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Images of a hematite-based epoxy coating are obtained by scanning electron microscopy (SEM). At

the scale of a few micrometers, they show aggregates of hematite nano-particles organized along thin

curved channels. We first segment the images and analyze them using mathematical morphology. The

heterogeneous dispersion of particles is quantified using the correlation function and the granulom-

etry of the embedding (epoxy) phase. Second, a two-scales, 3D random microstructure model with

exclusion zones is proposed to simulate the spatial distribution of particles. This simple model is

parametrized by four geometrical parameters related to the exclusion zones solely. The microstruc-

ture is numerically optimized, in the space of morphological parameters, on the granulometry of the

embedding epoxy phase and on the microstructure correlation function, by standard gradient-descent

methods. Excellent agreement is found between the SEM images and our optimized model. Finally,

the size of the representative volume element associated to the optimized microstructure model is

compared with that of the SEM images.
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1. Introduction

Hematite nanoparticles of various aspherical

shapes have been synthesized and characterized

for use in optical materials [1, 2] or for magnetic

properties [3], ranging from pseudo-cubic [4] to

cigar-like hematite particles [5]. At a higher

length scale, the dispersion of hematite particles is

most often heterogeneous [6]. However, the mul-

tiscale distribution of nanoparticles, embedded in

a resin, has not been studied to the same extent.

Some microstructure models have been proposed

in other contexts. Jean et al. [7] devised a multi-

scale Boolean models to represent the dispersion

of carbon black in rubber. Azzimonti et al. [8]

introduced deposit models to simulate the disper-

sion of nanoparticles in optical materials. Such

models are important to predict the behavior of

nanomaterials. The multiscale dispersion strongly

influences their effective (i.e. macroscopic) prop-

erties. For linear conducting materials, numerical

computations have shown that the presence of ag-

gregates of highly-conducting inclusions increase

the overall properties as compared to more ho-

mogeneous dispersions [9]. In nanomaterials, the

typical length scales of the particles’s spatial dis-

tribution is often much larger than the inclusions

themselves but of the same order as wavelength of

light. Accordingly, taking dispersion into account

is especially important for predicting the optical

properties of composites [10].

This work is devoted to the numerical model-

ing of the spatial distribution of nanoparticles of

hematite in a epoxy matrix. We present the ma-

terial and segment greylevel SEM microstructure

images in Sec. (2). In Sec. (3) we extract the corre-

lation function and granulometry of the nanopar-

ticles and of the epoxy. In Sec. (4) we intro-

duce a simple two-scales microstructure model to

represent the microstructure. The parameters of

our model are optimized according to correlation

function and granulometry criteria, as defined in

Sec. (3). Results are presented in Sec. (5). We

conclude in Sec. (6).

2. Hematite nanocubes coating

2.1. Dispersion of nanoparticles

In this work, we consider Fe2O3 iron oxide

(hematite) nanoparticles embedded in a epoxy

resin. The hematite particles, shown at high reso-

lution in Fig. (1), were specifically synthesized to

resemble cubes [11].

The hematite nanoparticles were blended in an

epoxy resin with a concentration of 10% in mass.

The nanoparticles and resin were first mixed to-
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gether in a mortar until the resulting paint be-

comes homogeneous. Using a bar coater tech-

nology, the mixture was then spread onto a thick

and flexible shrink-wrap support in order to ob-

tain a thin coating. For that purpose, an Elcome-

ter 4340 motorised film applicator was used. This

versatile, rugged and precise manufacturing pro-

cess ensures a smooth, reproducible and consis-

tent application of coatings, such as paint, varnish,

cosmetics, glue and ceramics, without any ridge

associated with such a technique. The bar coater

is indeed equipped with a highly-engineered alu-

minium table, much smoother than a glass sup-

port, and heating element, if suited. It was accu-

rately calibrated using a coordinate measuring ma-

chine to reach a high level of flatness. The average

variation of coating thickness on the Elcometer ta-

ble is about ±2.3 µm while it is equal to ±12.0 µm

on glass of some low-cost tables. During the de-

position, the roller translates towards the coating

direction but does not spin round. The deposition

speed may be set up from 0.5 to 10 cm per second

and coating as thin as 5 µm may be fabricated. In

this work, 150 µm thick coatings were fabricated.

As seen in Fig. (1), the particles shape are sim-

ilar to dice with rounded edges and corners.

The length of the diagonal of the cubes’s faces,

measured from the SEM images, is about 300 nm.

The SEM image in Fig. (1a) shows the spatial dis-

persion of nanoparticles at higher length scales.

Hematite particles aggregate around “empty re-

gions” almost entirely made of epoxy. Around

those areas, they form curved “channels” (sur-

faces in 3D) and some clusters of particles in

regions where the channels join. Along chan-

nels, Hematite particles are quite closely packed

as shown in Fig. (1b). Clearly, the dispersion ex-

hibits a multi-scale microstructure with at least

two scales: the particles average length and the

typical size of the channels.

The rest of this work is devoted to the analy-

sis and modelling of the nanoparticles spatial ar-

rangements. The formation of the channels and

their physical interpretation, beyond the scope of

this work, is not investigated.

2.2. Image segmentation

Hereafter, we focus on 4 randomly-selected SEM

images of 950 × 950 pixels, representing a region

(a) (b)

Fig. 1: Nanocubes of hematite (bright) in a epoxy

resin (dark) (a); same material with scale magnified 10

times (b).

of area 30 µm×30 µm. The images’s resolution is

31 nm per pixel. We segment them according to a

three-steps process illustrated in Fig. (2). We first

apply a gaussian filter to erase noise and smoothen

the background. Second, we separate nanopar-

ticles from the resin by maximization of the in-

terclass variance [12], an automatic segmentation

method that does not need any parameter. Third,

we apply an alternate sequential filter (Fig. 2). As

seen in Fig. (1), SEM images show nanoparticles

that are slightly beneath the plane of observation

as smaller, darker particles. To eliminate these,

we remove inclusions with an area smaller than

10 pixels (about 10 × 10 nm2). The final result is

shown in Fig. 2 (right). Fig. (3) shows two out

of the four segmented images. We measure a sur-

face fraction close to f0 = 9.4 ± 0.5% on the four

images.

(a) (b) (c)

Fig. 2: Segmentation of SEM images (enlargement):

original grayscale image (a), noise-filtering and thresh-

olding (b), removing of small inclusions (c).

3. Morphological measurements

In this section, we use correlation functions and

granulometry distributions to quantify the disper-

sion of nanoparticles in the resin.
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Fig. 3: Two of the four segmented SEM images,

shown at the same scale.

3.1. Correlation function

We define the covariance function as the probabil-

ity:

C(r) = P{x ∈ H , x + r ∈ H}, (1)

whereH is the union of hematite nanoparticles in

the microstructure, and x is a point. At large dis-

tances |r| ≫ 1 the two events x ∈ H and x+r ∈ H
become uncorrelated and C(r = ∞) ≈ C(0)2.

Thus, we define the normalized covariance, or cor-

relation function, as:

C(r) =
C(r) −C(0)2

C(0) [1 −C(0)]
. (2)

Taking vectors r = re1 (r ≥ 0) aligned with the

horizontal axis e1, we observe nearly identical cor-

relation functions for each sample, as shown in the

inset of Fig. (4). We also observe little difference

along the vertical and horizontal axis, shown in

Fig. (4) as well, so that the microstructure is al-

most isotropic as far as correlation functions are

concerned. Hereafter, we note C(r) the correlation

function C(r) irrespective of the orientation of the

vector r. The average over samples and over the

horizontal and vertical directions of the correla-

tion functions is referred to hereafter as “correla-

tion of the SEM images”.

In Fig. (4), the tangent slope at the origin r = 0,

shown in brown, cuts the abscissa at r ≈ 155 nm.

This length is to be interpreted as the mean chord

length of nanoparticles. It is consistent with the

length of the diagonal of the nanocubes faces, of

about 300 nm, measured from Fig. (1).

3.2. Granulometry

We define the cumulative granulometry by open-

ings of the epoxy phase as the conditional proba-

Fig. 4: Symbols: mean over all samples of the cor-

relation functions C(r) of segmented SEM images in

the horizontal and vertical directions. Black solid

line: mean over the two directions (brown: tangent at

r = 0, see text). Inset: correlation function C(r) for

r ≤ 62 nm in the horizontal direction, for each sample.

bility:

G(s) =
P{x ∈ E} − P{x ∈ E(S ; s)}

P{x ∈ E} (3)

where x is a point in the image, E is the epoxy

phase (complementary of H) and E(S ; s) is the

morphological opening of E by the structural el-

ement S dilated by size s. We use the first and

second neighbors, i.e. a square of 3 × 3 pixels,

as structural element S whereas s take on values

that are multiples of the pixel size. The granulom-

etry defined above is a measure of the cumulative

size distribution in E. We compute G(s) indepen-

dently for each of the 4 samples. The resulting

curves, shown in Fig. (5) are close to each other,

except at large sizes s > 700 nm. The granulome-

try of sample 2 is slightly higher than the others in

this domain. We hereafter neglect these variations

and take the mean of all four curves, referred to as

“granulometry of the SEM images” (Fig. 5).

We emphasize our use of the epoxy phase E
rather than H in the granulometry. The for-

mer only is sensible to the spatial dispersion of

nanoparticles. Indeed, the granulometry of the

nanoparticles is zero for sizes larger than 4 vox-

els and contains little information (not shown).

By contrast, the granulometry G(s) is non null for

s ≤ s0 with s0 ≈ 2.5 µm. The value s0 is an esti-

mate of the maximum diameter of regions without

hematite. Similarly, the granulometry G(s) gives
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the mean diameter of these regions, estimated to

1.05 µm.

Fig. 5: Cumulative granulometry G(s) of the com-

plementary of SEM images (symbols) as a function of

the size s in nanometers. Solid line: average over all

4 samples. Inset: granulometry distribution function

dG(s)/ds

.

4. Microstructure model

We now introduce a random 3D microstructure

model to represent the nanoparticles dispersion

in the epoxy. In our model, we assume that all

nanoparticles are identical (perfect) cubes with

uniformly-oriented random orientations. This

simplification allows us to focus on the model-

ing of the spatial dispersion of particles, which is

our main interest. More evolved models involving

size or shape distributions of particles are straight-

forward extensions of this work. Regions without

hematite particles (or with little of them) will be

hereafter referred to as “exclusion zones” in our

model, which is described according to the three

steps below.

First, we generate exclusion zones by a set

of hard-core spheres, determined by the spheres

volume fraction f , their diameter a and a repul-

sion distance ∆. When generating sphere centers,

points closer to ∆ from another point are skipped.

We add spheres until the volume fraction f of ex-

clusion zones is obtained. Accordingly, a portion

of exclusion zones intersect whenever ∆ < a.

In a second step, we place nanocubes accord-

ing to a deposit model that simulates an isotropic

packing of hematite particles [13]. The total

(a) (b)

Fig. 6: 2D cut of a realization of the two-scale mi-

crostructure model (a); same image with exclusion

zones shown in yellow (b).

(a) (b)

Fig. 7: Effect of the size of exclusion zones on the

microstructure model: a = 310 nm (a), 1860 nm (b)

with other parameters fixed to f = 10%, f ′ = ∆ = 0.

number of nanocubes is determined as a random

variable following Poisson’s law. Their average

number is deduced from the volume fraction of

nanocubes, measured from SEM images. We start

by inserting the fraction 1 − f ′ of nanocubes ly-

ing outside exclusion zones. The center of each

nanocube is, initially, generated randomly in the

domain, and moved in a random, isotropically-

distributed direction until a certain criterion is

met. There are two possibilities. If the cube ini-

tially cuts a previously-inserted nanocube, or an

exclusion zone, we move it and insert it as soon

as it is entirely out of the exclusion zones and of

other nanocubes. Conversely, if the cube initially

does not cut a previously-inserted nanocube nor

an exclusion zone, we move it until it touches ei-

ther one. We insert it at the last position before the

intersection occurred.

In a third step, the fraction f ′ of cubes lying

inside exclusion zones are inserted. We use a sim-

ilar packing method: if the cube center is inside

an exclusion zone and the cube does not cut a

previously-inserted nanocube, it is moved in a ran-
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(a)

(b)

Fig. 8: Effect of the volume fraction f of exclusion

zones on the correlation function (a) and granulometry

(b) with other parameters fixed.

dom direction until it touches a nanocube or its

center is out of exclusion zones. Conversely, if

the cube initially is out of an exclusion zone or in-

tersects an already-inserted cube, we move it until

its center is inside an exclusion zone and the cube

does not intersect any other cube.

We emphasize that nanoparticles never intersect

each other, but, instead, are “packed” together.

An example of the generation of a microstructure

with ∆ = f ′ = 0 is shown in Fig. (6). Exclu-

sion zones are represented in yellow (right), the

final microstructure is shown left. Examples of

microstructures with ∆ = f ′ = 0, and exclusion

zones volume fraction f = 10% are shown in

Fig. (7) with small (left) and large (right) exclu-

sion zones diameters a.

As predicted, the volume fraction f of exclud-

ing zones has an important effect on the granu-

lometry as shown in Fig. 8 (bottom) for f ′ = 0,

a = 1550 nm and ∆ = 775 nm. When a is small,

this effect is less (not shown). For the same val-

ues of the three parameters f ′ = 0, a = 1550 nm

(a)

(b)

Fig. 9: Effect of the diameter a of exclusion zones on

the correlation function (a) and granulometry (b) with

other parameters fixed.

and ∆ = 775 nm, the effect of f on the granulom-

etry is small. A similar strong effect of the diam-

eter a is observed on the granulometry but also,

as expected, on the correlation function (Fig. 9).

This effect occurres whether at high or low vol-

ume fractions f (not shown).

The included volume fraction f ′ and the repul-

sion distance ∆ have little influence on the cor-

relation (not shown). The former predictably in-

fluences the granulometry, whereas the repulsion

distance ∆ only marginally changes it (Fig. 10).

5. Microstruture optimization and

representative volume element

We hereafter optimize the microstructure model

parameters by minimizing

η1

∫

h
dr
[

CM(r) −CSEM(r)
]2

+ η2

∫

h
ds
[

GM(s) −GSEM(s)
]2

(4)

where the correlation function CM(r) and granu-

lometry GM(s) are measured on the generated mi-
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(a)

(b)

Fig. 10: Effect of the volume fraction f ′ of hematite

in exclusion zones (a) and of the hardcore parameter

∆ (b) on the granulometry, with the other 3 parameters

fixed.

crostructure models whereas CM(r) and GM(s) re-

fer to the known SEM correlation functions and

granulometry, resp. The criterion above allows us

to optimize on both the correlation function and

on the granulometry. Both quantities are com-

prised between 0 and 1. The weights η1 > 0

and η2 > 0 are used to favor one over the other.

Hereafter we make the arbitrary choice η1 = 1,

η2 = 1 − f0 ≈ 0.91.

We use the standard gradient descent and

Levenberg-Marquardt methods [14]. The latter

has been successfully used for optimizing multi-

scale microstructure models [7]. Numerical op-

timization is undertaken on 3D microstructures

containing 800 × 800 × 200 voxels. Random 2D

cuts normal to the third axis, containing 800×800

pixels, are used to compute criterion (4). Based

on the results of Sec. (3), we use f = 40%,

a = 2.48 µm, f ′ = 10% and ∆ = 310 nm as ini-

tial point. Both methods converge to a local min-

imum. The method of Levenberg-Marquadt takes

(a) (b)

Fig. 11: Optimized numerical microstructure (a) and

one segmented SEM image sample (b) observed at the

same scale. Each image represents a square of size

24.8 µm with resolution 31 nm per pixel. The pa-

rameters of the optimized model are f = 25%, a =

1862 nm, f ′ = 20%, ∆ = 620 nm.

Fig. 12: Granulometry of the optimized numerical mi-

crostructure and of SEM images. Inset: correlation

function.

more time at each iteration than the standard gra-

dient descent, but uses about 4 times less iterations

to converge to a given precision. We also find that

both method converges to the same (local) opti-

mum with parameters: f = 25%, a = 1.862 µm,

f ′ = 20%, ∆ = 0.62 µm. A 2D cut of the opti-

mized model is represented in Fig. (11) and com-

pared to a segmented SEM image.

The model reproduces the arrangements of

nanoparticles along curved channels (necklaces)

seen in SEM images.

The granulometry and correlation functions of

the optimized microstructure model and of the

SEM images are shown in Fig. (12). In terms

of these two criteria, the optimized model is very
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close to the SEM images.

Fig. 13: Variance D2(S ) of the apparent surface frac-

tion of nanoparticles computed over a domain of sur-

face area S : comparison between SEM images and op-

timized microstructure model. Solid black line: fit of

the variance D2(S ) for S ≫ S 0. Black arrow: integral

range S 0.

Finally, as a complementary examination,

we compute the representative volume element

(RVE) related to the nanoparticules dispersion.

Let D2(S ) be the variance of the surface fraction

of nanoparticles measured over independent 2D

domains of area S in the material. For large ar-

eas S , the following asymptotic behavior is recov-

ered [15]:

D2(S ) ∼ f0(1 − f0)S 0

S
, S ≫ S 0 (5)

where S 0 is the integral range and f0 ≈ 10% is the

surface fraction of nanoparticles (Sec. 2.2). The

integral range S 0 is determined by the covariance

C(r) [16]. The quantity D(S ) gives the confidence

interval for the estimation of the surface fraction

of nanoparticles on N domains of area S [17]. The

absolute error of such estimate is:

ǫabs =
2D(S )
√

N
(6)

To compute numerically D2(S ), we divide one

SEM image into n × n non-overlapping squares

of area S and compute the surface fraction of

nanoparticles over each subdomain. We approx-

imate D2(S ) as the variance of the obtained set of

surface fractions. The same computation is un-

dertaken along a random 2D cut of our optimized

microstructure model. The two curves are repre-

sented in Fig. (13). Overall, the standard deviation

function of our optimized model is close to that

of the SEM images, although this quantity is not

(explicitly) involved in criterion (4). A region of

interest S > 1.50 µm2 is selected. Powerlaw fits

on the SEM and optimized models give D2(S ) ∼
3.14 10−3S −0.96 and D2(S ) ∼ 3.58 10−3S −0.97, re-

spectively, consistently with Eq. (5). The for-

mer is represented in Fig. 13 (solid black line).

From this fit, we deduce the integral range S 0 ≈
3.52 10−2

µm2. At the scale of the SEM images

(S = 153 µm2) the absolute error in Eq. (5) is

ǫabs ≈ 1.1% so that f0 ≈ 9.4 ± 1.1%.

6. Conclusion

The spatial dispersion of hematite nanoparticles

in a epoxy resin is accurately modeled by a

two-scales microstructure made of spherical “ex-

clusion zones” containing few hematite parti-

cles. Use of the granulometry of the embed-

ding (epoxy) phase as criterion is crucial to de-

scribe the spatial dispersion of particles. The

model’s parameters are efficiently optimized using

either standard gradient method or the Levenberg-

Marquardt method.

Parametrized microstructure models are a first

step towards designing materials with improved

physical properties. 3D microstructure models

are conveniently coupled with Fourier numeri-

cal methods [18] for solving PDEs on images

of complex materials, without meshing. These

tools predict the electric [18], elastic [9] or opti-

cal [8] responses of composites. Applied to the

present work, these methods should allow one

to determine how the peculiar multiscale disper-

sion of nanoparticles affects the material’s over-

all properties. In previous numerical investiga-

tions [9], multiscale dispersions have been shown

to strongly influence the physical properties of

inclusion-matrix coatings.
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