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Introduction

Hematite nanoparticles of various aspherical shapes have been synthesized and characterized for use in optical materials [START_REF] Spuch-Calvar | Hematite spindles with optical functionalities: Growth of gold nanoshells and assembly of gold nanorods[END_REF][START_REF] Xu | Uniform hematite α -Fe 2 O 3 nanoparticles: Morphology, size-controlled hydrothermal synthesis and formation mechanism[END_REF] or for magnetic properties [START_REF] Tadic | Synthesis, morphology and microstructure of pomegranate-like hematite (α -Fe 2 O 3 ) superstructure with high coercivity[END_REF], ranging from pseudo-cubic [START_REF] Park | Internal Structure Analysis of Monodispersed Pseudocubic Hematite Particles by Electron Microscopy[END_REF] to cigar-like hematite particles [START_REF] Manickavasagam | Characterization of colloidal hematite particle shape and dispersion behavior[END_REF]. At a higher length scale, the dispersion of hematite particles is most often heterogeneous [START_REF] Huang | Flower-like porous hematite nanoarchitectures achieved by complexation-mediated oxidation-hydrolysis reaction[END_REF]. However, the multiscale distribution of nanoparticles, embedded in a resin, has not been studied to the same extent. Some microstructure models have been proposed in other contexts. Jean et al. [START_REF] Jean | A multiscale microstructure model of carbon black distribution in rubber[END_REF] devised a multiscale Boolean models to represent the dispersion of carbon black in rubber. Azzimonti et al. [START_REF] Azzimonti | Optical properties of deposit models for paints: fullfields FFT computations and representative volume element[END_REF] introduced deposit models to simulate the dispersion of nanoparticles in optical materials. Such models are important to predict the behavior of nanomaterials. The multiscale dispersion strongly influences their effective (i.e. macroscopic) properties. For linear conducting materials, numerical computations have shown that the presence of aggregates of highly-conducting inclusions increase the overall properties as compared to more homogeneous dispersions [START_REF] Willot | Elastic and electrical behavior of some random multiscale highly-contrasted composites[END_REF]. In nanomaterials, the typical length scales of the particles's spatial distribution is often much larger than the inclusions themselves but of the same order as wavelength of light. Accordingly, taking dispersion into account is especially important for predicting the optical properties of composites [START_REF] Jeulin | Random structures in physics[END_REF].

This work is devoted to the numerical modeling of the spatial distribution of nanoparticles of hematite in a epoxy matrix. We present the material and segment greylevel SEM microstructure images in Sec. [START_REF] Xu | Uniform hematite α -Fe 2 O 3 nanoparticles: Morphology, size-controlled hydrothermal synthesis and formation mechanism[END_REF]. In Sec. [START_REF] Tadic | Synthesis, morphology and microstructure of pomegranate-like hematite (α -Fe 2 O 3 ) superstructure with high coercivity[END_REF] we extract the correlation function and granulometry of the nanoparticles and of the epoxy. In Sec. (4) we introduce a simple two-scales microstructure model to represent the microstructure. The parameters of our model are optimized according to correlation function and granulometry criteria, as defined in Sec. [START_REF] Tadic | Synthesis, morphology and microstructure of pomegranate-like hematite (α -Fe 2 O 3 ) superstructure with high coercivity[END_REF]. Results are presented in Sec. [START_REF] Manickavasagam | Characterization of colloidal hematite particle shape and dispersion behavior[END_REF]. We conclude in Sec. [START_REF] Huang | Flower-like porous hematite nanoarchitectures achieved by complexation-mediated oxidation-hydrolysis reaction[END_REF].

Hematite nanocubes coating

Dispersion of nanoparticles

In this work, we consider Fe 2 O 3 iron oxide (hematite) nanoparticles embedded in a epoxy resin. The hematite particles, shown at high resolution in Fig. [START_REF] Spuch-Calvar | Hematite spindles with optical functionalities: Growth of gold nanoshells and assembly of gold nanorods[END_REF], were specifically synthesized to resemble cubes [START_REF] Ben Achour | Dielectric properties of hematite nanoparticles with various morphologies[END_REF].

The hematite nanoparticles were blended in an epoxy resin with a concentration of 10% in mass. The nanoparticles and resin were first mixed to-gether in a mortar until the resulting paint becomes homogeneous. Using a bar coater technology, the mixture was then spread onto a thick and flexible shrink-wrap support in order to obtain a thin coating. For that purpose, an Elcometer 4340 motorised film applicator was used. This versatile, rugged and precise manufacturing process ensures a smooth, reproducible and consistent application of coatings, such as paint, varnish, cosmetics, glue and ceramics, without any ridge associated with such a technique. The bar coater is indeed equipped with a highly-engineered aluminium table, much smoother than a glass support, and heating element, if suited. It was accurately calibrated using a coordinate measuring machine to reach a high level of flatness. The average variation of coating thickness on the Elcometer table is about ±2.3 µm while it is equal to ±12.0 µm on glass of some low-cost tables. During the deposition, the roller translates towards the coating direction but does not spin round. The deposition speed may be set up from 0.5 to 10 cm per second and coating as thin as 5 µm may be fabricated. In this work, 150 µm thick coatings were fabricated.

As seen in Fig. [START_REF] Spuch-Calvar | Hematite spindles with optical functionalities: Growth of gold nanoshells and assembly of gold nanorods[END_REF], the particles shape are similar to dice with rounded edges and corners.

The length of the diagonal of the cubes's faces, measured from the SEM images, is about 300 nm. The SEM image in Fig. (1a) shows the spatial dispersion of nanoparticles at higher length scales. Hematite particles aggregate around "empty regions" almost entirely made of epoxy. Around those areas, they form curved "channels" (surfaces in 3D) and some clusters of particles in regions where the channels join. Along channels, Hematite particles are quite closely packed as shown in Fig. (1b). Clearly, the dispersion exhibits a multi-scale microstructure with at least two scales: the particles average length and the typical size of the channels.

The rest of this work is devoted to the analysis and modelling of the nanoparticles spatial arrangements. The formation of the channels and their physical interpretation, beyond the scope of this work, is not investigated.

Image segmentation

Hereafter, we focus on 4 randomly-selected SEM images of 950 × 950 pixels, representing a region of area 30 µm×30 µm. The images's resolution is 31 nm per pixel. We segment them according to a three-steps process illustrated in Fig. [START_REF] Xu | Uniform hematite α -Fe 2 O 3 nanoparticles: Morphology, size-controlled hydrothermal synthesis and formation mechanism[END_REF]. We first apply a gaussian filter to erase noise and smoothen the background. Second, we separate nanoparticles from the resin by maximization of the interclass variance [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF], an automatic segmentation method that does not need any parameter. Third, we apply an alternate sequential filter (Fig. 2). As seen in Fig. 

Morphological measurements

In this section, we use correlation functions and granulometry distributions to quantify the dispersion of nanoparticles in the resin. 

Correlation function

We define the covariance function as the probability:

C(r) = P{x ∈ H, x + r ∈ H}, ( 1 
)
where H is the union of hematite nanoparticles in the microstructure, and x is a point. At large distances |r| ≫ 1 the two events x ∈ H and x + r ∈ H become uncorrelated and C(r = ∞) ≈ C(0) 2 . Thus, we define the normalized covariance, or correlation function, as:

C(r) = C(r) -C(0) 2 C(0) [1 -C(0)] . (2) 
Taking vectors r = re 1 (r ≥ 0) aligned with the horizontal axis e 1 , we observe nearly identical correlation functions for each sample, as shown in the inset of Fig. [START_REF] Park | Internal Structure Analysis of Monodispersed Pseudocubic Hematite Particles by Electron Microscopy[END_REF]. We also observe little difference along the vertical and horizontal axis, shown in Fig. [START_REF] Park | Internal Structure Analysis of Monodispersed Pseudocubic Hematite Particles by Electron Microscopy[END_REF] as well, so that the microstructure is almost isotropic as far as correlation functions are concerned. Hereafter, we note C(r) the correlation function C(r) irrespective of the orientation of the vector r. The average over samples and over the horizontal and vertical directions of the correlation functions is referred to hereafter as "correlation of the SEM images". In Fig. ( 4), the tangent slope at the origin r = 0, shown in brown, cuts the abscissa at r ≈ 155 nm. This length is to be interpreted as the mean chord length of nanoparticles. It is consistent with the length of the diagonal of the nanocubes faces, of about 300 nm, measured from Fig. [START_REF] Spuch-Calvar | Hematite spindles with optical functionalities: Growth of gold nanoshells and assembly of gold nanorods[END_REF].

Granulometry

We define the cumulative granulometry by openings of the epoxy phase as the conditional proba- bility:

G(s) = P{x ∈ E} -P{x ∈ E(S ; s)} P{x ∈ E} (3) 
where x is a point in the image, E is the epoxy phase (complementary of H) and E(S ; s) is the morphological opening of E by the structural element S dilated by size s. We use the first and second neighbors, i.e. a square of 3 × 3 pixels, as structural element S whereas s take on values that are multiples of the pixel size. The granulometry defined above is a measure of the cumulative size distribution in E. We compute G(s) independently for each of the 4 samples. The resulting curves, shown in Fig. [START_REF] Manickavasagam | Characterization of colloidal hematite particle shape and dispersion behavior[END_REF] are close to each other, except at large sizes s > 700 nm. The granulometry of sample 2 is slightly higher than the others in this domain. We hereafter neglect these variations and take the mean of all four curves, referred to as "granulometry of the SEM images" (Fig. 5). We emphasize our use of the epoxy phase E rather than H in the granulometry. The former only is sensible to the spatial dispersion of nanoparticles. Indeed, the granulometry of the nanoparticles is zero for sizes larger than 4 voxels and contains little information (not shown). By contrast, the granulometry G(s) is non null for s ≤ s 0 with s 0 ≈ 2.5 µm. The value s 0 is an estimate of the maximum diameter of regions without hematite. Similarly, the granulometry G(s) gives the mean diameter of these regions, estimated to 1.05 µm. 

Microstructure model

We now introduce a random 3D microstructure model to represent the nanoparticles dispersion in the epoxy. In our model, we assume that all nanoparticles are identical (perfect) cubes with uniformly-oriented random orientations. This simplification allows us to focus on the modeling of the spatial dispersion of particles, which is our main interest. More evolved models involving size or shape distributions of particles are straightforward extensions of this work. Regions without hematite particles (or with little of them) will be hereafter referred to as "exclusion zones" in our model, which is described according to the three steps below.

First, we generate exclusion zones by a set of hard-core spheres, determined by the spheres volume fraction f , their diameter a and a repulsion distance ∆. When generating sphere centers, points closer to ∆ from another point are skipped. We add spheres until the volume fraction f of exclusion zones is obtained. Accordingly, a portion of exclusion zones intersect whenever ∆ < a.

In a second step, we place nanocubes according to a deposit model that simulates an isotropic packing of hematite particles [START_REF] Willot | Microstructure-induced hotspots in the thermal and elastic responses of granular media[END_REF]. The total number of nanocubes is determined as a random variable following Poisson's law. Their average number is deduced from the volume fraction of nanocubes, measured from SEM images. We start by inserting the fraction 1f ′ of nanocubes lying outside exclusion zones. The center of each nanocube is, initially, generated randomly in the domain, and moved in a random, isotropicallydistributed direction until a certain criterion is met. There are two possibilities. If the cube initially cuts a previously-inserted nanocube, or an exclusion zone, we move it and insert it as soon as it is entirely out of the exclusion zones and of other nanocubes. Conversely, if the cube initially does not cut a previously-inserted nanocube nor an exclusion zone, we move it until it touches either one. We insert it at the last position before the intersection occurred.

In a third step, the fraction f ′ of cubes lying inside exclusion zones are inserted. We use a similar packing method: if the cube center is inside an exclusion zone and the cube does not cut a previously-inserted nanocube, it is moved in a ran- dom direction until it touches a nanocube or its center is out of exclusion zones. Conversely, if the cube initially is out of an exclusion zone or intersects an already-inserted cube, we move it until its center is inside an exclusion zone and the cube does not intersect any other cube.

We emphasize that nanoparticles never intersect each other, but, instead, are "packed" together. An example of the generation of a microstructure with ∆ = f ′ = 0 is shown in Fig. As predicted, the volume fraction f of excluding zones has an important effect on the granulometry as shown in Fig. 8 (bottom) for f ′ = 0, a = 1550 nm and ∆ = 775 nm. When a is small, this effect is less (not shown). For the same values of the three parameters f ′ = 0, a = 1550 nm and ∆ = 775 nm, the effect of f on the granulometry is small. A similar strong effect of the diameter a is observed on the granulometry but also, as expected, on the correlation function (Fig. 9). This effect occurres whether at high or low volume fractions f (not shown).

The included volume fraction f ′ and the repulsion distance ∆ have little influence on the correlation (not shown). The former predictably influences the granulometry, whereas the repulsion distance ∆ only marginally changes it (Fig. 10).

Microstruture optimization and representative volume element

We hereafter optimize the microstructure model parameters by minimizing crostructure models whereas C M (r) and G M (s) refer to the known SEM correlation functions and granulometry, resp. The criterion above allows us to optimize on both the correlation function and on the granulometry. Both quantities are comprised between 0 and 1. The weights η 1 > 0 and η 2 > 0 are used to favor one over the other. Hereafter we make the arbitrary choice

η 1 h dr C M (r) -C SEM (r) 2 + η 2 h ds G M (s) -G SEM (s) 2 (4 
η 1 = 1, η 2 = 1 -f 0 ≈ 0.91.
We use the standard gradient descent and Levenberg-Marquardt methods [START_REF] Press | Numerical Recipes Third Edition: The art of scientific computing[END_REF]. The latter has been successfully used for optimizing multiscale microstructure models [START_REF] Jean | A multiscale microstructure model of carbon black distribution in rubber[END_REF]. Numerical optimization is undertaken on 3D microstructures containing 800 × 800 × 200 voxels. Random 2D cuts normal to the third axis, containing 800 × 800 pixels, are used to compute criterion [START_REF] Park | Internal Structure Analysis of Monodispersed Pseudocubic Hematite Particles by Electron Microscopy[END_REF] The granulometry and correlation functions of the optimized microstructure model and of the SEM images are shown in Fig. [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF]. In terms of these two criteria, the optimized model is very close to the SEM images. Finally, as a complementary examination, we compute the representative volume element (RVE) related to the nanoparticules dispersion. Let D 2 (S ) be the variance of the surface fraction of nanoparticles measured over independent 2D domains of area S in the material. For large areas S , the following asymptotic behavior is recovered [START_REF] Matheron | The Theory of Regionalized Variables and its Applications[END_REF]:

D 2 (S ) ∼ f 0 (1 -f 0 )S 0 S , S ≫ S 0 (5) 
where S 0 is the integral range and f 0 ≈ 10% is the surface fraction of nanoparticles (Sec. 2.2). The integral range S 0 is determined by the covariance C(r) [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF]. The quantity D(S ) gives the confidence interval for the estimation of the surface fraction of nanoparticles on N domains of area S [START_REF] Kanit | Apparent and effective physical properties of heterogeneous materials: representativity of samples of two materials from food industry[END_REF]. The absolute error of such estimate is:

ǫ abs = 2D(S ) √ N (6) 
To compute numerically D 2 (S ), we divide one SEM image into n × n non-overlapping squares of area S and compute the surface fraction of nanoparticles over each subdomain. We approximate D 2 (S ) as the variance of the obtained set of surface fractions. The same computation is undertaken along a random 2D cut of our optimized microstructure model. The two curves are represented in Fig. [START_REF] Willot | Microstructure-induced hotspots in the thermal and elastic responses of granular media[END_REF]. Overall, the standard deviation function of our optimized model is close to that of the SEM images, although this quantity is not (explicitly) involved in criterion [START_REF] Park | Internal Structure Analysis of Monodispersed Pseudocubic Hematite Particles by Electron Microscopy[END_REF]. A region of interest S > 1.50 µm 2 is selected. Powerlaw fits on the SEM and optimized models give D 2 (S ) ∼ 3.14 10 -3 S -0.96 and D 2 (S ) ∼ 3.58 10 -3 S -0.97 , respectively, consistently with Eq. ( 5). The former is represented in Fig. 13 (solid black line).

From this fit, we deduce the integral range S 0 ≈ 3.52 10 -2 µm 2 . At the scale of the SEM images (S = 153 µm 2 ) the absolute error in Eq. ( 5) is ǫ abs ≈ 1.1% so that f 0 ≈ 9.4 ± 1.1%.

Conclusion

The spatial dispersion of hematite nanoparticles in a epoxy resin is accurately modeled by a two-scales microstructure made of spherical "exclusion zones" containing few hematite particles. Use of the granulometry of the embedding (epoxy) phase as criterion is crucial to describe the spatial dispersion of particles. The model's parameters are efficiently optimized using either standard gradient method or the Levenberg-Marquardt method.

Parametrized microstructure models are a first step towards designing materials with improved physical properties. 3D microstructure models are conveniently coupled with Fourier numerical methods [START_REF] Willot | Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields[END_REF] for solving PDEs on images of complex materials, without meshing. These tools predict the electric [START_REF] Willot | Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields[END_REF], elastic [START_REF] Willot | Elastic and electrical behavior of some random multiscale highly-contrasted composites[END_REF] or optical [START_REF] Azzimonti | Optical properties of deposit models for paints: fullfields FFT computations and representative volume element[END_REF] responses of composites. Applied to the present work, these methods should allow one to determine how the peculiar multiscale dispersion of nanoparticles affects the material's overall properties. In previous numerical investigations [START_REF] Willot | Elastic and electrical behavior of some random multiscale highly-contrasted composites[END_REF], multiscale dispersions have been shown to strongly influence the physical properties of inclusion-matrix coatings.

Fig. 1 :

 1 Fig. 1: Nanocubes of hematite (bright) in a epoxy resin (dark) (a); same material with scale magnified 10 times (b).

Fig. 2 :

 2 Fig. 2: Segmentation of SEM images (enlargement): original grayscale image (a), noise-filtering and thresholding (b), removing of small inclusions (c).

Fig. 3 :

 3 Fig. 3: Two of the four segmented SEM images, shown at the same scale.

Fig. 4 :

 4 Fig. 4: Symbols: mean over all samples of the correlation functions C(r) of segmented SEM images in the horizontal and vertical directions. Black solid line: mean over the two directions (brown: tangent at r = 0, see text). Inset: correlation function C(r) for r ≤ 62 nm in the horizontal direction, for each sample.

Fig. 5 :

 5 Fig. 5: Cumulative granulometry G(s) of the complementary of SEM images (symbols) as a function of the size s in nanometers. Solid line: average over all 4 samples. Inset: granulometry distribution function dG(s)/ds .

Fig. 6 :Fig. 7 :

 67 Fig. 6: 2D cut of a realization of the two-scale microstructure model (a); same image with exclusion zones shown in yellow (b).

Fig. 8 :

 8 Fig. 8: Effect of the volume fraction f of exclusion zones on the correlation function (a) and granulometry (b) with other parameters fixed.

  [START_REF] Huang | Flower-like porous hematite nanoarchitectures achieved by complexation-mediated oxidation-hydrolysis reaction[END_REF].Exclusion zones are represented in yellow (right), the final microstructure is shown left. Examples of microstructures with ∆ = f ′ = 0, and exclusion zones volume fraction f = 10% are shown in Fig. (7) with small (left) and large (right) exclusion zones diameters a.

Fig. 9 :

 9 Fig. 9: Effect of the diameter a of exclusion zones on the correlation function (a) and granulometry (b) with other parameters fixed.

Fig. 10 :

 10 Fig. 10: Effect of the volume fraction f ′ of hematite in exclusion zones (a) and of the hardcore parameter ∆ (b) on the granulometry, with the other 3 parameters fixed.

Fig. 11 :

 11 Fig. 11: Optimized numerical microstructure (a) and one segmented SEM image sample (b) observed at the same scale. Each image represents a square of size 24.8 µm with resolution 31 nm per pixel. The parameters of the optimized model are f = 25%, a = 1862 nm, f ′ = 20%, ∆ = 620 nm.

Fig. 12 :

 12 Fig. 12: Granulometry of the optimized numerical microstructure and of SEM images. Inset: correlation function.

Fig. 13 :

 13 Fig. 13: Variance D 2 (S ) of the apparent surface fraction of nanoparticles computed over a domain of surface area S : comparison between SEM images and optimized microstructure model. Solid black line: fit of the variance D 2 (S ) for S ≫ S 0 . Black arrow: integral range S 0 .
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