−Bx · x

)
= 1

i (B −B∗)x · x = 2ImBx · x. (3.4)

This implies ImB > 0 which is the desired result.
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As a consequence, we get and denoting Φ0(x) =
1
2Bx.x. We have obtained

Proposition 3.5 There exists a quadratic homogeneous polynomial Φ0 with ReHessΦ0 >
0 such that

Λ0
+ = {ξ = i∇Φ0(x)} .

Furthermore this function satisfies the eikonal equation

p0(x, i∇Φ0(x)) = 0, ∀x ∈ Rn.

Proof: For the first part, we only have to pose Φ0(x) =
1
2iBx.x. Note that ∇Φ0(x) =

1
iBx since tB = B, and use the positivity result of the previous lemma. For the eikonal
equation, we check that for X = (x,Bx) ∈ Λ0

+, we have

p0(x, i∇Φ0(x)) = p0(X,X) = ω(X,FX) = 0,

since X and FX ∈ Λ0
+, and Λ0

+ is Lagrangian. This concludes the proof.

3.1.2 Solving the eikonal equation in the general case

In order to stick to the standard theory (see e.g. [15]), we introduce

q(x, ξ) = −p(x, iξ)

and the eikonal equation reads then

q(x,∇Φ(x)) = 0. (3.5)

We focus from now on (3.5).
Now we note that contrary to the particular case of the Schrödinger operator, the

symbol q is not real, so that we cannot expect to get a real phase Φ. Anyway the classical
construction in C2m of the phase remains true. We give it shortly in detail now.

We can look at the Hq flow in a small neighborhood of (0, 0).

Hq(x, ξ) =
∂q

∂ξ
(x, ξ)∂x −

∂q

∂x
(x, ξ)∂ξ.

Since the point ρ0 = (0, 0) is the doubly characteristic point, we look at the linearization
of the Hq flow at ρ0, which writes

Hq(x, ξ) = Fq(x, ξ).(∂x, ∂ξ) +O
(
(x, ξ)3

)
(∂x, ∂ξ),

where Fq is the fundamental matrix, with expression

Fq(ρ0) =




∂2q
∂x∂ξ (ρ0)

∂2q
∂ξ2

(ρ0)

− ∂2q
∂x2 (ρ0) − ∂2q

∂x∂ξ (ρ0)


 ,

since the p is real, the hessian of p is of course real, and of the form

Mp = Hess p(ρ0) =

(
A B
B C

)
,
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with A, B and C real symmetric matrices. We therefore get that

Mq =

(
−A −iB
−iB C

)
.

We also know that since ρ0 is a non degenerate minimum of p, the Hessian of p at ρ0 is
positive definite. We directly check that Fq = JMq so that

Fq =

(
−iB A
C iB

)
.

Now using that Fp = JMp, we also have

Fp = F0 =

(
B C
−A −B

)
,

so that

Fq = i

(
I 0
0 −iI

)
Fp

(
I 0
0 iI

)
. (3.6)

From this transformation and the previous subsection, we get directly the following lemma
where the notations are the same as previously.

Lemma 3.6 The matrix Fq is antisymmetric with respect to ω. The eigenvalues are of
the form (−λj ,+λj), j ∈ Nm, defined in the previous subsection, where the λj > 0 are
counted with multiplicity. In addition, for q0 the quadratic approximation of q at 0, we
have

q0(x,∇Φ0(x)) = 0,

that is to say Φ0 solves the quadratic eikonal equation for the quadratic approximation.

Here we recall that Λ0
+ = {(x,Bx)} was the lagrangian subspace associated with

eigenvalues iλj , λj > 0. The transformation

(x, ξ) −→ (x,−iξ)
and (3.6) give directly that Λ0,q

+ = {(x,−iBx)} is also a lagrangian subspace associated to
eigenvalues of negative real part {−λj}. We can therefore have an other interpretation of

the set Λ0,q
+ : For this we study the linearized flow at ρ0, which is given by

Z ′(t) = Fq(Z).∇Z.

This is clear that Λ0,q
+ and Λ0,q

− are respectively the unstable and stable manifolds associated
to the vector field Fq(Z).∇. By this we mean that

∀Z0 ∈ Λ0,q
∓ , lim

t−→±∞
Z(t) = ρ0.

As already noted, these two spaces Λ0,q
± are lagrangian, and we will show this in more

generality for the stable and unstable manifolds associated to the vector field Hq and its
characteristics X(t), define by

X ′(t) = Hq(X(t)).

Knowing the spectrum of the linearization of Hq, we now just have to apply the stable
manifold theorem, with value in C and we directly get that there exists one unstable
holomorphic manifold Λq

+ and one stable holomorphic manifold Λq
−, for which we have

T
∣∣
ρ0,C2mΛ± = Λ0

±. (3.7)

We also know that Λ± are m dimensional, since Λ0
± are. Our next result is the following
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Lemma 3.7 The manifolds Λq
± are transverse to {x = 0} and {ξ = 0}.

Proof: The first result is a direct consequence of Lemma 3.3 for p0 and (3.7).

A consequence of the previous result is the following lemma.

Lemma 3.8 There exists an holomorphic function Φ such that Λq
+ = {(x, ξ), ξ = ∇Φ(x)}.

In addition Φ solves the eikonal equation q(x,∇Φ(x)) = 0 and Λq
− {(x, ξ), ξ = −∇Φ(x)},

and ReHessΦ(ρ0) is positive definite.

Proof: The existence of Φ is a direct consequence of the fact that Λq
+∩{x = 0} = {0}.

Now for x in a neighborhood of ρ0 in Cm, and looking at the characteristic X(t) of Hq

beginning at X0 = (x,∇Φ(x)), we get that

q(x,∇Φ(x)) = q(X0) = lim
t→−∞

q(X(t)) = q(ρ0) = 0,

since q is constant along the characterstics of Hq. The phase Φ therefore solves the eikonal
equation. For the description of Λq

−, we first check that for all x in a neighboorhood of ρ0
in Cm, x also belongs to a neighborhood of ρ0 and therefore q(x,∇Φ(x)) = 0. Taking the
complex conjugate and using that p is real analytic gives

0 = q(x,∇Φ(x)) = p(x, i∇Φ(x)) = p(x,−i∇Φ(x)) = q(x,−∇Φ(x))

which gives that q is zero on
{
(x, ξ), ξ = −∇Φ(x)

}
. Now this holomorphic manifold is of

dimension m, is clearly lagrangian (of the form {ξ = ψ′(x)} for some ψ), and we only have
to check that it coincides with Λ−. For this, it is sufficient to check that (x,−∇Φ(x)) ∈
Λ−. Now if we look at the solution of X ′(t) = Hq(X(t)) with initial condition X0 =

(x,−∇Φ(x)) then we easily get that limt→+∞X(t) = ρ0. From dimensional considerations,

we get that
{
ξ = −∇Φ(x)

}
= Λq

−.

Now for the last point, we first recall that at the linearization level, we have

Λ0,q
+ = {ξ = ∇Φ0(x)}

where ∇Φ0(x) = −iBx is exactly the linear part of the expansion of ∇Φ(x) at ρ0. From
the previous subsection, we get that ReHessΦ(ρ0) is a real positive definite quadratic
form.

3.2 WKB expansions

In this section, we go back to (3.1) with the coordinates (x, ξ) there and we assume that
A2 = 0 (note that this was not the case in the previous subsection). Before starting our
magnetic WKB analysis we center again the operator Lh at x0 and perform a change of
gauge in order to center the phase at ξ0. This means that we rather consider

L
♮
h = D2

t + (hDs +A♮)2, A♮(s, t) = ξ0 +A1(x0 + s, t).

In order to lighten the notation, we introduce

M♮
s,ξ = Ms+x0,ξ+ξ0 , u♮s,ξ = us+x0,ξ+ξ0 , µ♮(s, ξ) = µ1(s+ x0, ξ + ξ0).

The assumption A2 = 0 implies the fundamental property:
(
M♮

s,ξ

)∗
= M♮

s,ξ
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so that
u♮s,ξ = u♮

s,ξ
. (3.8)

We conjugate L
♮
h via a weight function Φ = Φ(s) and define

L
♮
Φ = eΦ(s)/hL

♮
he

−Φ(s)/h

= D2
t + (hDs + i∇Φ+A♮)2

= L
♮
0 + hL♮

1 + h2L♮
2,

with

L
♮
0 = D2

t + (i∇Φ+A♮)2 = M♮
s,i∇Φ(s)

L
♮
1 = Ds · (i∇Φ+A♮) + (i∇Φ+A♮) ·Ds =

1
2

(
Ds · (∇ξM♮)s,i∇Φ(s) + (∇ξM♮)s,i∇Φ(s) ·Ds

)

L
♮
2 = D2

sΦ,

where we have used
(∇ξM♮)s,i∇Φ(s) = 2(i∇Φ(s) +A♮). (3.9)

We now look for a formal solution on the form

λ ∼
∑

j≥0

λjh
j , a ∼

∑

j≥0

ajh
j

such that L♮
Φa = λa. We cancel each power of h step by step.

3.2.1 Term in h0: Solving the operator valued eikonal equation

We have to find (λ0, a0) such that

L
♮
0a0 = λ0a0.

According to Theorem 1.8, we must choose

λ0 = µ0,

Thus we have to find a0 such that

L
♮
0a0 = µ0a0, (3.10)

that is to say
M♮

s,i∇Φ(s)a0 = µ0a0.

We can choose a0 on the form

a0(s, t) = u♮s,i∇Φ(s)(t)b0(s),

with b0 to determine and Φ is the solution constructed in Section 3.1 of the following
eikonal equation

µ♮(s, i∇sΦ) = µ0,

so that a0 solves (3.10).
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3.2.2 Term in h1: Solving the operator valued transport equation

We must now to solve the second equation, which is also the first transport equation,

(L♮
1 − λ1)a0 = −(L♮

0 − µ0)a1

Pointwise in s, the Fredholm compatibility condition writes

(λ1 − L
♮
1)a0 ∈ (Ker(L♮

0 − µ0)
∗)⊥ = (Ker(L♮

0

∗ − µ0))
⊥

Note that this last space is closed and that we can write

L
♮
0u

♮
s,i∇Φ(s)(t) = µ0u

♮
s,i∇Φ(s)(t), L

♮
0

∗
u♮
s,−i∇Φ(s)

(t) = µ0u
♮

s,−i∇Φ(s)
(t).

Thus we have (Ker(L♮
0

∗ − µ0))
⊥ = span(us,−i∇Φ(s)). The compatibility condition is equiv-

alent to

λ1

〈
u♮s,i∇Φ(s)b0(s), u

♮

s,−i∇Φ(s)

〉
L2(Rm, dt)

=
〈
L
♮
1u

♮
s,i∇Φ(s)b0(s), u

♮

s,−i∇Φ(s)

〉
L2(Rm, dt)

, ∀s ∈ Rm.

By (1.5), we have
∫

Rn

u♮s,i∇Φ(s)(t)u
♮

s,−i∇Φ(s)
(t)dt = 1, ∀s ∈ Rm. (3.11)

Let us rewrite the first term:

λ1

〈
u♮s,i∇Φ(s)b0(s), u

♮

s,−i∇Φ(s)

〉
L2(Rm, dt)

= λ1b0(s). (3.12)

Let us deal with the second term. Differentiating the relation M♮
x,ξu

♮
x,ξ = µ♮1(x, ξ)u

♮
x,ξ with

respect to (the complex variable) ξk leads to (see Proposition 2.2)

(M♮
x,ξ − µ♮1(x, ξ))∇ξu

♮
x,ξ = (∇ξµ

♮
1(x, ξ)−∇ξM♮

x,ξ)u
♮
x,ξ.

The Fredholm condition writes

〈(∇ξM♮
x,ξ −∇ξµ

♮
1(x, ξ))u

♮
x,ξ, u

♮

x,ξ
〉L2(Rn, dt) = 0.

Consequently, taking ξ = i∇Φ and using (3.8), we get

∇ξµ
♮
1(s, i∇Φ(s)) =

∫

Rn

(∇ξM♮)s,i∇Φ(s) u
♮
s,i∇Φ(s)(t)u

♮
s,i∇Φ(s)(t) dt. (3.13)

Multiplying by b0 and differentiating with respect to s, we infer

Ds · (b0(s)∇ξµ
♮
1(s, i∇Φ(s))) =

∫

Rn

Ds ·
(
(∇ξM♮)s,i∇Φ(s)b0(s)u

♮
s,i∇Φ(s)(t)

)
u♮s,i∇Φ(s)(t) dt

+

∫

Rn

(∇ξM♮)s,i∇Φ(s)b0(s)u
♮
s,i∇Φ(s)(t) ·Dsu

♮
s,i∇Φ(s)(t) dt

=

∫

Rn

Ds ·
(
(∇ξM♮)s,i∇Φ(s)b0(s)u

♮
s,i∇Φ(s)(t)

)
u♮s,i∇Φ(s)(t) dt

+

∫

Rn

(∇ξM♮)s,i∇Φ(s)u
♮
s,i∇Φ(s)(t) ·Ds

(
b0(s)u

♮
s,i∇Φ(s)(t)

)
dt

−Dsb0(s) ·
∫

Rn

(∇ξM♮)s,i∇Φ(s)u
♮
s,i∇Φ(s)(t)u

♮
s,i∇Φ(s)(t) dt,
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where we have used b0Dsu = Ds(b0u) − uDsb0. We recognize the expression of L♮
1 and

using (3.13), this yields

〈L♮
1u

♮
s,i∇Φ(s)b0(s), u

♮

s,−i∇Φ(s)
〉L2(Rm, dt)

= 1
2

(
∇ξµ

♯(s, i∇Φ(s)) ·Dsb0(s) +Ds ·
(
∇ξµ

♯(s, i∇Φ(s))b0(s)
))
.

We get the effective transport equation

1
2

(
∇ξµ

♮ ·Ds +Ds · ∇ξµ
♮
)
b0 = λ1b0.

where µ♮ stands for µ♮(s, i∇Φ(s) for short. In the following we denote

T = 1
2

(
∇ξµ

♮ ·Ds +Ds · ∇ξµ
♮
)
,

and we therefore have to solve the transport equation

T b0 = λ1b0.

We recall now some notations from the previous subsection. We posed there

q(s, ξ) = −µ♮(s, iξ)

so that with this notation

T = 1
2 (∇ξq(s,∇Φ(s)) · ∇s +∇s · ∇ξq(s,∇Φ(s))) . (3.14)

Now from the analysis in the previous section, we see that apart from the term without
derivative

v(s) = 1
2i∇s · (∇ξµ

♮) = 1
2∇s · (∇ξq(s,∇Φ(s)),

the transport T is exactly the projection on TRm
s of the hamiltonian of q(s, ξ) at the point

(s,∇Φ(s)) ∈ Λ+,
T = πs(Hq(s,∇Φ(s))),

which reads in suitable coordinates

T =
∑

j

µjyj∇yj +O(y2)∇yj + v(s),

where (y, η) = (κ(s),t dκ(s)−1ξ) is the corresponding symplectic change of variable (note
that for correctly defining κ we used here that Λ+ ∩ {x = 0} = {0}). In particular, we
get that T is an expansive vector field since Λq

+ is the outgoing manifold associated to q
at the doubly charactersitic point (0, 0). Using again this change of coordinates, we also
directly get that

v(s) =
∑

j

1
2µj +O(s).

We are reduced to the study of a standard transport equation (see e.g. [15]) and we can
at least formally solve the equation T b0 = λ1b0 in the space of formal series first provided

λ1 ∈
{∑

j

µj(
1
2 + αj), α ∈ Nm

}
.
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These values are exactly the eigenvalues of 1
2Hess µ1(x0, ξ0)(σ,Dσ), with in particular

1
2

∑
j µj for the smallest one and recall that they were supposed to be simple by Assumption

1.3. This is of course coherent with the statement of Theorem 1.8. Following again e.g.
[15], we can also solve this first transport equation in C∞ in a neighborhood of 0.

Let us now take α ∈ Nm fixed. We shall now look at the complete first transport
equation:

(L♮
1 − λ1)a0 = −(L♮

0 − µ0)a1

where a0 is now given by
a0(s, t) = u♮s,i∇Φ(s)(t)b0(s) (3.15)

We look at a function a1 not necessary given in a tensor form, but with an orthogonal
decomposition of the form

a1 = u♮s,i∇Φ(s)(t)b1(s) + ã1(s, t) (3.16)

with
ã1 ∈ (Ker(L♮

0 − µ0))
⊥

from the transport equation, we see that we can directly find

ã1 = −(L♮
0 − µ0)

−1(L♮
1 − λ1)a0,

where by operator (L♮
0 − µ0)

−1 we mean the inverse of operator

(L♮
0 − µ0) : Dom(L♮

0 − µ0) ∩ (Ker(L♮
0 − µ0))

⊥ −→ (Ker(L♮
0 − µ0))

⊥

where Dom(L♮
0 −µ0) is the domain in L2(Rm, dt) of operator L♮

0 −µ0, pointwisely defined
in s. Note that this is possible to apply this operator to a0(s, .) because of the properties
of u♮, and that we indeed get that ã1 is smooth by elliptic regularity.

To summarize, at this point, and whatever b1(s) is, we have been able to find a function

a[1](s, t) = a0(s, t) + ha1(s, t)

such that
(L♮

h − µ0 − hλ1)a1e
−Φ/h = r[1]e−Φ/h

where for all β ∈ Nm

|∂βs,tr[1](s, t)| = O(h2), locally in (s, t).

3.2.3 Full asymptotic expansion

The first step is to find the function b1(s) built in the previous subsection. For this we
look at the next transport equation, which reads

(L♮
1 − λ1)a1 = −(L♮

0 − µ0)a2 − L
♮
2a0 + λ2a0

We look at the natural compatibility Fredholm condition which gives, pointwisely in s,

(L♮
1 − λ1)a1 + (L♮

2 − λ2)a0 ∈ (Ker(L♮
0 − µ0)

∗)⊥ = span(us,−i∇Φ(s))
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This compatibility condition is then equivalent to

〈
(L♮

1 − λ1)a1(s), u
♮

s,−i∇Φ(s)

〉
L2(Rm, dt)

= −
〈
L
♮
2a0, u

♮

s,−i∇Φ(s)

〉
L2(Rm, dt)

+ λ2

〈
a0, u

♮

s,−i∇Φ(s)

〉
L2(Rm, dt)

= −
〈
L
♮
2a0, u

♮

s,−i∇Φ(s)

〉
L2(Rm, dt)

+ λ2b0(s), ∀s ∈ Rm

where we used (3.12). Now Using the splitting (3.16) and the expression for a0 in 3.15 we
get that for all s ∈ Rm,

〈
(L♮

1 − λ1)u
♮
s,i∇Φ(s)b1(s), u

♮

s,−i∇Φ(s)

〉
L2(Rm, dt)

= −
〈
L
♮
2a0, u

♮

s,−i∇Φ(s)

〉
L2(Rm, dt)

+ λ2

〈
a0, u

♮

s,−i∇Φ(s)

〉
L2(Rm, dt)

+
〈
(L♮

1 − λ1)ã1(s), u
♮

s,−i∇Φ(s)

〉
L2(Rm, dt)

= −
〈
L
♮
2a0, u

♮

s,−i∇Φ(s)

〉
L2(Rm, dt)

+ λ2b0(s) +
〈
(L♮

1 − λ1)ã1(s), u
♮

s,−i∇Φ(s)

〉
L2(Rm, dt)

Using the definition of the reduced transport introduced in (3.14), this equation reads

T b1(s) = λ1b1(s) + λ2b0(s) +R1(s),

where λ2 has to be defined and R1 is already completely known and defined by

R1(s) = −
〈
L
♮
2a0, u

♮

s,−i∇Φ(s)

〉
L2(Rm, dt)

+
〈
(L♮

1 − λ1)ã1(s), u
♮

s,−i∇Φ(s)

〉
L2(Rm, dt)

Using the classical theory of formal series (and using that that both b1 and b0 have at first
non zero term in their Taylor expansion, we see that it completely determines the value of
λ2. Now, exactly as we did for b0 in the previous section, we can also solve, first in formal
series, and then in C∞ this transport equation on b1.

We can look for the next function a2 of the form

a2 = u♮s,i∇Φ(s)(t)b2(s) + ã2(s, t) (3.17)

with
ã2 ∈ (Ker(L♮

0 − µ0))
⊥

from the transport equation, we see that we can directly find

ã2 = −(L♮
0 − µ0)

−1(L♮
1 − λ1,α0)a1.

To summarize, at this point, and whatever b2(s) is, we have been able to find a function

a[2](s, t) = a0(s, t) + ha1(s, t) + h2a2(s, t)

such that
(L♮

h − µ0 − hλ1 − h2λ2)a
[2]e−Φ/h = r[2]e−Φ/h

where, for all β ∈ Nm,

|∂βs,tr[2]| = O(h3), locally in (s, t).
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The same procedure can be followed at any order (we only saw the complete construc-
tion of a0 and a1), and continuing the previous construction, we see that we are able to
find a full family of functions aj and λj such that the formal series

a ∼
∑

j≥0

ajh
j λ ∼

∑

j≥0

λjh
j ,

formally solves the equation

(L♮
h − λ)ae−Φ/h = O(h∞)e−Φ/h.

Using the simplicity and the localization of each eigenvalue induced by Theorem 1.8, we
complete the proof of Theorem 1.10.

4 Generalized Montgomery operators

We focus in this section on the operator

L
[k]
h = D2

t +

(
hDs − γ(s)

tk+1

k + 1

)2

obtained in (1.8) after the rescaling described there. We denote by λ
[k]
n (h) its n-th eigen-

value if it exists.

4.1 Verifying assumptions

The aim of this section is to prove that operator L
[k]
h fulfills the assumptions mentioned

in Section 1.2.

Proposition 4.1 For k ∈ N \ {0} and under Assumption 1.13, the operator L
[k]
h satisfies

Assumptions 1.1, 1.3 and 1.5. Moreover we can choose

µ∗0 ∈
(
µ0, (min(γ−∞, γ+∞))

2
k+2 min ν

[k]
1

)
,

where ν
[k]
1 (ζ) denotes the first eigenvalue of the generalized Montgomery operator:

D2
τ +

(
ζ − τk+1

k + 1

)2

. (4.1)

Notation 4.2 Let u
[k]
ζ be a L2-normalized eigenfunction depending analytically on ζ and

associated with ν
[k]
1 (ζ).

4.1.1 Uniqueness and non-degeneracy

The symbol of L
[k]
h with respect to s is

M[k]
x,ξ = D2

t +

(
ξ − γ(x)

tk+1

k + 1

)2

.

The lowest eigenvalue of M[k]
x,ξ, denoted by µ

[k]
1 (x, ξ), satisfies:

µ
[k]
1 (x, ξ) = (γ(x))

2
k+2 ν

[k]
1

(
(γ(x))−

1
k+2 ξ

)
.
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It is proved in [20, Theorem 1.3] that ζ 7→ ν
[k]
1 (ζ) admits a unique and non degenerate

minimum. Therefore Assumption 1.1 is satisfied. Note that Assumption 1.3 is satisfied
since n = 1 according to Remark 1.4.

Notation 4.3 We denote by ζ
[k]
0 the point ζ where the minimum of ν

[k]
1 is reached.

4.1.2 Confinement

This verification is a little more subtle. It is based on a normal form procedure. Let us

denote by Q
[k]
h the quadratic form associated with L

[k]
h . For ψ ∈ Dom(Q

[k]
h ), we have

Q
[k]
h (ψ) =

∫

R2

|Dtψ|2 +
∣∣∣∣
(
hDs − γ(s)

tk+1

k + 1

)
ψ

∣∣∣∣
2

dt ds.

We would like to prove a lower bound for Q
[k]
h (ψ) when ψ ∈ C∞

0 (R2) is supported away
from the square [−R0, R0]

2.

Magnetic confinement for the variable t. If ψ is supported in {(s, t) ∈ R2 : |t| > R},
we can use the standard inequality (see [13, Chapter 6])

Q
[k]
h (ψ) ≥

∫

R2

γ(s)|t|k|ψ|2 ds dt ≥ Rkγ0‖ψ‖2. (4.2)

Spectral confinement for the variable s. If ψ is supported in {(s, t) ∈ R2 : |t| <
R, |s| ≥ R}, we use the canonical transformation associated with the change of variables

t = (γ(σ))−
1

k+2 τ, s = σ, (4.3)

we deduce that L
[k]
h is unitarily equivalent to the operator on L2( dσ dτ)

L
[k],♭
h = γ(σ)

2
k+2D2

τ +

(
hDσ − γ(σ)

1
k+2

τk+1

k + 1
+

h

2(k + 2)

γ′(σ)
γ(σ)

(τDτ +Dττ)

)2

.

Let us denote by ψ♭ the function ψ transported by the canonical transformation. In the
terms of the quadratic from, we have

Q
[k]
h (ψ) = Q

[k],♭
h (ψ♭).

Let us notice that ψ♭ is supported in
{
(σ, τ) ∈ R2 : |σ| ≥ R, |τ | ≤ Rγ(σ)

1
k+2

}
. We can

write, for all ε ∈ (0, 1)

Q
[k],♭
h (ψ♭) ≥

(1− ε)

∫

R2

γ(σ)
2

k+2

(
|Dτψ

♭|2 +
∣∣∣∣
(
hγ(σ)−

1
k+2Dσ − τk+1

k + 1

)
ψ♭

∣∣∣∣
2
)

dσ dτ

− ε−1h2

(2(k + 2))2

∫

R2

∣∣∣∣
γ′(σ)
γ(σ)

(τDτ +Dττ)ψ
♭

∣∣∣∣
2

dσ dτ. (4.4)

Thanks to Assumption 1.13, there exists η0 > 0 and for all η ∈ (0, η0), R0 > 0 such that,
on {|σ| ≥ R0}

γ(σ)
2

k+2 min
ζ∈R

ν
[k]
1 (ζ) ≥

{
(min(γ−∞, γ+∞))

2
k+2 − η

}
min
ζ∈R

ν
[k]
1 (ζ) > µ

[k]
1 (x0, ξ0). (4.5)
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Up to choosing R0 larger, we may also assume that

(
R0

2

)k

γ0 ≥
{
(min(γ−∞, γ+∞))

2
k+2 − η

}
min
ζ∈R

ν
[k]
1 (ζ). (4.6)

Moreover, we have

∫

R2

∣∣∣∣
γ′(σ)
γ(σ)

(τDτ +Dττ)ψ
♭

∣∣∣∣
2

dσ dτ ≤ C

∫

R2

|ψ♭|2 dσ dτ

+ 4

∫

R2

(
γ′(σ)
γ(σ)

)2

|τDτψ
♭|2 dσ dτ. (4.7)

Using support considerations, we get

∫

R2

∣∣∣∣
γ′(σ)
γ(σ)

(τDτ +Dττ)ψ
♭

∣∣∣∣
2

dσ dτ ≤ C

∫

R2

|ψ♭|2 dσ dτ

+ 4R2

∫

R2

γ(σ)
2

k+2
−2γ′(σ)2|Dτψ

♭|2 dσ dτ,

so that

∫

R2

∣∣∣∣
γ′(σ)
γ(σ)

(τDτ +Dττ)ψ
♭

∣∣∣∣
2

dσ dτ ≤ C

∫

R2

|ψ♭|2 dσ dτ + 4CR2

∫

R2

|Dτψ
♭|2 dσ dτ.

We deduce

Q
[k],♭
h (ψ♭) ≥

(1− ε)
(
(min(γ−∞, γ+∞))

2
k+2 − η

)∫

R2

(
|Dτψ

♭|2 +
∣∣∣
(
hγ(σ)−

1
k+2Dσ − τk+1

k + 1

)
ψ♭
∣∣∣
2)

dσ dτ

− Cε−1h2
∫

R2

∣∣∣ψ♭
∣∣∣
2
dσ dτ − 4CR2ε−1h2

∫

R2

∣∣∣Dτψ
♭
∣∣∣
2
dσ dτ.

We choose ε = h, we infer that

Q
[k],♭
h (ψ♭) ≥

{
(1− h)

(
(min(γ−∞, γ+∞))

2
k+2 − η

)
− 4CR2h

}
q
[k],♭
h (ψ♭)

− Ch

∫

R2

∣∣∣ψ♭
∣∣∣
2
dσ dτ, (4.8)

where

q
[k],♭
h (ψ♭) =

∫

R2

(
|Dτψ

♭|2 +
∣∣∣∣
(
hγ(σ)−

1
k+2Dσ − τk+1

k + 1

)
ψ♭

∣∣∣∣
2
)

dσ dτ.

We have

q
[k],♭
h (ψ♭) =
∫

R2

(
|Dτψ

♭|2 +
∣∣∣∣
(
hΞ(σ,Dσ)−

τk+1

k + 1
− ih

2k + 4
γ′(σ)γ(σ)−

k+3
k+2

)
ψ♭

∣∣∣∣
2
)

dσ dτ, (4.9)
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with Ξ(σ,Dσ) = γ(σ)−
1

2k+4Dσγ(σ)
− 1

2k+4 . We get the lower bound:

q
[k],♭
h (ψ♭) ≥

∫

R2

(
|Dτψ

♭|2 +
∣∣∣∣
(
hΞ(σ,Dσ)−

τk+1

k + 1

)
ψ♭

∣∣∣∣
2
)

dσ dτ

+
2h

2k + 4
Re

∫

R2

iγ′(σ)γ(σ)−
k+3
k+2

(
hΞ(σ,Dσ)−

τk+1

k + 1

)
ψ♭ ψ♭ dσ dτ.

This becomes

q
[k],♭
h (ψ♭) ≥

∫

R2

(
|Dτψ

♭|2 +
∣∣∣∣
(
hΞ(σ,Dσ)−

τk+1

k + 1

)
ψ♭

∣∣∣∣
2
)

dσ dτ

+
2h2

2k + 4
Re

∫

R2

iγ′(σ)γ(σ)−
k+3
k+2Ξ(σ,Dσ)ψ

♭ ψ♭ dσ dτ.

By using in particular that 2Re
(
∂σψ

♭ ψ♭
)
= ∂σ|ψ♭|2 and by integrating by parts, we infer

(since the derivatives of γ are bounded):

∣∣∣∣
2h2

2k + 4
Re

∫

R2

iγ′(σ)γ(σ)−
k+3
k+2Ξ(σ,Dσ)ψ

♭ ψ♭ dσ dτ

∣∣∣∣ ≤ Ch2
∫

R2

|ψ♭|2 dσ dτ.

By using the functional calculus, we get

q
[k],♭
h (ψ♭) ≥

(
min
ζ∈R

ν
[k]
1 (ζ)− Ch2

)∫

R2

|ψ♭|2 dσ dτ. (4.10)

Fixing R = R0 and η0 defined in (4.5) and (4.6) and combining (4.8) and (4.10), we infer
the existence of h0 > 0 and C > 0 such that that for h ∈ (0, h0) and all η ∈ (0, η0)

Q
[k],♭
h (ψ♭) ≥

(
(min(γ−∞, γ+∞))

2
k+2 min

ζ∈R
ν
[k]
1 (ζ)− η − Ch

)∫

R2

|ψ♭|2 dσ dτ

or equivalently

Q
[k]
h (ψ) ≥

(
(min(γ−∞, γ+∞))

2
k+2 min

ζ∈R
ν
[k]
1 (ζ)− η − Ch

)∫

R2

|ψ|2 ds dt,

for all ψ ∈ C∞
0 (R2) supported in {(s, t) ∈ R2 : |t| < R0, |s| ≥ R0}.

Gluing the lower bounds. Using (4.2) (with R = R0
2 ) and (4.6), we deduce

Q
[k]
h (ψ) ≥

(
(min(γ−∞, γ+∞))

2
k+2 min

ζ∈R
ν
[k]
1 (ζ)− η − Ch

)∫

R2

|ψ|2 ds dt,

for all ψ ∈ C∞
0 (R2) supported in {(s, t) ∈ R2 : |t| < R0, |s| ≥ R0} or in {(s, t) ∈ R2 :

|t| > R0
2 }. We now use a standard partition of unity with respect to t such that

χ2
1,R0

+ χ2
2,R0

= 1, χ1,R0 =

{
1 for |t| ≤ R0

2 ,

0 for |t| ≥ R0,
and

(
χ′
1,R0

)2
+
(
χ′
2,R0

)2 ≤ CR−2
0 .

The “IMS” formula provides, for all ψ ∈ C∞
0

(
R2 \ [−R0, R0]

2
)
:

Q
[k]
h (ψ) ≥ Q

[k]
h (χ1,R0ψ) +Q

[k]
h (χ2,R0ψ)− CR−2

0 ‖ψ‖2.
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By supports considerations we have

supp (χ1,R0ψ) ⊂ {(s, t) ∈ R2 : |t| < R0, |s| ≥ R0}, supp (χ2,R0ψ) ⊂ {(s, t) ∈ R2 : |t| ≥ R0
2 },

so that, for all ψ ∈ C∞
0

(
R2 \ [−R0, R0]

2
)
, there holds

Q
[k]
h (ψ) ≥

(
(min(γ−∞, γ+∞))

2
k+2 min

ζ∈R
ν
[k]
1 (ζ)− η − Ch− CR−2

0

)∫

R2

|ψ|2 ds dt.

Therefore, for all µ∗0 ∈
(
µ0, (min(γ−∞, γ+∞))

2
k+2 min ν

[k]
1

)
, up to choosing η, h small

enough and possibly R0 larger, we have

Q
[k]
h (ψ) ≥ µ∗0

∫

R2

|ψ|2 ds dt, ∀ψ ∈ C∞
0

(
R2 \ [−R0, R0]

2
)
.

4.2 Explicit WKB expansions, weak magnetic barrier

4.2.1 Renormalization

The key point to perform the spectral analysis of L
[k]
h is the normal form procedure in-

troduced in [45, 16, 43], see also [48] which is pervaded by this spirit. Let us explain this
basic idea. We use the canonical transformation associated with the change of variables1

t = (γ(σ))−
1

k+2 τ, s = σ.

We deduce that L
[k]
h is unitarily equivalent to the operator on L2( dσ dτ)

L
[k],♭
h = γ(σ)

2
k+2D2

τ +

(
hDσ − γ(σ)

1
k+2

τk+1

k + 1
+

h

2(k + 2)

γ′(σ)
γ(σ)

(τDτ +Dττ)

)2

.

In order to estimate the low lying eigenvalues, we may write the heuristic approximation

L
[k],♭
h ≈ γ(σ)

2
k+2

(
D2

τ +

(
hγ(σ)−

1
k+2Dσ − τk+1

k + 1

)2
)

≈ γ(σ)
2

k+2 ν
[k]
1

(
hγ(σ)−

1
k+1Dσ

)
.

Let now make this approximation more rigorous. We may change the gauge

e−ig(σ)/hL
[k],♭
h eig(σ)/h

= γ(σ)
2

k+2D2
τ +

(
hDσ + ζ

[k]
0 γ(σ)

1
k+2 − γ(σ)

1
k+2

τk+1

k + 1
+

h

2(k + 2)

γ′(σ)
γ(σ)

(τDτ +Dττ)

)2

.

with

g(σ) = ζ
[k]
0

∫ σ

0
γ(σ̃)

1
k+2 dσ̃.

For some function Φ = Φ(σ) to be determined, we consider

L
[k],wg
h = eΦ/he−ig(σ)/hL

[k],♭
h eig(σ)/he−Φ/h = L[k],wg,0 + hL[k],wg,1 + h2L[k],wg,2,

1see for instance [31, Theorem 18.5.9 and below]
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with

L[k],wg,0 = γ
2

k+2

(
D2

τ +
(
V
ζ
[k]
0

+ iγ−
1

k+2Φ′
)2)

,

L[k],wg,1 =
(
γ

1
k+2V

ζ
[k]
0

+ iΦ′
)
Dσ +Dσ

(
γ

1
k+2V

ζ
[k]
0

+ iΦ′
)
+R1(σ, τ ;Dτ ),

L[k],wg,2 = D2
σ +R2(σ, τ ;Dσ, Dτ ),

where

Vζ(τ) = ζ − τk+1

k + 1
,

and where theR1(σ, τ ;Dτ ) is of order zero inDσ and cancels for σ = 0 whereasR2(σ, τ ;Dσ, Dτ )
is an operator of order one with respect to the variable σ.

Now, let us solve, as in the previous section, the eigenvalue equation

L
[k],wg
h a = λa

in the sense of formal series in h,

a ∼
∑

j≥0

hjaj , λ ∼
∑

j≥0

hjλj .

4.2.2 Solving the operator valued eikonal equation

The first equation is
L[k],wg,0a0 = λ0a0.

We must choose

λ0 = γ
2

k+2

0 ν
[k]
1 (ζ

[k]
0 )

and we are led to take

a0(σ, τ) = f0(σ)u
[k]
w(σ)(τ), with w(σ) = ζ

[k]
0 + iγ(σ)−

1
k+2Φ′(σ). (4.11)

Recall that u
[k]
ζ denotes a L2-normalized eigenfunction associated with ν

[k]
1 (ζ) for the gen-

eralized Montgomery operator (4.1). Then the equation becomes

γ(σ)
2

k+2 ν
[k]
1

(
ζ
[k]
0 + iγ(σ)−

1
k+2Φ′(σ)

)
= γ

2
k+2

0 ν
[k]
1 (ζ

[k]
0 )

and this can be written in the form

ν
[k]
1

(
ζ
[k]
0 + iγ(σ)−

1
k+2Φ′(σ)

)
− ν

[k]
1 (ζ

[k]
0 ) =

(
γ

2
k+2

0 γ(σ)−
2

k+2 − 1

)
ν
[k]
1 (ζ

[k]
0 ).

Therefore we are in the framework of the following elementary lemma.

Lemma 4.4 For r > 0, let us consider a holomorphic function ν : D(0, r) → C such that
ν(0) = ν ′(0) = 0 and ν ′′(0) ∈ R+. Let us also introduce a smooth F defined in a real
neighborhood of σ = 0 such that σ = 0 is a non degenerate maximum. Then, there exists
a neighborhood of σ = 0 such that the equation

ν(iϕ(σ)) = F (σ) (4.12)

admits a smooth solution ϕ such that ϕ(0) = 0 and ϕ′(0) > 0.
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Proof: We can apply the Morse lemma to deduce that (4.12) is equivalent to

ν̃(iϕ(σ))2 = −f(σ)2,

where f is a non negative function such that f ′(0) =
√

−F ′′(0)
2 and F (σ) = −f(σ)2 and

ν̃ is a holomorphic function in a neighborhood of 0 such that ν̃2 = ν and ν̃ ′(0) =
√

ν′′(0)
2 .

This provides the equations

ν̃(iϕ(σ)) = if(σ), or ν̃(iϕ(σ)) = −if(σ).

Since ν̃ is a local biholomorphism and f(0) = 0, we can write the equivalent equations

ϕ(σ) = −iν̃−1(if(σ)), or ϕ(σ) = −iν̃−1(−if(σ)).

The function ϕ = −iν̃−1(if) satisfies our requirements since ϕ′(0) =
√
−F ′′(0)

ν′′(0) .

We use the lemma with F (σ) =

(
γ

2
k+2

0 γ(σ)−
2

k+2 − 1

)
ν
[k]
1 (ζ

[k]
0 ) and, for the function ϕ

given by the lemma, we have (up to a translation by ζ
[k]
0 ):

Φ′(σ) = γ(σ)
1

k+2ϕ(σ)

and we take

Φ(σ) =

∫ σ

0
γ(σ̃)

1
k+2ϕ(σ̃) dσ̃,

which is defined in a fixed neighborhood of 0 and satisfies Φ(0) = Φ′(0) = 0 and

Φ′′(0) = γ
1

k+2

0

√√√√√
2

k + 2

γ′′(0)ν[k]1 (ζ
[k]
0 )(

ν
[k]
1

)′′
(ζ

[k]
0 )γ(0)

> 0. (4.13)

Therefore (4.11) is well defined in a neighborhood of σ = 0.

4.2.3 Solving the transport equation

We can now deal with the operator valued transport equation

(L[k],wg,0 − λ0)a1 = (λ1 − L[k],wg,1)a0.

For each σ the Fredholm condition is
〈
(λ1 − L[k],wg,1)a0, u

[k]
w(σ)

〉

L2(R, dτ)

= 0.

Using (1.5), (3.8) and a Feynman-Hellmann formula (as in Section 3), we get the transport
equation

λ1f0 =

〈
L[k],wg,1a0, u

[k]
w(σ)

〉

L2(R, dτ)

= 1
2

{
γ(σ)

1
k+2

(
ν
[k]
1

)′
(w(σ))Dσ +Dσγ(σ)

1
k+2

(
ν
[k]
1

)′
(w(σ))

}
f0

+

〈
R1u

[k]
w(σ), u

[k]
w(σ)

〉

L2(R, dτ)

f0.
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The term 〈
R1u

[k]
w(σ), u

[k]
w(σ)

〉

L2(R, dτ)

is just a smooth function which cancels in σ = 0 so that we have just to consider the
linearization of the first part of the equation. The linearized operator is

1

2

(
ν
[k]
1

)′′
(ζ

[k]
0 )Φ′′(0)(σ∂σ + ∂σσ).

The eigenvalues of this operator in the corresponding weighted space are

{(
ν
[k]
1

)′′
(ζ

[k]
0 )Φ′′(0)

(
j + 1

2

)
, j ∈ N

}
. (4.14)

Let us notice that

(
ν
[k]
1

)′′
(ζ

[k]
0 )Φ′′(0) = γ

1
k+2

0

√√√√ 2

k + 2

γ′′(0)ν[k]1 (ζ
[k]
0 )
(
ν
[k]
1

)′′
(ζ

[k]
0 )

γ(0)
.

4.3 Estimates of Agmon in the normal form spirit

4.3.1 Weighted semiclassical elliptic estimates

Proposition 4.5 Let us assume Assumption 1.5. Let C0 > 0 and z : Rm → R+ be a
Lipschitzian function. There exist ε0 > 0, ε1 > 0, h0 > 0 and C > 0 such that for all
eigenpairs (λ, ψ) of Lh satisfying λ ≤ µ0 + C0h we have, for all p ≥ 1:

∥∥∥eε1|t|+ε0h−1χpzψ
∥∥∥
2
≤ C‖eε0h−1χpzψ‖2,

Qh

(
eε1|t|+ε0h−1χpzψ

)
≤ C‖eε0h−1χpzψ‖2,

where χp(s) = χ1(p
−1s), with 0 ≤ χ1 ≤ 1 a smooth cutoff function supported near 0.

Proof: Let us consider an eigenpair (λ, ψ) of Lh such that λ ≤ µ0+C0h. We have the
Agmon type formula

Qh

(
eΦψ

)
= λ‖eΦψ‖2 + ‖∂tΦeΦψ‖2 + ‖h∂sΦeΦψ‖2,

where Φ is bounded and Lipschitzian. We look for Φ in the form

Φ(s, t) = Φp(s, t) = ε1|t|+ ε0h
−1χp(s)z(s).

We get

Qh

(
eΦpψ

)
≤ (µ0 + C0h+ ε21)‖eΦpψ‖2 + 2ε20‖z′χpe

Φpψ‖2 + 2ε20‖zχ′
pe

Φpψ‖2.

Since z is Lipschitzian, there exists K ≥ 0 such that for all s ∈ Rm

|z(s)| ≤ |c(0)|+K|s|.

Therefore there exists C̃ > 0 such that for all p ≥ 1, ε0 > 0 and ε1 > 0 we have

Qh

(
eΦpψ

)
≤ (µ0 + C0h+ ε21 + C̃ε20)‖eΦpψ‖2,
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where we have used that s 7→ χ′
p(s)z(s) is uniformly bounded with respect to p. We

introduce the partition of the unity

χ2
1,R(t) + χ2

2,R(t) = 1,

where χ2,R is a supported in {|t| ≥ R}. The partition is assumed to be such that there
exists C > 0 such that for all R > 0

χ′2
1,R + χ′2

1,R ≤ CR−2.

The so-called “IMS” formula implies that

Qh(χ1,Re
Φpψ) +Qh(χ2,Re

Φpψ)− CR−2‖eΦpψ‖2 ≤ (µ0 + C0h+ ε21 + Cε20)‖eΦpψ‖2.

We choose R large enough, ε0 > 0, ε1 > 0, h0 > 0 small enough such that we have for
h ∈ (0, h0) and p ≥ 1

Qh(χ2,Re
Φpψ) ≥ µ∗0‖χ2,Re

Φpψ‖2

and

C0h+ ε21 + C̃ε20 + CR−2 <
µ∗0 − µ0

2
.

For these choices of R, ε0, ε1 and h0, we find ĉ, Ĉ > 0 such that for all h ∈ (0, h0) and
p ≥ 1, we have

ĉ‖χ2,Re
Φpψ‖2 ≤ Ĉ‖eε0χph−1zψ‖2,

and the conclusion easily follows.

4.3.2 Estimates of Agmon

Proposition 4.6 Let us assume Assumption 1.13. We let

z(s) =

∣∣∣∣∣

∫ s

s0

χ(s′)

√
γ(s′)

2
k+2 − γ

2
k+2

0 ds′
∣∣∣∣∣,

with 0 ≤ χ ≤ 1 a smooth cutoff function whose support contains s0. Let us consider

C0 > 0. There exist ε0 > 0, C > 0 and h0 > 0 such that for all eigenpairs (λ, ψ) of L
[k]
h

satisfying λ ≤ µ0 + C0h we have

‖eε0h−1zψ‖ ≤ C‖ψ‖

and
Q

[k]
h (eε0h

−1zψ) ≤ C‖ψ‖2.

Proof: Let us consider an eigenpair (λ, ψ) of L
[k]
h such that λ ≤ µ0 + C0h. We first

use the Agmon estimate

Q
[k]
h (eε0χph−1zψ) ≤ λ‖eε0χph−1zψ‖2+ C̃ε20‖z′eε0χph−1zψ‖2+ C̃ε20‖χ′

pze
ε0χph−1zψ‖2. (4.15)

In order to simplify the notation, we consider the weighted ψ:

ψwg = eε0χph−1zψ.

Now, we shall establish a very fine lower bound of Q
[k]
h (ψwg). For that purpose we use the

normal form already introduced in Section 4.1.2 and associated with the change of variables
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(4.3). If we denote by ψwg,♭ the function ψwg transported by the canonical transform, we
get

Q
[k]
h (ψwg) = Q

[k],♭
h (ψwg,♭).

Using again (4.4) with ε = h, we deduce with (4.7)

Q
[k],♭
h (ψwg,♭) ≥

(1− h)

∫

R2

γ(σ)
2

k+2

(
|Dτψ

wg,♭|2 +
∣∣∣∣
(
hγ(σ)−

1
k+2Dσ − τk+1

k + 1

)
ψwg,♭

∣∣∣∣
2
)

dσ dτ

− Ch

∫

R2

∣∣∣τDτψ
wg,♭
∣∣∣
2
dσ dτ − Ch‖ψwg,♭‖2. (4.16)

But we have ∫

R2

∣∣∣τDτψ
wg,♭
∣∣∣
2
dσ dτ =

∫

R2

|tDtψ
wg|2 ds dt

and we apply Proposition 4.5 to get

∫

R2

|tDtψ
wg|2 ds dt ≤ C‖ψwg,♭‖2.

With (4.16), we infer

Q
[k],♭
h (ψwg,♭) ≥

(1− h)

∫

R2

γ(σ)
2

k+2

(
|Dτψ

wg,♭|2 +
∣∣∣∣
(
hγ(σ)−

1
k+2Dσ − τk+1

k + 1

)
ψwg,♭

∣∣∣∣
2
)

dσ dτ

− Ch‖ψwg,♭‖2. (4.17)

We can write

∫

R2

γ(σ)
2

k+2

(
|Dτψ

wg,♭|2 +
∣∣∣∣
(
hγ(σ)−

1
k+2Dσ − τk+1

k + 1

)
ψwg,♭

∣∣∣∣
2
)

dσ dτ

=

∫

R2

(
|Dτφ

wg,♭|2 +
∣∣∣∣
(
hDσγ(σ)

− 1
k+2 − τk+1

k + 1

)
φwg,♭

∣∣∣∣
2
)

dσ dτ

=

∫

R2

(
|Dτφ

wg,♭|2 +
∣∣∣∣
(
hΞ(σ,Dσ)−

τk+1

k + 1
+

ih

2k + 4
γ′(σ)γ(σ)−

k+3
k+2

)
φwg,♭

∣∣∣∣
2
)

dσ dτ,

with
φwg,♭(σ, τ) = γ(σ)

1
k+2ψwg,♭(σ, τ).

We are reduced to the same analysis as after (4.9). We deduce that

Q
[k],♭
h (ψwg,♭) ≥ (1− h)q

[k],♭
h (γ

1
k+2ψwg,♭)− Ch‖ψwg,♭‖2.

We may use the functional calculus for the self-adjoint operator γ−
1

2k+4Dσγ
− 1

2k+4 and it
follows that

Q
[k],♭
h (ψwg,♭) ≥ (1− h)min

ζ∈R
ν
[k]
1 (ζ)‖γ 1

k+2ψwg,♭‖2 − Ch‖ψwg,♭‖2.
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We now come back in the variables (s, t) and we have proved

min
ζ∈R

ν
[k]
1 (ζ)‖γ 1

k+2ψwg‖2 − Ch‖ψwg‖2 ≤ λ‖ψwg‖2 + C̃ε20‖z′ψwg‖2 + C̃ε20‖χ′
pzψ

wg‖2.

We deduce that

min
ζ∈R

ν
[k]
1 (ζ)

∫
(γ

2
k+2 − γ

2
k+2

0 )|ψwg|2 ds dt− C̃h‖ψwg‖2

≤ C̃ε20‖z′ψwg‖2 + C̃ε20‖χ′
pzψ

wg‖2. (4.18)

We infer that there exist c > 0, C̃ > 0, h0 > 0 and ε0 > 0 such that for all h ∈ (0, h0) and
p ≥ 1 we have:

c

∫
(γ

2
k+2 − γ

2
k+2

0 )|ψwg|2 ds dt− C̃h‖ψwg‖2 ≤ C̃ε20‖χ′
pzψ

wg‖2. (4.19)

We deduce by standard arguments that there exist Ĉ > 0, h0 > 0 and ε0 > 0 such that
for all h ∈ (0, h0) and p ≥ 1 we have:

‖ψwg‖2 ≤ Ĉ‖ψ‖2 + h−1Ĉε20‖χ′
pzψ

wg‖2.

Since c is bounded and |χ′
p| ≤ Cp−1, it remains to take the lim inf

p→+∞
and to apply the Fatou

lemma.

In fact, when γ admits two non degenerate minima, we also have Agmon estimates. Let
us now prove Proposition 1.17

Proof: The proof is essentially the same as for Proposition 4.6. The inequality (4.19)
becomes in this case

c

∫
(γ

2
k+2 − γ

2
k+2

0 )|ψwg|2 ds dt− C̃h‖ψwg‖2

≤ C̃ε20‖χ′
pzψ

wg‖2 + Cε20‖f−ψwg‖2 + Cε20‖f+ψwg‖2,

with

f−(s) = χ′
−,d(s)

∣∣∣∣∣

∫ s

s−

χ̃(s′)

√
γ(s′)

2
k+2 − γ

2
k+2

0 ds′
∣∣∣∣∣ ,

f+(s) = χ′
+,d(s)

∣∣∣∣∣

∫ s

s−

χ̃(s′)

√
γ(s′)

2
k+2 − γ

2
k+2

0 ds′
∣∣∣∣∣ .

We can deal with the last two terms by using the positivity of γ
2

k+2 − γ
2

k+2

0 away from the
minima and the conclusion standardly follows.

4.4 Tunnelling estimates

Let us first state an elementary result.

Proposition 4.7 The asymptotic expansions (modulo h∞) of the n-th eigenvalue of HDir
h,−

are the same as for L
[k]
h . In particular, the spectral gap between two consecutive eigenval-

ues is of order h. Moreover the eigenfunctions of HDir
h,− satisfy the same kind of Agmon

estimates as in Proposition 4.6.
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Proof: The construction of quasimodes is the same as for Proposition 2.1. We have
just to add a suitable cutoff function and to use the exponential decay of the explicit
quasimodes. In order to estimate the spectral gap between the lowest eigenvalues of HDir

h,−
we have just to notice that HDir

h,− is bounded from below by an operator on L2(R2) in the

form D2
t +
(
hDs − γ(s) t

k+1

k+1

)2
where γ admits a unique minimum at s−. This lower bound

is enough to deduce the estimates of Agmon.

Let us now prove that the low lying eigenvalues of L
[k]
h are exponentially close to the

eigenvalues of Hh.

Proposition 4.8 Let us consider C0 > 0. There exist c > 0, C > 0, h0 > 0 such that for

all µ ∈ sp
(
L
[k]
h

)
such that µ ≤ µ0 + C0h, we have, for all h ∈ (0, h0),

dist (µ, sp (Hh)) ≤ Ce−c/h.

Proof: The proof is based on the introduction of suitable quasimodes for the operator

Hh and on the estimates of Agmon satisfied by the eigenfunctions of L
[k]
h . Let us consider

an eigenpair (λ, ψ) of L
[k]
h such that λ ≤ µ0+C0h. One knows that ψ satisfies the estimates

of Proposition 1.17. In particular, we deduce that

HDir
h,−(χ−,d′ψ) = λ(χ−,d′ψ) +O(e−c/h)‖ψ‖2, HDir

h,+(χ+,d′ψ) = λ(χ+,d′ψ) +O(e−c/h)‖ψ‖2.

The spectral theorem provides the conclusion.

In fact, exponentially close to each eigenvalue of Hh there are at least two eigenvalues of
Lh.

Proposition 4.9 Let us consider C0 > 0. There exist c > 0, C > 0, h0 > 0 such that for
all µ ∈ sp (Hh) such that µ ≤ µ0 + C0h, we have, for all h ∈ (0, h0),

range
(
1[µ−Ce−c/h,µ+Ce−c/h](L

[k]
h )
)
≥ 2.

Proof: Let us consider µ ∈ sp (Hh) such that µ ≤ µ0+C0h. We can find a corresponding
normalized eigenfunction (ϕl, ϕr) of Hh. The estimates of Agmon imply that

(
L
[k]
h − µ

)
(χ−,d′ϕ−) = O(e−c/h),

(
L
[k]
h − µ

)
(χ+,d′ϕ+) = O(e−c/h)

and where χ−,d′ϕ− and χ+,d′ϕ+ are orthogonal. The proof follows again from the spectral
theorem.

We have now all the elements for our tunnelling result. It remains to prove that, in
Proposition 4.9, the range of the spectral projection is exactly 2. By contradiction, if this

range were at least 3, then we could consider three eigenfunctions (u
[k]
j,h) of L

[k]
h mutually

orthogonal associated with an eigenvalue λ such that there exists µ ∈ sp (Hh) satisfying
|µ−λ| ≤ Ce−c/h. Then one could apply the same argument as in the proof of Proposition
4.8 with ψ = ψj . The spectral theorem would imply that the multiplicity of µ is at least
3 but this is impossible since the multiplicity of the lowest eigenvalues of Hh is 2.
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4.5 Numerical simulations

4.5.1 Method

Let us now deal with numerical simulations for the model operator L
[k]
h on R2 if k = 1 and

on the half-plane R2
+ if k = 0. In each case, we propose simulations for the simple and

double well models. We analyze the convergence of the eigenvalues as h→ 0 and give the
first eigenfunctions for small h. This illustrates the localization of the modulus and the
behavior of the phase.

To approximate the eigenpairs (λ
[k]
n (h), u

[k]
n,h) of the operator L

[k]
h on Ωk (with Ω0 = R2

+

and Ω1 = R2), we use the Finite Element Library Mélina++ [33]. Since the domain Ω
is unbounded, we use an artificial domain Rk,a,b = Ωk ∩ (−a, a) × (−b, b). We compute

the eigenpairs (λ
[k]
n (h, a, b), u

[k]
n,h(a, b)) on Rk,a,b and impose Dirichlet conditions on the

artificial boundaries {|x| = a} ∪ {|y| = b}. We use quadrangular elements and polynomial

approximation Qp and a mesh nx × ny. By this way, we obtain upper bounds for λ
[k]
n (h)

and we know that

λ[k]n (h, a, b) → λ[k]n (h) as min(a, b) → +∞.

We compute the eigenpairs for several sets of parameters (a, b) with several combinations
of degree of approximation p and of size of the meshes nx ×ny until convergence is found.

We normalize the numerical eigenfunction so that ‖u[k]n,h(a, b))‖∞ = 1.

4.5.2 Simple well models

For the numerical simulations, we take

γ(s) = min(1 + 4s2,M), s ∈ R,

whereM ≫ 1 is a fixed positive real. Such a function γ satisfies Assumption 1.13. Param-
eters used for the numerical simulations are given in Tables 1. Among the computations,
we take, for each value of h, the smallest numerical eigenvalues for the different choices of
a, b, p, nx, ny.

a nx b ny p 1/h
1 5 20 20 16 1 : 1 : 100, 110 : 10 : 1000
1 5 40 20 14 10 : 10 : 1000
1.5 5 30 20 14 1 : 1 : 100
2 5 40 20 14 1 : 1 : 100

Table 1: Simple well: Parameters for the numerical simulations for L
[k]
h , k = 0, 1.

In Figure 1, we analyze the convergence of the eigenvalues λ
[k]
n (h) as h→ 0 for 1 ≤ n ≤

12. Figure 1(a) gives an approximation of the first twelve eigenvalues λ
[k]
n (h), 1/h ∈ [1, 100]

and corroborates the convergence

λ[k]n (h) → ν[k] as h→ 0.

Using [10, 6], we know that

ν[1] := ν
[1]
1 (ζ

[1]
0 ) ≃ 0.5698, ν[0] := ν

[0]
1 (ζ

[0]
0 ) = Θ0 ≃ 0.5901.
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Figure 1: Convergence of the eigenvalues λ
[k]
n (h).

(a) First eigenfunction u
[0]
1,h, h = 1

15
(b) Second eigenfunction u

[0]
2,h, h = 1

15

(c) First eigenfunction u
[1]
1,h, h = 1

20
(d) Second eigenfunction u

[1]
2,h, h = 1

20

Figure 2: Moduli, log10(moduli) and phases of the first two eigenvectors, u
[k]
n,h.
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To catch the following term in the expansion of the eigenvalues, we plot in Figure 1(b)

ln
1

h
7→ ln

λ
[k]
n (h)− ν[k]

h
.

We observe linear convergence: the slope r illustrates the behavior

λ[k]n (h) ≃ ν [k] + Cnh
r + o(hr).

In Figure 2, we give the approximation of the first two eigenfunctions u
[k]
n,h for h = 1/20

if k = 1 and h = 1/15 if k = 0. We draw the modulus, le logarithm of the modulus and
the phase.

4.5.3 Double well models

Let us now consider the double well model ant take

γ(s) = min(1 + (s2 − 1)2,M), s ∈ R,

where M ≫ 1 is a fixed positive real. Such a function γ satisfies Assumption 1.16.
Parameters used for the numerical simulations are given in Tables 2.

a nx b ny p 1/h
2 5 40 20 12 1 : 1

10 : 500
2 5 40 20 16 10 : 1 : 1000
3 5 60 20 14 10 : 1 : 300
4 5 40 20 14 10 : 1 : 300
5 5 40 20 14 10 : 1 : 200
10 10 50 50 10 10 : 1 : 200

Table 2: Double well: Parameters for the numerical simulations for L
[k]
h , k = 0, 1.

Figure 3 illustrates Corollary 1.15, Theorem 1.18 and Remark 1.19 in the scale h instead

of ~. The first line concerns the low eigenvalues λ
[k]
n (h) with k = 0 (on the half-plane) and

the second line with k = 1. The first column illustrates the convergence

λ[k]n (h) → ν[k] as h→ 0.

The second column represents the splitting λ
[k]
2n(h)−λ

[k]
2n−1(h) according to 1/h ∈ {1, . . . , 50}.

We recover the exponential decay of Remark 1.19. This decay is faster when k = 0. In
the last column, we aim at catching the exponential decay rate and we plot

1/h 7→ −h ln
(
λ
[k]
2 (h)− λ

[k]
1 (h)

)
.

Let us discuss this last column a little more. We observe a break of the curve when 1/h
becomes too large (1/h ≥ 24 for k = 0 and 1/h ≥ 33 for k = 1). For smaller h, the

gap between the first two eigenvalues is very small λ
[k]
2 (h) − λ

[k]
1 (h) < 3 10−12, which is

the accuracy of the computations. So the gap is no more significant when h becomes too
small: the error due to the computations and the splitting is at the same order ≃ 10−12.
We try here to catch the scales: a polynomial scale for the convergence of the eigenvalues
as h → 0 and an exponential scale for the splitting. So the range of h to have the two
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Figure 3: First eigenvalues λ
[k]
n (h) vs. 1/h, k = 0, 1.

(a) First eigenvector h = 1
15

(b) Second eigenvector h = 1
15

(c) First eigenvector h = 1
20

(d) Second eigenvector h = 1
20

Figure 4: Modules and phases of the first two eigenvectors, h = 1
20 .

convergences is small. The third column in Figure 3 gives an estimate for the constant
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c = ck in Remark 1.19 such that

λ
[k]
2 (h)− λ

[k]
1 (h) = O(e−ck/h) with 1.25 ≤ c0 ≤ 1.3, 0.86 ≤ c1 ≤ 0.9.

In Figure 4, we give the first two eigenvectors (modulus, logarithm of the modulus and

phase) of L
[k]
h for h = 1/15 if k = 0 and h = 1/20 if k = 1. To compute them, we use a Q10

approximation and Rk,2,5 as artificial domain for computations. We observe the change
of symmetry between the first two eigenmodes: the first eigenvector satisfies Neumann
condition along the symmetry axis x = 0 whereas the second one is antisymmetric as it
can be seen on the phase or on the logarithm of the modulus. If we take too small values for
h (h ≤ 1/24 if k = 0 and h ≤ 1/33 if k = 1), then the accuracy of our computations is no
more sufficient to catch the tunneling effect and the modulus the first two eigenfunctions
is no more symmetric: The first eigenvector is essentially localized in one well whereas the
second eigenfunction is localized in the other well.

5 Geometric models: an application of the strategy

In this section, we use the same notation as previously but add an exponent ♯ = vf, e, c to
distinguish the three geometrical operators studied now.

5.1 Vanishing magnetic fields

This section is concerned with the result announced in Section 1.3.1.

5.1.1 Description of the operator in curvilinear coordinates

If k ≥ 0 is an integer, we let Ωk = R if k ≥ 1 and Ωk = R+ if k = 0. By using the standard
tubular coordinates near Γ (see [19, Appendix F]), we are reduced to analyze the following
operator, depending on the integer k ≥ 0 and acting on L2(R×Ωk,m(s, t) ds dt) and with
Neumann condition on t = 0 if k = 0:

Lvf,[k]
~ = (1− tκ(s))−1~Dt(1− tκ(s))hDt

+ (1− tκ(s))−1(~Ds −Avf,[k](s, t))(1− tκ(s))−1(~Ds −Avf,[k](s, t)),

with again m(s, t) = 1− tκ(s) and

Avf,[k](s, t) =

∫ t

0
(1− t′κ(s))Bvf,[k](s, t′) dt′

and where Bvf,[k] is a magnetic field which satisfies

Bvf,[k](s, t) = γ(s)tk + δ(s)tk+1 +O(tk+2)

so that

Avf,[k](s, t) = γ(s)
tk+1

k + 1
+ δ̃(s)

tk+2

k + 2
+O(tk+3)

where
δ̃(s) = δ(s)− γ(s)κ(s).

The function κ can be interpreted as the curvature function of the zero line of the magnetic
field (if k ≥ 1) or of the boundary (if k = 0). We will work under the following assumption.
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Assumption 5.1 The functions κ and B are smooth and γ admits a non degenerate
minimum at s = 0.

Let us perform an appropriate rescaling

h = ~
1

k+2 , s = σ, t = hτ.

We denote by L
vf,[k]
h the rescaled operator divided by h2k+2 and we have

L
vf,[k]
h = (1− hτκ(σ))−1Dτ (1− hτκ(σ))Dτ

+ (1− hτκ(σ))−1(hDσ −A
vf,[k]
h (σ, τ))(1− hτκ(σ))−1(hDσ −A

vf,[k]
h (σ, τ)).

with
A

vf,[k]
h (σ, τ) = h−(k+1)Avf,[k](σ, hτ).

Theorem 5.2 Under Assumption 5.1, there exist a function Φ = Φ(σ) defined in a neigh-
borhood V of (0, 0) with ReHessΦ(0) > 0 and, for any n ≥ 1, a sequence of real numbers

(λ
vf,[k]
n,j )j≥0 such that

λvf,[k]n (h) ∼
h→0

∑

j≥0

λ
vf,[k]
n,j hj ,

in the sense of formal series. Besides there exists a formal series of smooth functions on
V

avf,[k]n (.;h) ∼
h→0

∑

j≥0

a
vf,[k]
n,j hj ,

with a
vf,[k]
n,0 (0, 0) 6= 0 such that

(
L
vf,[k]
h − λvf,[k]n (h)

)(
an(.;h)e

−Φ/h
)
= O (h∞) e−Φ/h.

We also have that λ
vf,[k]
n,0 = γ(0)

2
k+2 ν

[k]
1 (ζ

[k]
0 ) and that λ

vf,[k]
n,1 is the n-th eigenvalue of the

operator
1
2Hess µ

[k]
1 (0, ζ

[k]
0 )(σ,Dσ) +Rvf,[k](0), (5.1)

with

Rvf,[k](0) = 2γ(0)

(
δ(0) +

κ(0)γ(0)

k + 1

)∫

Ωk

τ2k+3

(k + 1)(k + 2)
u20,iΦ′(0)(τ) dτ

+ κ(0)

∫

Ωk

∂τu0,iΦ′(0)(τ)u0,iΦ′(0)(τ) dτ. (5.2)

The main term in the Ansatz is

a
vf,[k]
n,0 = f

vf,[k]
n,0 (σ)u

vf,[k]
σ,iΦ′(σ)(τ),

where f
vf,[k]
n,0 (σ) is the n-th normalized eigenfunction of (5.1). Moreover, for all n ≥ 1,

there exist h0 > 0, c > 0 such that for all h ∈ (0, h0), we have

B
(
λ
vf,[k]
n,0 + λ

vf,[k]
n,1 h, ch

)
∩ sp

(
L
vf,[k]
h

)
= {λvf,[k]n (h)},

and λ
vf,[k]
n (h) is a simple eigenvalue.
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5.1.2 WKB expansion

Let us now prove Theorem 5.2. We have the expansion (in powers of h):

A
vf,[k]
h (σ, τ) = γ(σ)

τk+1

k + 1
+ δ̃(σ)h

τk+2

k + 2
+O(h2τk+3).

We can write the following formal series expansion:

eΦ(σ)/hL
vf,[k]
h e−Φ(σ)/h ∼

∑

j≥0

hjLj ,

where we have

L0 = D2
τ +

(
iΦ′(σ)− γ(σ)

τk+1

k + 1

)2

and

L1 = − τk+1

k + 1
(Dσγ(σ)+γ(σ)Dσ)+2γ(σ)δ̃(σ)

τ2k+3

(k + 2)(k + 1)
+κ(σ)∂τ+2τκ(σ)

(
γ(σ)

τk+1

k + 1

)2

.

Our Ansätze are again in the form

a ∼
∑

j≥0

hjaj , λ ∼
∑

j≥0

hjλj .

The first equation is given by
L0a0 = λ0a0.

This leads to the choice
a0(σ, τ) = f0(σ)u

[k]
σ,iΦ′(σ)(τ)

and Φ must be such that
µ
[k]
1 (σ, iΦ′(σ)) = λ0

and λ0 = γ(0)
2

k+2 ν
[k]
1 (ζ

[k]
0 ). The next equation to solve is

(L0 − µ0)a1 = (λ1 − L1)a0

and the associated Fredholm condition is given by

〈
L1a0, u

[k]

σ,−iΦ
′
(σ)

〉

L2(Ωk, dτ)
= λ1f0(σ).

We get the transport equation

(
Dσ∂ζµ1(σ, iΦ

′(σ)) + ∂ζµ1(σ, iΦ
′(σ))Dσ

)
f0 +Rvf(σ)f0 = λ1f0,

where Rvf is a smooth function. Considering the linearized equation near σ = 0, we are
led to choose λ1 in the set

sp
(
1
2Hess µ

[k]
1 (0, ζ

[k]
0 )(σ,Dσ)

)
+Rvf(0).

We recognize the set which appears in [45, γn,2 in Theorem 1.3] (for k = 0), [16, θn2 in
Theorem 1.6] (for k = 1) and in the conjecture of [21, A for our Rvf(0) in (4.5)] (for k ≥ 1).
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5.2 Along a varying edge in dimension three

Let us now deal with the situation described in Section 1.3.2. Let us recall that the bottom
of the spectrum of the magnetic Neumann Laplacian on the wedge Wα with constant
aperture α with a magnetic field normal to the symmetry plane is a non increasing function
with respect to α (see [42]). The wedge is so that Wα = R× Sα where Sα is the angular
sector in R2.

5.2.1 Framework

We will need the Neumann realization of the operator defined on L2(Sα0 , dt dz) by

Me
s,η = D2

t + T (s)−2T (0)2D2
z + (η − t)2,

whose form domain is

Dom(Qe
s,η) =

{
ψ ∈ L2(Sα0) : Dtψ ∈ L2(Sα0), Dzψ ∈ L2(Sα0), tψ ∈ L2(Sα0)

}

and with operator domain

Dom(Me
s,η) =

{
ψ ∈ Dom(Qe

s,η) : Me
s,ηψ ∈ L2(Sα0),T(s)ψ = 0

}
,

where
T(s) = −sgn(z)Dt + T (s)−2T (0)Dz.

The lowest eigenvalue of Me
s,η is denoted by µe1(s, η). As in [43], we will also investigate

the consequences of the following conjecture (see [43, Remark 1.8]).

Conjecture 5.3 For all α0 ∈ (0, π), the function η 7→ µe1(0, η) admits a unique critical
point η0 which is a non degenerate minimum.

Proposition 5.4 Under Assumption 1.22 and if Conjecture 5.3 is true, the function µe1
admits a local non degenerate minimum at (0, η0). Moreover the Hessian at (0, η0) is given
by

4κT (0)−1‖Dzu0,η0‖s2 +
(
∂2ηµ

e
1

)
0,η0

η2. (5.3)

Proof: The proof follows from the perturbation theory. We have the eigenvalue
equation

Me
s,ηus,η = µe1(s, η)us,η, T(s)us,η = 0.

We notice that T′(0) = 0 and T′′(0) = 4κT (0)−2Dz. Let us analyze the derivative with
respect to s. We have

(Me
0,η0 − µe1(0, η0)) (∂su)0,η0 = (∂sµ

e
1)0,η0 u0,η0 ,

with T(0) (∂su)0,η0 = 0. This implies that (∂sµ
e
1)0,η0 = 0 by the Fredholm condition and

that (∂su)0,η0 is proportional to u0,η0 . Therefore (0, η0) is a critical point of µe1. Let us
now consider the derivative with respect to s and η. We get:

(Me
0,η0 − µe1(0, η0)) (∂s∂ηu)0,η0 = (∂s∂ηµ

e
1)0,η0 u0,η0 − ∂ηMe

0,η0 (∂su)0,η0

and T(0) (∂s∂ηu)0,η0 = 0. The Fredholm condition and a Feynman-Hellmann formula give
that (∂s∂ηµ

e
1)0,η0 = 0. We shall now analyze the second order derivative with respect to s:

(Me
0,η0 − µe1(0, η0))

(
∂2su

)
0,η0

=
(
∂2sµ

e
1

)
0,η0

u0,η0 − ∂2sMe
0,η0u0,η0 ,

with boundary condition T(0)
(
∂2su

)
0,η0

= −T′′(0)u0,η0 . We have ∂2sMe
0,η0

= 4κT (0)−1D2
z .

With the Fredholm condition, we get
(
∂2sµ

e
1

)
0,η0

= 4κT (0)−1‖Dzu0,η0‖2.
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The function (5.3) is the symbol of the effective harmonic oscillator introduced in [43].
We will see that our WKB analysis succeeds as soon as we work near a local and non
degenerate minimum of µe1. The goal of Assumption 1.22 and Conjecture 5.3 is to provide
sufficient conditions to have such a critical point as well as to get the spectral splitting as
in [43].

5.2.2 Normal form

We introduce the change of variables

š = s, ť = t, ž = T (s)−1T (0)z

and we let

∇̌~ =




~Dš

~Dť

~T (š)−1T (0)Dž


+



−ť− ~ T ′

2T (žDž +Dž ž)
0
0


 .

The operator Le
~ is unitarily equivalent to the operator Ľe

~ on L2(Wα0 , dš dť dž) defined
by

Ľe
~ =

(
~Dš − ť− ~

T ′

2T (žDž +Dž ž)

)2

+ ~2D2
ť + ~2T (š)−2T (0)2D2

ž .

The boundary condition becomes, on ∂Wα0 ,

∇̌~ψ̌ · ň = 0, with ň =



−T ′(š)ť
−T (š)
±1


 . (5.4)

We now perform the scaling which preserves Wα0 :

h = ~1/2, š = σ, ť = h1/2τ, ž = h1/2Z.

The operator ~−1Ľe
~ becomes Le

h:

Le
h =

(
hDσ − τ − h

T ′

2T (ZDZ +DZZ)

)2

+D2
τ + T (σ)−2T (0)2D2

Z .

Now, the boundary condition is, on ∂Wα0 ,

∇̂hψ · n̂ = 0 with n̂ = n0 + h1/2n1 (5.5)

where

n0 =




0
−T (σ)
±1


 , n1 =



−T ′(σ)τ

0
0




and

∇̂h =




hDσ

Dτ

T (σ)−1T (0)DZ


+



−τ − h T ′

2T (ZDZ +DZZ)
0
0


 .

Theorem 5.5 Under Assumption 1.22 and Conjecture 5.3, there exist a function Φ =
Φ(σ) defined in a neighborhood V of (0, 0) such that ReHessΦ(0) > 0 on V and sequence
of real numbers (λen,j) such that

λen(h) ∼
h→0

∑

j≥0

λen,jh
j .
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in the sense of formal series. Besides there exists a formal series of smooth functions
(aen,j(s, t)) defined for (s, t) ∈ V,

aen ∼
h→0

∑

j≥0

aen,jh
j ,

such that
(Le

h − λen(h))
(
aene

−Φ/h
)
= O (h∞) e−Φ/h.

We also have that λen,0 = µe1(0, η0) and that λen,1 is the n-th eigenvalue of the operator

1
2Hess µ

e
1(0, η0)(σ,Dσ). (5.6)

The main term in the Ansatz is in the form aen,0(σ, τ, Z) = f en,0(σ)u
e
σ,iΦ′(σ)(τ, Z). Moreover,

for all n ≥ 1, there exist h0 > 0, c > 0 such that for all h ∈ (0, h0), we have

B(λen,0 + λen,1h, ch) ∩ sp (Le
h) = {λen(h)},

and λen(h) is a simple eigenvalue.

5.2.3 WKB expansion for the normal form

Let us consider the conjugate operator

eΦ(σ)/hLe
he

−Φ(σ)/h =

(
hDσ + iΦ′(σ)− τ − h

T ′(σ)
2T (σ)

(ZDZ +DZZ)

)2

+D2
τ +

T (0)2

T (σ)2
D2

Z ,

with the corresponding boundary conditions. We can write the formal power series expan-
sion:

eΦ(σ)/hLe
he

−Φ(σ)/h ∼
∑

j≥0

hjLj

with
L0 = D2

τ + T (σ)−2T (0)2D2
Z + (iΦ′(σ)− τ)2,

L1 = (iΦ′(σ)− τ)Dσ +Dσ(iΦ
′(σ)− τ)− iΦ′(σ)

T ′(σ)
T (σ)

(ZDZ +DZZ).

Our Ansätze are in the form:

a ∼
∑

j≥0

hjaj , λ ∼
∑

j≥0

hjλj .

The first equation is given by
L0a0 = λ0a0,

with boundary condition (which is in fact a Neumann condition)




−τ
Dτ

T (σ)−1T (0)DZ


 a0 · n0 = 0.

We take
a0(σ, τ) = f0(σ)u

e
σ,iΦ′(σ)(τ)
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and λ0 = µe1(0, η0). The equation becomes

µe1(σ, iΦ
′(σ)) = λ0.

The second equation is
(L0 − λ0)a1 = (λ1 − L1)a0

with boundary condition




−τ
Dτ

T (σ)−1T (0)DZ


 a0 · n1 +




−τ
Dτ

T (σ)−1T (0)DZ


 a1 · n0 = 0.

The Fredholm condition is
〈
L1a0, u

e

σ,−iΦ
′
(σ)

〉
L2(Sα0 , dτ dZ)

= λ1f0(σ)

and can be rewritten in the form
{
1

2

(
∂ηµ

e
1(σ, iΦ

′(σ))Dσ +Dσµ
e
1(σ, iΦ

′(σ))
)
+Re(σ)

}
f0 = λ1f0,

where the smooth function σ 7→ Re(σ) vanishes at σ = 0 since T ′(0) = 0. The conclusion
follows by iteration.

5.3 Curvature induced magnetic bound states

This section is devoted to the analysis of the result announced in Section 1.3.3.

5.3.1 A higher order degeneracy

Let us consider the following Neumann realization on L2(R2
+,m(s, t) ds dt),

Lc
~ = m(s, t)−1~Dtm(s, t)~Dt

+m(s, t)−1

(
~Ds + ζ0~

1
2 − t+ κ(s)

t2

2

)
m(s, t)−1

(
~Ds + ζ0~

1
2 − t+ κ(s)

t2

2

)
, (5.7)

where m(s, t) = 1− tκ(s). Thanks to the rescaling

h = ~1/2, t = hτ, s = σ,

and after division by h2 the operator Lc
~ becomes

Lc
h = m(σ, hτ)−1Dτm(σ, hτ)Dτ

+m(σ, hτ)−1

(
hDσ + ζ0 − τ + hκ(σ)

τ2

2

)
m(σ, hτ)−1

(
hDσ + ζ0 − τ + hκ(σ)

τ2

2

)
,

(5.8)

on the space L2(m(σ, hτ) dσ dτ).
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Theorem 5.6 Under Assumption 1.22, there exist a function

Φ = Φ(σ) =

(
2C1

ν ′′(ζ0)

)1/2 ∣∣∣∣
∫ σ

0
(κ(0)− κ(s))1/2 ds

∣∣∣∣

defined in a neighborhood V of (0, 0) such that ReΦ′′(0) > 0, and a sequence of real numbers
(λcn,j) such that

λcn(h) ∼
h→0

∑

j≥0

λcn,jh
j
2 .

Besides there exists a formal series of smooth functions on V,

acn ∼
h→0

∑

j≥0

acn,jh
j
2

such that

(Lc
h − λcn(h))

(
acne

−Φ/h
1
2

)
= O (h∞) e−Φ/h

1
2 .

We also have that λcn,0 = Θ0, λ
c
n,1 = 0, λcn,1 = −C1κmax and λcn,3 = (2n− 1)C1Θ

1/4
0

√
3k2
2 .

The main term in the Ansatz is in the form

acn,0 = f cn,0(σ)uζ0(τ).

Moreover, for all n ≥ 1, there exist h0 > 0, c > 0 such that for all h ∈ (0, h0), we have

B
(
λcn,0 + λcn,2h+ λcn,3h

3
2 , ch

3
2

)
∩ sp (Lc

h) = {λcn(h)},

and λcn(h) is a simple eigenvalue.

Remark 5.7 In particular, Theorem 5.6 proves that there are no odd powers of ~
1
8 in the

expansion of the eigenvalues (as in [18, Theorem 1.1]).

5.3.2 WKB expansion

Let us introduce a phase function Φ = Φ(σ) defined in a neighborhood of σ = 0 the unique
and non degenerate maximum of the curvature κ. We consider the conjugate operator

L
c,wg
h = eΦ(σ)/h

1
2
Lc
he

−Φ(σ)/h
1
2 .

As usual, we look for

a ∼
∑

j≥0

h
j
2aj , λ ∼

∑

j≥0

λjh
j
2

such that, in the sense of formal series we have

L
c,wg
h a ∼ λa.

We may write

L
c,wg
h ∼ L0 + h

1
2L1 + hL2 + h

3
2L3 + . . . ,
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where

L0 = D2
τ + (ζ0 − τ)2,

L1 = 2(ζ0 − τ)iΦ′(σ),

L2 = κ(σ)∂τ + 2

(
Dσ + κ(σ)

τ2

2

)
(ζ0 − τ)− Φ′(σ)2 + 2κ(σ)(ζ0 − τ)2τ,

L3 =

(
Dσ + κ(σ)

τ2

2

)
(iΦ′(σ)) + (iΦ′(σ))

(
Dσ + κ(σ)

τ2

2

)
+ 4iΦ′(σ)τκ(σ)(ζ0 − τ).

Let us now solve the formal system. The first equation is

L0a0 = λ0a0

and leads to take
λ0 = Θ0, a0(σ, τ) = f0(σ)uζ0(τ),

where f0 has to be determined. The second equation is

(L0 − λ0)a1 = (λ1 − L1)a0 = (λ1 − 2(ζ0 − τ))uζ0(τ)iΦ
′(σ)f0

and, due to the Fredholm alternative, we must take λ1 = 0 and

a1(σ, τ) = iΦ′(σ)f0(σ) (∂ζu)ζ0 (τ) + f1(σ)uζ0(τ),

where f1 is to be determined in a next step. Then the third equation is

(L0 − λ0)a2 = (λ2 − L2)a0 − L1a1.

Let us explicitly write the r.h.s. It equals

λ2uζ0f0 +Φ′2(uζ0 + 2(ζ0 − τ)(∂ζu)ζ0)f0 − 2(ζ0 − τ)uζ0(iΦ
′f1 − i∂σf0)

+ κ(σ)f0(∂τuζ0 − 2(ζ0 − τ)2τuζ0 − τ2(ζ0 − τ)uζ0).

Therefore the equation becomes

(L0−λ0)ã2 = λ2uζ0f0+
ν ′′(ζ0)

2
Φ′2uζ0f0+κ(σ)f0(−∂τuζ0 −2(ζ0− τ)2τuζ0 − τ2(ζ0− τ)uζ0),

where
ã2 = a2 − vζ0(iΦ

′f1 − i∂σf0) +
1
2(∂

2
ζu)ζ0Φ

′2f0.

Let us now use the Fredholm alternative (with respect to τ). We will need the following
lemma the proof of which relies on Feynman-Hellmann formulas (like in Proposition 2.2)
and on [18, p. 19] (for the last one).

Lemma 5.8 We have:
∫

R+

(ζ0 − τ)u2ζ0(τ) dτ = 0,

∫

R+

(∂ζu)ζ0(τ)uζ0(τ) dτ = 0,

2

∫

R+

(ζ0 − τ)(∂ζu)ζ0(τ)uζ0(τ) dτ =
ν ′′(ζ0)

2
− 1,

∫

R+

2τ(ζ0 − τ)2 + τ2(ζ0 − τ)u2ζ0 + uζ0∂τuζ0 dτ = −C1.
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We get the equation

λ2 +
ν ′′(ζ0)

2
Φ′2(σ) + C1κ(σ) = 0, C1 =

u2ζ0(0)

3
.

This eikonal equation is the one of a pure electric problem in dimension one whose potential
is given by the curvature. Thus we take

λ2 = −C1κ(0),

and

Φ(σ) =

(
2C1

ν ′′(ζ0)

)1/2 ∣∣∣∣
∫ σ

0
(κ(0)− κ(s))1/2 ds

∣∣∣∣ .

In particular we have:

Φ′′(0) =

(
k2C1

ν ′′(ζ0)

)1/2

,

where k2 = −κ′′(0) > 0.
This leads to take

a2 = f0â2 + (∂ζu)ζ0(iΦ
′f1 − i∂σf0)− 1

2(∂
2
ηu)ζ0Φ

′2f0 + f2uζ0 ,

where â2 is the unique solution, orthogonal to uζ0 for all σ, of

(L0 − ν0)â2 = ν2uζ0 +
ν ′′(ζ0)

2
Φ′2uζ0 + κ(σ)

(
−∂τuζ0 − 2(ζ0 − τ)2τuζ0 − τ2(ζ0 − τ)uζ0

)
,

and f2 has to be determined.
Finally we must solve the fourth equation given by

(L0 − λ0)a3 = (λ3 − L3)a0 + (λ2 − L2)a1 − L1a2.

The Fredholm condition provides the following equation in the variable σ:

〈L3a0 + (L2 − λ2)a1 + L1a2, uζ0〉L2(R+, dτ) = λ3f0.

Using the previous steps of the construction, it is not very difficult to see that this equation
does not involve f1 and f2 (due to the choice of Φ and λ2 and Feynman-Hellmann formulas).
Using the same formulas, we may write it in the form

ν ′′(ζ0)
2

(
Φ′(σ)∂σ + ∂σΦ

′(σ)
)
f0 + F (σ)f0 = λ3f0, (5.9)

where F is a smooth function which vanishes at σ = 0. Therefore the linearized equation
at σ = 0 is given by

Φ′′(0)
ν ′′(ζ0)

2
(σ∂σ + ∂σσ) f0 = λ3f0.

We recall that
ν ′′(ζ0)

2
= 3C1Θ

1/2
0

so that the linearized equation becomes

C1Θ
1/4
0

√
3k2
2

(σ∂σ + ∂σσ) f0 = λ3f0.

We have to choose λ3 in the spectrum of this transport equation, which is given by the set
{
(2n− 1)C1Θ

1/4
0

√
3k2
2
, n ≥ 1

}
.

If λ3 belongs to this set, we may solve locally the transport equation (5.9) and thus find
f0. This procedure can be continued at any order.

60



5.3.3 Numerical estimates of the magnetic camel

For the numerical computations, we consider the magnetic potential A = (−x2, 0) and we
denote by (λcn(h), u

c
n,h) the n-th eigenpairs of the magnetic Laplacian −(ih∂x1+x2)

2−h2∂2x2

on Ω.

Camel with one bump Let us first consider the case where Ω is an unbounded domain
with a unique point with maximum curvature. We consider

Ω = {(x1, x2) ∈ R× R−, |x1| < 4x22}.

For the numerical computations, we proceed as explained in Section 4.5.1: we bound
the domain and impose Dirichlet condition on the artificial boundary. Let us define the
truncated domain

ΩH = {(x1, x2) ∈ Ω, x2 > −H}.
We consider triangular elements of degree P6. For the numerical computations, we take
H = 2.5, 3, 4 and a mesh with approximately 3000, 3600, 4800 triangular elements and
1/h ∈ {1 : 0.1 : 1000}.

Figure 6 illustrate the asymptotic expansion (1.4) for the first eigenvalue:

λ1(h)
c

h
= Θ0 − C1κmaxh

1/2 + o(h1/2), with C1 =
u2ζ0(0)

3
. (5.10)

In our example, we have κmax = 8. Using [6], we have

Θ0 ≃ 0.59010 and C1 ≃ 0.873043.

Figure 5(a) gives the first term Θ0 of the expansion. Note that the convergence is quite
slow because only in O(h1/2). In Figures 5(b)–5(c), we aim at recovering numerically the
power appearing in the expansion. For this, we plot, according to ln 1

h the quantities

ln
(
Θ0 −

λc1(h)

h

)
and ln

λc1(h)

h
−Θ0 + C1κmaxh

1/2.
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Figure 5: Convergence of the eigenvalues λc1(h).

In Figure 8, is represented the modulus, the logarithm of the modulus and the phase
of the first eigenfunction for h = 1/20.
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Figure 6: Modulu, logarithm of the modulus and phase of the first eigenvector, h = 1
20 .

Camel with two bumps Let us now deal with the case of a double well on the geometry.
For this, we consider

Ω = {(x1, x2) ∈ R× R−, |x1| < (1− x22)
2}.

Let us look at the behavior of the first two eigenpairs. Figure 7(a) illustrates the conver-
gence of the first two eigenvalues λcn(h) to Θ0 as h→ 0. We represent

1

h
7→ λcn(h)

h
, n = 1, 2.

To analyze the splitting between the first two eigenvalues, we plot in Figures 7(b)–7(c),
according to ln 1/h

λc2(h)− λc1(h)

h
and − h1/4 ln

λc2(h)− λc1(h)

h
.

For the last figure, we take h ≥ 1/70 otherwise the splitting computed numerically is of
the same order than the accuracy of our computation and the numerics is more relevant
when h < 1/70. These computations suggest that

λc2(h)− λc1(h)

h
= O(e−C/h1/4

) with 5.2 ≤ C ≤ 5.4.
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Figure 7: Convergence for λcn(h).

Figure 8 gives the modulus, logarithm of the modulus and the phase of the first two
eigenvectors for h = 1/20.
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(a) First eigenvector (modulus, log-modulus, phase)

(b) Second eigenvector (modulus, log-modulus, phase)

Figure 8: Modulus and phases of the first two eigenvectors, h = 1
20 .

6 Perspectives

Let us finally provide some perspectives. As we have seen in Section 4.3.2, even in explicit
situations, the optimal estimates of Agmon are still an open problem. If these estimates are
improved, one will obtain an accurate asymptotics of the splitting between the low-lying
eigenvalues. As well as the globalness of the WKB constructions, this problem is related
to the spectral properties of the analytic extensions of the model operators eigenpairs (for
instance the generalized Montgomery operators). Furthermore in the case of curvature
induced magnetic bound states, we have proved, at the WKB expansion level, that the
effective operator is purely electric so that we can think that the optimal estimates of
Agmon are accessible. Numerically, this paper was concerned with one symmetry (camel
with two bumps) and we have observed that the lowest eigenvalues seemed to be simple.
With more symmetries, we expect multiplicity (see Figure 9). Moreover, in more singular
geometrical situations (see [8]), the WKB structure of the eigenfunctions is not clear at
all since there is no obvious dimensional reduction (for example, the case of polygonal
domains is based on models on angular sectors).
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[8] V. Bonnaillie-Noël, M. Dauge, D. Martin, G. Vial. Computations of the first
eigenpairs for the Schrödinger operator with magnetic field. Comput. Methods Appl.
Mech. Engrg. 196(37-40) (2007) 3841–3858.
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[29] B. Helffer, J. Sjöstrand. Puits multiples en limite semi-classique. II. Interaction
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[48] N. Raymond, S. Vũ Ngo.c. Geometry and Spectrum in 2D Magnetic Wells. To
appear in Annales de l’Institut Fourier (2014).
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