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Abstract. This work considers the Cauchy problem for a second order elliptic operator in a bounded

domain. A new quasi-reversibility approach is introduced for approximating the solution of the ill-
posed Cauchy problem in a regularized manner. The method is based on a well-posed mixed variational
problem on H1

× Hdiv, with the corresponding solution pair converging monotonically to the solution
of the Cauchy problem and the associated flux, if they exist. It is demonstrated that the regularized
problem can be discretized using Lagrange and Raviart–Thomas finite elements. The functionality
of the resulting numerical algorithm is tested via three-dimensional numerical experiments based on
simulated data. Both the Cauchy problem and a related inverse obstacle problem for the Laplacian are

considered.

1. Introduction

We consider the Cauchy problem for a second order elliptic operator in a bounded domain Ω ⊂ R
d,

d ≥ 2. Such problems have been studied extensively (see, e.g., [1, 4, 10, 23]), with the common under-
standing that they are ‘exponentially’ ill-posed. Cauchy problems for elliptic operators are encountered in
many practical applications such as electrocardiography (ECG) [22] and plasma physics [7], and they are
also closely related to the inverse source problems arising from, e.g., electroencephalography (EEG) and
magnetoencephalography (MEG) [24]. In addition, Cauchy problems play an important role in inverse
obstacle problems (cf. [12]), which are studied, e.g., in connection with inclusion detection by electrical
impedance tomography (EIT) when only one pair of boundary current and voltage is used for probing
the examined body [8, 25].

Several methods have been proposed to regularize the Cauchy problem; see, e.g., [2, 3, 5, 6, 15, 27]
and the references therein. Among these approaches, the variants of the quasi-reversibility (QR) method
[29] comprise a technique with some useful properties. The main idea of the original QR method [29] is
to approach the ill-posed second order Cauchy problem by a family of well-posed fourth order problems
depending on a (small) regularization parameter. It is a non-iterative technique which can be applied
numerically using finite elements methods (FEM), and thus it is adaptable for solving the Cauchy problem
in complicated domains. However, the main drawback of the original QR method is the fourth order
nature of the regularizing variational problems: one has to use C1 finite elements, which are difficult to
handle and seldom available in numerical solvers, especially in three dimensions.

The first attempt to get rid of this technical difficulty was introduced in [9], where a QR method
based on a mixed variational regularization of the Cauchy problem was proposed. The method involves
two unknown H1(Ω)-functions, one of which approximates the solution of the Cauchy problem and the
other, loosely speaking, the error in the corresponding right-hand side (cf. (3.3)). In particular, the
second member of the regularized solution does not carry any explicit information on the solution of
the underlying Cauchy problem. (The approach of [9] has also other minor drawbacks as explained in
Section 3 below.)

The purpose of this article is to introduce a new QR method that is based on a mixed variational
formulation on H1(Ω)×Hdiv(Ω). As for the previous mixed QR method in [9], the first member of the
regularized solution approximates the actual solution of the Cauchy problem, but in our case also the
second member provides explicit information on the solution: it gives an estimate for the corresponding
flux. As the regularization parameter tends to zero, the solution of our mixed QR problem converges
monotonically to the solution of the Cauchy problem, if such exists, and diverges otherwise. According
to our knowledge, monotonic convergence has not previously been shown for any QR formulation; our
technique for proving this property can straightforwardly be adapted for the original QR method of
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[29] as well. Moreover, we briefly consider how the regularization parameter of the mixed QR method
should be chosen in the case of noisy data and demonstrate how the method can be discretized by
combining Lagrange and Raviart–Thomas finite elements, which are standard tools supported by many
finite element solvers.

In order to illustrate the functionality of our mixed QR method, we test it numerically in a realistic
three-dimensional setting; according to our knowledge, this is the first implementation of any QR method
in three dimensions. Both the Laplace operator and a constant-coefficient, anisotropic operator of the
divergence form are considered. In addition, we incorporate our method as a part of the level set
algorithm for solving the inverse (Dirichlet) obstacle problem for the Laplace equation introduced in
[12]. According to our numerical studies, the new QR formulation produces acceptable solutions both
for Cauchy problems and for the inverse obstacle problem, even with considerable amounts of noise.

The paper is organized as follows. Section 2 introduces the considered Cauchy problem together with
the related function spaces and terminology. In Section 3, we present the standard formulation of the QR
method from [29] and the mixed one proposed in [9]. We highlight their main qualities and drawbacks.
Section 4 is dedicated to the formulation of the new mixed QR method, its properties and discretization.
Finally, Section 5 presents the numerical experiments and Section 6 lists the concluding remarks.

2. The setting

Let Ω ⊂ R
d be a bounded domain with a Lipschitz boundary (cf. [21]). We denote by ν ∈ L∞(∂Ω,Rd)

the exterior unit normal of ∂Ω, and suppose that ∂Ω is divided into two open subsets of positive measure
Γ and Γc such that ∂Ω = Γ ∪ Γc. Let A = [aij ] : Ω → R

d×d be a real matrix valued function such that
A ∈ W 1,∞(Ω)d×d and

AT = A, ξTAξ ≥ c|ξ|2 for all ξ ∈ R
d

almost everywhere in Ω. The Cauchy problem we are interested in is defined as follows:

Definition 2.1 (Cauchy problem). For (f, gD, gN ) ∈ L2(Ω)×H1/2(Γ)×H−1/2(Γ), find u ∈ H1(Ω) such
that















∇ ·A∇u = f in Ω,

u = gD on Γ,

∂u

∂νA
= gN on Γ.

Here,

H1/2(Γ) =
{

φ|Γ : φ ∈ H1(Ω)
}

and H−1/2(Γ) is defined as the dual of (see, e.g., [19])

H̃1/2(Γ) =
{

φ ∈ L2(Γ) : ∃v ∈ H1(Ω) s.t. v|Γ = φ, v|Γc
= 0

}

.

Moreover,

(1)
∂

∂νA
: v 7→

d
∑

i,j=1

(

aij
∂v

∂xj
νi
)

|Γ
, H1(Ω,∇ ·A∇) → H−1/2(Γ)

is the linear and bounded conormal derivative operator defined on (cf., e.g., [21])

H1(Ω,∇ ·A∇) :=
{

v ∈ H1(Ω) : ∇ ·A∇v ∈ L2(Ω)
}

.

Since Hadamard, it is well-known that the Cauchy problem of Definition 2.1 is severely ill-posed:
although it has at most one solution (see, e.g., [30]), it may have none, and if a solution exists, it does
not depend continuously on the data (f, gD, gN ) in any reasonable topology. Therefore, regularization is
needed to stabilize the problem.

3. Previous quasi-reversibility methods

For simplicity, we focus in this section on the special case that A is the identity matrix, i.e., we consider
the Cauchy problem for the Poisson equation. We will return to the general setting in Section 4, where
the new mixed formulation of the QR method will be introduced.
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3.1. Standard formulation. For the standard formulation of the QR method, we need to make some
extra smoothness assumption on ∂Ω, gD and gN . More precisely, we suppose that ∂Ω is of the class C1,1,
gD ∈ H3/2(Γ) and gN ∈ H1/2(Γ); under this assumption on the regularity of ∂Ω, the trace operation

H2(Ω) ∋ v 7→
(

v,
∂v

∂ν

)

∈ H3/2(Γ)×H1/2(Γ)

is linear, bounded and surjective [21]. The QR method, as introduced in [29], relies on the following
problem:

Definition 3.1 (Standard QR problem). For ε > 0, find u ∈ H2(Ω), with u|Γ = gD and (∂u)/(∂ν)|Γ =

gN , such that for all v ∈ H2
0 (Ω),

(2)

∫

Ω

∆u∆v dx+ ε

∫

Ω

( d
∑

i,j=1

∂2u

∂xi∂xj

∂2v

∂xi∂xj
+∇u · ∇v + uv

)

dx =

∫

Ω

f ∆v dx.

It follows directly from the Lax–Milgram theorem that the standard QR problem has a unique solution.

Proposition 3.1. For any ε > 0, the standard QR problem of Definition 3.1 admits a unique solution
uε ∈ H2(Ω).

Moreover, one can deduce the following convergence result [29, 18]:

Theorem 3.2. Suppose that the Cauchy problem admits a (unique) solution u ∈ H2(Ω). Then, the
solution to the standard QR problem uε converges to u in H2(Ω) as ε tends to zero, and it holds that

‖∆uε − f‖L2(Ω) ≤
√
ε‖u‖H2(Ω).

By nature, the QR method is non-iterative. Moreover, in case the data (gD, gN ) are corrupted by
noise, a method to set the regularization parameter ε > 0 as a function of the amplitude of the noise,
say α, based on the Morozov’s discrepancy principle and the duality in optimization has been developed
in [11]; the solution uε(α) of the QR problem tends to the exact solution of the Cauchy problem when
the amplitude of the noise goes to zero (cf. Section 4.3). Unfortunately, the standard QR formulation of
Definition 3.1 has also two drawbacks, which are linked.

First of all, one needs relatively smooth data to ensure that (2) has a solution. To make matters
worse, the convergence of the approximate solution uε toward the exact solution u has only been proved
if u ∈ H2(Ω), although it is well-known that in some cases u is only in H1(Ω,∆) because the Cauchy
data is a priori known to be H3/2 ×H1/2-smooth only on a subset of ∂Ω.

However, the main issue with the standard QR formulation is arguably related to its discretization: to
obtain an approximate solution of the Cauchy problem, one has to discretize the variational formulation
(2) using, e.g., some FEM. Since (2) is a fourth order problem, it cannot be discretized using standard
C0 finite elements. In order to obtain a conforming discretization of the problem, one has to use C1

finite elements, which are difficult to handle and seldom available in numerical solvers, especially for
three-dimensional problems; see [16] for a description of such elements in the two-dimensional case.
According to our knowledge, a conforming discretization of the variational equation (2) has never been
performed. However, (2) has been successfully discretized using non-conforming finite elements [12],
namely the Fraeijs de Veubeke 1 elements [28], which are simpler than C1 elements, but unfortunately
rarely implemented in numerical solvers as well. It should also be mentioned that the QR problem has
been successfully discretized using difference schemes [29] and splines [17], but these approaches are
typically limited to simple geometries.

To overcome this technical difficulty with the discretization, we will propose a novel QR method based
on a mixed variational formulation. The leading idea is to introduce an additional unknown, which deals
with the second order derivatives, resulting in a lower order problem that can be discretized using
standard finite elements. However, our mixed QR formulation is not the first of its kind, as indicated in
the following section.

3.2. A previous mixed formulation. According to our knowledge, the first (and thus far only) mixed
QR approach has been proposed in [9]. It relies on the following problem, for which the assumptions on
∂Ω, gD and gN are as listed in Section 2.
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Definition 3.3 (Mixed QR problem). For ε, δ > 0, find u ∈ H1(Ω), with u|Γ = gD, and λ ∈ H1(Ω),
with λ|Γc

= 0, such that































ε

∫

Ω

(∇u · ∇v + u v) dx+

∫

Ω

∇λ · ∇v dx = 0 for all v ∈ H1(Ω), v|Γ = 0,

∫

Ω

∇u · ∇µdx−
∫

Ω

λµdx− δ

∫

Ω

(∇λ · ∇µ+ λµ) dx

=

∫

Ω

f µ dx+ 〈gN , µ〉H−1/2(Γ),H̃1/2(Γ) for all µ ∈ H1(Ω), µ|Γc
= 0.

The following theorem follows directly from the material in [9].

Theorem 3.4. For all ε, δ > 0, the mixed QR problem of Definition 3.3 has a unique solution (uε,δ, λε,δ)
in H1(Ω)×H1(Ω). Furthermore, if δ > 0 is defined as a function of ε > 0 so that

lim
ε→0

ε

δ(ε)
= 0

and if the Cauchy problem has a (unique) solution u ∈ H1(Ω), then

(uε,δ(ε), λε,δ(ε))
ε→0−−−−−→

H1×H1
(u, 0).

Obviously, this mixed formulation of the QR method carries some properties that we were looking for.
First of all, it does not require any additional smoothness assumptions on the boundary, the Cauchy data
or the exact solution of the Cauchy problem. Secondly, the variational form appearing in Definition 3.3
can be discretized using standard C0 Lagrange finite elements (cf. [9]), as the solution pair lies in H1(Ω)2.

Unfortunately, this formulation has also some mild flaws. The first one concerns the additional
unknown λε, which can in a way be considered known: it can be interpreted as an estimate for ∆u− f ,
with u being the solution of the original Cauchy problem (assuming that it exists). In other words, λε

approximates the zero function, and does not provide any additional information on the Cauchy problem
in hand.

Arguably, the most important drawback of the above mixed formulation of the QR method is that
there currently exists no method for choosing the regularization parameters (ε, δ) in case of noisy data.
In particular, the method developed in [11] for the standard QR formulation cannot be used for this
mixed formulation. As the Cauchy problem is severely ill-posed and its solution thus very sensitive to
noise, this can be considered a major issue.

Due to the above described difficulties with the mixed QR problem of Definition 3.3, we propose in the
following section a new mixed QR formulation. Our aim is to circumvent the flaws of the original mixed
QR approach without loosing its good qualities (no additional smoothness assumption, discretization
with standard finite elements).

4. A new Hdiv-based mixed quasi-reversibility method

Recall the original Cauchy problem of Definition 2.1 and assume for now that it has a solution. If
we define p := A∇u, it is clear that p ∈ L2(Ω)d. Furthermore, as ∇ · A∇u = f belongs to L2(Ω), we
actually have p ∈ Hdiv(Ω), with the standard definition

Hdiv(Ω) :=
{

q ∈ L2(Ω)d : ∇ · q ∈ L2(Ω)
}

.

Hence, we can rewrite the Cauchy problem in the following, equivalent form:

Definition 4.1 (Reformulated Cauchy problem). For (f, gD, gN ) ∈ L2(Ω) ×H1/2(Γ) ×H−1/2(Γ), find
(u,p) ∈ H1(Ω)×Hdiv(Ω) such that

(3)















A∇u = p in Ω,

∇ · p = f in Ω,

u = gD on Γ,

p · ν = gN on Γ.

The leading idea behind our new mixed QR method is to regularize the reformulated Cauchy problem
of Definition 4.1.
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4.1. Formulation and basic properties. To begin with, let us introduce a few auxiliary sets and
spaces:

V :=
{

v ∈ H1(Ω) : v|Γ = gD
}

, V0 :=
{

v ∈ H1(Ω) : v|Γ = 0
}

,

D :=
{

q ∈ Hdiv(Ω) : (q · ν)|Γ = gN
}

, D0 :=
{

q ∈ Hdiv(Ω) : (q · ν)|Γ = 0
}

,

which are well defined due to trace theorems in H1(Ω) and Hdiv(Ω) (cf., e.g., [19, 21]). We consider the
following QR problem:

Definition 4.2 (New mixed QR problem). For ε > 0, find (u,p) ∈ V ×D such that for all (v,q) ∈ V0×D0

(4)














∫

Ω

(A∇u− p) ·A∇v dx+ ε

∫

Ω

(∇u · ∇v + u v) dx = 0,

−
∫

Ω

(A∇u− p) · q dx+

∫

Ω

(∇ · p)(∇ · q) dx+ ε

∫

Ω

(

(∇ · p)(∇ · q) + p · q
)

dx =

∫

Ω

f(∇ · q) dx.

It follows relatively straightforwardly from the Lax–Milgram theorem that the above mixed variational
problem has a unique solution.

Proposition 4.1. For all ε > 0, the new mixed QR problem of Definition 4.2 has a unique solution
(uε,pε) ∈ V ×D.

Proof. Since the mappings v ∈ H1(Ω) 7→ v|Γ ∈ H1/2(Γ) and q ∈ Hdiv(Ω) 7→ (q · ν)|Γ ∈ H−1/2(Γ) are
linear, continuous and surjective [19, 21], they have continuous right inverses. Hence, for all (gD, gN ) ∈
H1/2(Γ)×H−1/2(Γ), there exists (uD,pN ) ∈ V ×D such that

(5) ‖uD‖H1(Ω) ≤ c‖gD‖H1/2(Γ), ‖pN‖Hdiv(Ω) ≤ c‖gN‖H−1/2(Γ),

where c > 0 does not depend on the data (gD, gN ). In consequence, by adding the two equations in (4),
we can rewrite the new mixed QR problem in the following equivalent form: find (ũ, p̃) ∈ V0 ×D0 that
satisfies

(6) aε
(

(ũ, p̃), (v,q)
)

= Lε(v,q)

for all (v,q) ∈ V0 ×D0, with

aε
(

(ũ, p̃), (v,q)
)

:=

∫

Ω

(A∇ũ− p̃)(A∇v − q) dx+

∫

Ω

(∇ · p̃)(∇ · q) dx

+ ε

∫

Ω

(∇ũ · ∇v + ũ v) dx+ ε

∫

Ω

(

(∇ · p̃)(∇ · q) + p̃ · q
)

dx

and

Lε(v,q) :=

∫

Ω

f(∇ · q) dx− aε
(

(uD,pN ), (v,q)
)

.

The product space V0 ×D0, endowed with the scalar product

(

(u,p), (v,q)
)

H1×Hdiv

:=

∫

Ω

(∇u · ∇v + u v) dx+

∫

Ω

(

(∇ · p)(∇ · q) + p · q
)

dx,

is a Hilbert space. Furthermore, aε and L are obviously bilinear and linear functionals on (V0 × D0)
2

and V0 ×D0, respectively, and for all (u,p) ∈ V0 ×D0 and (v,q) ∈ V0 ×D0 it holds that

aε
(

(v,q), (v,q)
)

≥ ε‖(v,q)‖2H1×Hdiv
,

∣

∣aε
(

(u,p), (v,q)
)∣

∣ ≤
(

1 + 2‖A‖∞ + ‖A‖2∞ + ε
)

‖(u,p)‖H1×Hdiv
‖(v,q)‖H1×Hdiv

,

|Lε(v,q)| ≤ C‖(v,q)‖H1×Hdiv
,

where
C = ‖f‖L2(Ω) + c

(

1 + 2‖A‖∞ + ‖A‖2∞ + ε
)(

‖gD‖H1/2(Γ) + ‖gN‖H−1/2(Γ)

)

.

Hence, an application of the Lax-Milgram theorem [13] proves the unique existence of a solution (ũε, p̃ε)
to (6), leading in turn to the existence of a unique solution

(7) (uε,pε) = (ũε + uD, p̃ε + pN ) ∈ V ×D

to (4). �

Our main theorem states that (uε,pε) converges to the unique solution of the original Cauchy problem
if such exists, and diverges otherwise.
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Theorem 4.3. If the Cauchy problem of Definition 2.1 has a unique solution u ∈ H1(Ω), then (uε,pε)
converges to (u,A∇u) in H1(Ω) ×Hdiv(Ω) as ε > 0 tends to 0. If the Cauchy problem has no solution,
then ‖(uε,pε)‖H1×Hdiv

→ ∞ as ε > 0 goes to 0.

The mixed formulation (4) can thus be considered as a regularized version of the ill-posed Cauchy
problem. Therefore, by solving the mixed QR problem, we obtain an approximation of the solution to
the Cauchy problem, if such exists. Note that the additional unknown pε is an estimate of A∇u, and
hence it provides additional information on the solution u.

Remark 4.4. The new mixed QR method can also be viewed as a compatibility test for the data
(f, gD, gN ). Indeed, if one wants to know if there exists a solution to the Cauchy problem, one can
solve (4) for various ε > 0 and consider the behavior of the function R+ ∋ ε 7→ ‖(uε,pε)‖H1×Hdiv

when
ε tends to zero. If this function blows up, the Cauchy problem has no solution. However, it is probably
difficult to use this criterion in practice — especially with noisy data —, as the blow-up may be very
slow.

To prove Theorem 4.3, we divide it into two propositions, because the proofs of the two cases require
slightly different arguments.

Proposition 4.2. Suppose that the Cauchy problem of Definition 2.1 has a (unique) solution u ∈ H1(Ω).
Then,

lim
ε→0

‖uε − u‖H1(Ω) = 0, lim
ε→0

‖pε −A∇u‖Hdiv(Ω) = 0,

and the estimates
(

‖A∇uε − pε‖2L2(Ω) + ‖∇ · pε − f‖2L2(Ω)

)1/2

≤ √
ε ‖(u,A∇u)‖H1×Hdiv

hold.

Proof. Because u is the solution of the Cauchy problem, we know that u|Γ = gD, ν · A∇u|Γ = gN and
A∇u ∈ Hdiv(Ω). Hence, choosing v = uε − u ∈ V0 and q = pε −A∇u ∈ D0 in (4) leads to



































∫

Ω

(A∇uε − pε) · (A∇uε −A∇u) dx+ ε

∫

Ω

(

∇uε · ∇(uε − u) + uε (uε − u)
)

dx = 0,

−
∫

Ω

(A∇uε − pε) · (pε −A∇u) dx+

∫

Ω

(∇ · pε)
(

∇ · (pε −A∇u)
)

dx

+ ε

∫

Ω

(

(∇ · pε)(∇ · (pε −A∇u)) + pε · (pε −A∇u)
)

dx =

∫

Ω

f ∇ · (pε −A∇u) dx.

Summing these equalities and using the fact that ∇ ·A∇u = f , it follows that

(8) ‖A∇uε − pε‖2L2(Ω) + ‖∇ · pε − f‖2L2(Ω) + ε
(

(uε,pε), (uε − u,pε −A∇u)
)

H1×Hdiv

= 0.

Therefore, we have

(9)
(

(uε,pε), (uε − u,pε −A∇u)
)

H1×Hdiv

≤ 0,

which, in particular, means that

(10) ‖(uε,pε)‖H1×Hdiv
≤ ‖(u,A∇u)‖H1×Hdiv

.

Equation (9) also leads to

(11) ‖(uε − u,pε −A∇u)‖2H1×Hdiv
≤ −

(

(u,A∇u), (uε − u,pε −A∇u)
)

H1×Hdiv

,

which in turn implies that

(12) ‖(uε − u,pε −A∇u)‖H1×Hdiv
≤ ‖(u,A∇u)‖H1×Hdiv

.

Finally, by applying (10) and (12) to (8), we deduce the needed convergence estimates:

‖A∇uε − pε‖2L2(Ω) + ‖∇ · pε − f‖2L2(Ω) ≤ ε
∣

∣

(

(uε,pε), (uε − u,pε −A∇u)
)

H1×Hdiv

∣

∣

≤ ε‖(uε,pε)‖H1×Hdiv
‖(uε − u,pε −A∇u)‖H1×Hdiv

≤ ε‖(u,A∇u)‖2H1×Hdiv
.(13)
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According to (10), the family of solutions (uε,pε) is bounded in H1(Ω)×Hdiv(Ω), and thus there exists
a sequence of real positive numbers (εn)n∈N converging to zero such that the corresponding solutions of
(4), i.e., (un,pn) := (uεn ,pεn), weakly converge to some (w, r) in H1(Ω)×Hdiv(Ω). Since the operations

H1(Ω)×Hdiv(Ω) ∋ (v,q) 7→ A∇v − q ∈ L2(Ω)d, Hdiv(Ω) ∋ q 7→ ∇ · q ∈ L2(Ω),

H1(Ω) ∋ v 7→ v|Γ ∈ H1/2(Γ), Hdiv(Ω) ∋ q 7→ (q · ν)|Γ ∈ H−1/2(Γ)

are linear and bounded, they are also weakly continuous. In consequence, by taking the weak limit of
(un,pn) and employing (13) with ε = εn, we deduce that (w, r) satisfies



















A∇w = r in Ω,

∇ · r = f in Ω,

w = gD on Γ,

q · ν = gN on Γ,

which means that (w, r) is the solution of (3), i.e., (w, r) = (u,A∇u). Hence, the standard argument ad
absurdum allows us to conclude that (uε,pε) weakly converges to (u,A∇u) in H1(Ω)×Hdiv(Ω) as ε > 0
goes to zero. Due to (11), weak convergence implies strong convergence, which completes the proof. �

Proposition 4.3. Suppose that the Cauchy problem of Definition 2.1 has no solution. Then,

lim
ε→0

‖(uε,pε)‖H1×Hdiv
= ∞.

Proof. Assume that ‖(uε,pε)‖ ≤ C, for some C > 0 independent of ε > 0. Then, there exists a
sequence (εn)n∈N of positive real numbers converging to 0 and (w, r) ∈ H1(Ω) × Hdiv(Ω) such that
(un,pn) := (uεn ,pεn) weakly converges to (w, r) as n goes to infinity. Defining ω = A∇w − r ∈ L2(Ω)d

and ξ = ∇ · r− f ∈ L2(Ω), and taking the limit of (4), with ε = εn and (u,p) = (un,pn), as n goes to
infinity, it follows that

(14)















∫

Ω

ω ·A∇v dx = 0 for all v ∈ V0,

−
∫

Ω

ω · q dx+

∫

Ω

ξ(∇ · q) dx = 0 for all q ∈ D0.

As C∞
0 (Ω)d ⊂ D0, the second equation of (14) means, in particular, that ∇ξ = −ω ∈ L2(Ω)d in the

sense of distribution, and thus ξ ∈ H1(Ω). In a similar manner, the first equation then implies that
∇ · A∇ξ = 0 in Ω, as A is symmetric by assumption and C∞

0 (Ω) ⊂ V0. We are therefore allowed to use
the (generalized) Green’s formula [31]

∫

Ω

(

(∇ ·A∇ξ)v +A∇ξ · ∇v
)

dx = 〈A∇ξ · ν, v〉H−1/2(∂Ω),H1/2(∂Ω) for all v ∈ H1(Ω).

Together with the first part of (14), this leads to

〈A∇ξ · ν, v〉H−1/2(Γc),H̃1/2(Γc)
= 0 for all v ∈ V0,

i.e., A∇ξ · ν = 0 on Γc. By the Green’s formula, we also have
∫

Ω

(

(∇ · q) ξ + q · ∇ξ
)

dx = 〈q · ν, ξ〉H−1/2(∂Ω),H1/2(∂Ω)

for all q ∈ Hdiv(Ω). Consequently, the second equation of (14) and the established connection between
ξ and ω indicate that

〈q · ν, ξ〉H−1/2(∂Ω),H1/2(∂Ω) = 0 for all q ∈ D0,

which is just a more complicated way of writing ξ = 0 on Γc.
We have altogether concluded that ξ ∈ H1(Ω) satisfies











∇ ·A∇ξ = 0 in Ω,

ξ = 0 on Γc,

A∇ξ · ν = 0 on Γc,

and thus ξ must vanish by the unique solvability of this Cauchy problem. By the construction, we thus
have ∇ · r = f and A∇w = r in Ω. Using the weak continuity of the trace operators H1(Ω) ∋ v 7→ v|Γ ∈
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H1/2(Γ) and Hdiv(Ω) ∋ q 7→ (q · ν)|Γ ∈ H−1/2(Γ), it also follows that
{

w = lim
n→∞

un = gD on Γ,

r · ν = limn→∞ pn · ν = gN on Γ.

In other words, (w, r) is a solution of the reformulated Cauchy problem (3), which is a contradiction. �

4.2. Monotonic convergence. In this section, we are interested in the following question: Assume
that the original Cauchy problem of Definition 2.1 has a solution u and suppose (a bit unrealistically)
that we have access to its noiseless Cauchy data. Consider two possible values for the regularization
parameter ε1 and ε2, with ε1 < ε2. Which parameter should we use in the new mixed QR method of
Definition 4.2? Indeed, even though we know that uε tends to u and pε to A∇u as ε goes to zero, we have
not yet provided any result stating that the convergence is monotonic. We will tackle this imperfection
and demonstrate that the function R+ ∋ ε 7→ ‖(u− uε, A∇u− pε)‖H1×Hdiv

is strictly increasing. In the
rest of this section, we continue to implicitly assume that the original Cauchy problem has a (unique)
solution u ∈ H1(Ω).

4.2.1. Smoothness of the map ε 7→ (uε,pε). Let us define an auxiliary function

F : ε 7→ (uε,pε), R+ → H1(Ω)×Hdiv(Ω)

where (uε,pε) is the unique solution of (4). We will demonstrate that F is smooth, starting with
continuity.

Proposition 4.4. It holds that F ∈ C0(R+, H
1(Ω)×Hdiv(Ω)).

Proof. Let ε ∈ R+ and h ∈ R be such that also ε+ h ∈ R+. Due to (6) and (7), we have
{

aε+h

(

(uε+h,pε+h), (v,q)
)

= aε
(

(uε+h,pε+h), (v,q)
)

+ h
(

(uε+h,pε+h), (v,q)
)

H1×Hdiv

= (f,∇ · q)L2 ,

aε
(

(uε,pε), (v,q)
)

= (f,∇ · q)L2

for all v ∈ V0 and q ∈ D0. Choosing v = uε+h − uε, q = pε+h − pε, and subtracting the two equalities,
it follows that

‖A∇(uε+h − uε)− (pε+h − pε)‖2L2 + ‖∇ · (pε+h − pε)‖2L2 + ε ‖uε+h − uε,pε+h − pε‖2H1×Hdiv

= −h
(

(uε+h,pε+h), (uε+h − uε,pε+h − pε)
)

H1×Hdiv

.

Omitting the first two terms on the left-hand side and applying the Cauchy–Schwarz inequality, we have

(15) ‖(uε+h − uε,pε+h − pε)‖H1×Hdiv
≤ h

ε
‖(uε+h,pε+h)‖H1×Hdiv

≤ h

ε
‖(u,A∇u)‖H1×Hdiv

,

where the latter inequality follows from (10). �

Remark 4.5. Since (uε,pε) converges to (u,A∇u) as ε goes to zero, we can extend F to be a continuous
function on R+ ∪ {0} by setting F (0) = (u,A∇u).

Let us then consider the following problem: For ε > 0, find (u,p) ∈ V0 ×D0 such that

(16) aε
(

(u,p), (v,q)
)

= −
(

(uε,pε), (v,q)
)

H1×Hdiv

for all (v,q) ∈ V0 ×D0.

Proposition 4.5. The problem (16) has a unique solution (u1
ε,p

1
ε) ∈ V0 ×D0 that satisfies

(17)
∥

∥(u1
ε,p

1
ε)
∥

∥

H1×Hdiv

≤ 1

ε
‖(u,A∇u)‖H1×Hdiv

.

Proof. The result follows straightforwardly from the Lax–Milgram theorem and the estimate (10). �

Proposition 4.6. It holds that F ∈ C1(R+, H
1(Ω)×Hdiv(Ω)), with the corresponding derivative defined

via F ′(ε) = (u1
ε,p

1
ε), where (u1

ε,p
1
ε) ∈ V0 ×D0 is the unique solution of (16).

Proof. For all ε > 0, h ∈ R such that ε+ h > 0, and (v,q) ∈ V0 ×D0, we have

aε+h

(

(uε+h,pε+h), (v,q)
)

= (f,∇ · q)L2 ,

−aε
(

(uε,pε), (v,q)
)

= −(f,∇ · q)L2 ,

−h aε
(

(u1
ε,p

1
ε), (v,q)

)

= h
(

(uε,pε), (v,q)
)

H1×Hdiv

.
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Choosing v = vε,h := uε+h − uε − hu1
ε ∈ V0 and q = qε,h := pε+h − pε − hp1

ε ∈ D0, and summing the
three equalities, one obtains that

‖A∇vε,h−qε,h‖2L2+‖∇·qε,h‖2L2+ε‖(vε,h,qε,h)‖2H1×Hdiv
= −h

(

(uε+h−uε,pε+h−pε), (vε,h,qε,h)
)

H1×Hdiv

,

and thus

1

|h|
∥

∥(uε+h − uε − hu1
ε,pε+h − pε − hp1

ε)
∥

∥

H1×Hdiv

≤ 1

ε
‖(uε+h − uε,pε+h − pε)‖H1×Hdiv

h→0−−−→ 0.

It remains to be shown that the derivative ε 7→ (u1
ε,p

1
ε) is continuous as a map from R+ to H1(Ω)×

Hdiv(Ω). For all (v,q) ∈ V0 ×D0, it holds that

aε+h

(

(u1
ε+h,p

1
ε+h), (v,q)

)

= −
(

(uε+h,pε+h), (v,q)
)

H1×Hdiv

aε
(

(u1
ε,p

1
ε), (v,q)

)

= −
(

(uε,pε), (v,q)
)

H1×Hdiv

.

Therefore, choosing v = v1ε,h := u1
ε+h − u1

ε ∈ V0, q = q1
ε,h := p1

ε+h − p1
ε ∈ D0, and subtracting the two

equalities, we obtain

aε
(

(v1ε,h,q
1
ε,h), (v

1
ε,h,q

1
ε,h)

)

= −
(

(uε+h − uε + hu1
ε+h,pε+h − pε + hp1

ε+h), (v
1
ε,h,q

1
ε,h)

)

H1×Hdiv

,

meaning, in particular, that

ε
∥

∥(v1ε,h,q
1
ε,h)

∥

∥

H1×Hdiv

≤ ‖(uε+h − uε,pε+h − pε)‖H1×Hdiv
+ h

∥

∥(u1
ε+h,p

1
ε+h)

∥

∥

H1×Hdiv

.

In consequence, the bounds (15) and (17) provide the estimate

∥

∥(v1ε,h,q
1
ε,h)

∥

∥

H1×Hdiv

≤ 2h

ε2
‖(u,A∇u)‖H1×Hdiv

,

which completes the proof. �

For ε > 0, we now define a sequence of function pairs (um
ε ,pm

ε ) ∈ H1(Ω)×Hdiv(Ω), m ∈ N0 := N∪{0},
recursively:

• Set (u0
ε,p

0
ε) = (uε,pε).

• For m ∈ N0, define (um+1
ε ,pm+1

ε ) to be the unique element of V0 ×D0 that satisfies

(18) aε
(

(um+1
ε ,pm+1

ε ), (v,q)
)

= −(m+ 1)
(

(um
ε ,pm

ε ), (v,q)
)

H1×Hdiv

for all (v,q) ∈ V0 ×D0.

As in the case of (16), the fact that the sequence (um
ε ,pm

ε ) is well defined follows from a simple
application of the Lax–Milgram theorem, which also produces the estimate

∥

∥(um
ε ,pm

ε )
∥

∥ ≤ m!

εm
‖(u,A∇u)‖H1×Hdiv

as a recursive by-product. In particular, it turns out that the sequence (um
ε ,pm

ε ), m ∈ N0, defines the
derivatives of F .

Theorem 4.6. It holds that F ∈ C∞(R+, H
1(Ω) ×Hdiv(Ω)), and for all m ∈ N, F (m)(ε) = (um

ε ,pm
ε ),

where (um
ε ,pm

ε ) ∈ V0 ×D0 is the (recursively defined) unique solution of (18).

Proof. The claim follows from induction and similar arguments as those in the proof of Proposition 4.6.
�

4.2.2. Proof of monotonic convergence. To begin with, note that the unique solvability of (4) and the
linear dependence of (um+1

ε ,pm+1
ε ) on (um

ε ,pm
ε ), m ∈ N0, provide us with the following lemma.

Lemma 4.7. Suppose that the (compatible) data of the Cauchy problem verifies (f, gD, gN ) 6= (0, 0, 0).
Then (um

ε ,pm
ε ) 6= (0,0) for all m ∈ N and ε > 0.

Now, we are ready to formulate and prove the main result of this section.

Theorem 4.8. The function R+ ∋ ε 7→ ‖(uε − u,pε −A∇u)‖H1×Hdiv
is strictly increasing.
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Proof. Obviously, it is sufficient to prove that g : R+ ∋ ε 7→ 1
2‖(uε − u,pε − A∇u)‖2H1×Hdiv

is strictly
increasing.

A simple computation shows that

g′(ε) =
(

(uε − u,pε −A∇u), (u1
ε,p

1
ε)
)

H1×Hdiv

and

g′′(ε) =
(

(uε − u,pε −A∇u), (u2
ε,p

2
ε)
)

H1×Hdiv

+
∥

∥(u1
ε,p

1
ε)
∥

∥

2

H1×Hdiv

.

Because (u2
ε,p

2
ε) solves (18) with m = 1, and (uε − u,pε −A∇u) ∈ V0 ×D0, we have

ε
(

(uε − u,pε −A∇u), (u2
ε,p

2
ε)
)

H1×Hdiv

=− 2
(

(u1
ε,p

1
ε), (uε − u,pε −A∇u)

)

H1×Hdiv

− (A∇u2
ε − p2

ε, A∇uε − pε)L2 − (∇ · p2
ε,∇ · pε − f)L2 .

Since (uε,pε) solves (4) and (u2
ε,p

2
ε) ∈ V0 ×D0, we can further deduce that

ε ((uε − u,pε −A∇u), (u2
ε,p

2
ε))H1×Hdiv

= −2 g′(ε) + ε
(

(u2
ε,p

2
ε), (uε,pε)

)

H1×Hdiv

.

Altogether, we have thus far obtained that

ε g′′(ε) + 2 g′(ε) = ε
∥

∥(u1
ε,p

1
ε)
∥

∥

2

H1×Hdiv

+ ε
(

(u2
ε,p

2
ε), (uε,pε)

)

H1×Hdiv

.

Now, utilizing the fact that (u1
ε,p

1
ε) is the solution of (18) with m = 0, it follows that

(

(u2
ε,p

2
ε), (uε,pε)

)

H1×Hdiv

= −aε
(

(u1
ε,p

1
ε), (u

2
ε,p

2
ε)
)

.

Since (u2
ε,p

2
ε) is in turn the solution of problem (18) with m = 1, we obtain

(

(u2
ε,p

2
ε), (uε,pε)

)

H1×Hdiv

= 2
∥

∥(u1
ε,p

1
ε)
∥

∥

2

H1×Hdiv

.

In consequence,
[

ε2g′(ε)
]′
= ε2 g′′(ε) + 2ε g′(ε) = 3ε2

∥

∥(u1
ε,p

1
ε)
∥

∥

2

H1×Hdiv

.

Because (u1
ε,p

1
ε) 6= (0,0), it holds that

[

ε2g′(ε)
]′

> 0, i.e., ε2g′(ε) is a strictly increasing function.
Moreover,

|ε2g′(ε)| = ε2
∣

∣

(

(uε − u,pε −A∇u), (u1
ε,p

1
ε)
)

H1×Hdiv

∣

∣ ,

and thus the Cauchy–Schwarz inequality and (17) imply that

|ε2g′(ε)| ≤ ε‖(uε − u,pε −A∇u)‖H1×Hdiv
‖(u,A∇u)‖H1×Hdiv

ε→0−−−→ 0.

Hence, we have ε2g′(ε) > 0 for all ε > 0, indicating that also g′(ε) > 0. This completes the proof. �

4.3. Noisy data. In this section, we focus on the important case of noisy data. Throughout this
section it is assumed that the (reformulated) Cauchy problem of Definition 4.1 has a unique solution
(u,p) ∈ H1(Ω) × Hdiv(Ω), but one has only access to the noisy data fδ ∈ L2(Ω), gδD ∈ H1/2(Γ) and

gδN ∈ H−1/2(Γ) that satisfy

‖fδ − f‖L2(Ω) ≤ δ, ‖gδD − gD‖H1/2(Γ) ≤ δ, ‖gδN − gN‖H−1/2(Γ) ≤ δ

for some δ > 0. Let us denote by (uδ
ε,p

δ
ε) the solution of the mixed QR problem (4), when the exact

data (f, gD, gN ) are replaced by their noisy counterparts (fδ, gδD, gδN ); the pair (uε,pε) still denotes the
mixed QR solution for the noiseless data. The aim is to answer the following question: For a certain
amplitude of noise δ > 0, how should the regularization parameter ε := ε(δ) be chosen in order to assure
the convergence of (uδ

ε(δ),p
δ
ε(δ)) to (u,p) when the amplitude of noise goes to zero.

Proposition 4.7. It holds that

(19)
∥

∥(uδ
ε − u,pδ

ε − p)
∥

∥

H1×Hdiv

≤ C(ε)
δ√
ε
+ C ′δ + ‖(uε − u,pε − p)‖H1×Hdiv

,

where

C(ε) := 1 + C ′
√

1 + 2‖A‖∞ + ‖A‖2∞ + ε

and C ′ > 0 depends only on the geometry of Ω.
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Proof. Let (uD,pN ) and (ũε, p̃ε) be as in the proof of Proposition 4.1 and let us introduce a similar
decomposition for the mixed QR solution corresponding to the noisy data:

(20) uδ
ε = ũδ

ε + uδ
D, pδ

ε = p̃δ
ε + pδ

N ,

with

(21) ‖uδ
D‖H1(Ω) ≤ c‖gδD‖H1/2(Γ), ‖pδ

N‖Hdiv(Ω) ≤ c‖gδN‖H−1/2(Γ)

and (ũδ
ε, p̃

δ
ε) ∈ V0 ×D0 satisfying

aε
(

(ũδ
ε, p̃

δ
ε), (v,q)

)

=

∫

Ω

fδ(∇ · q) dx− aε
(

(uδ
D,pδ

N ), (v,q)
)

for all (v,q) ∈ V0 ×D0. By subtracting (6), it follows that

(22) aε
(

(ũδ
ε − ũε, p̃

δ
ε − p̃ε), (v,q)

)

=

∫

Ω

(fδ − f)(∇ · q) dx− aε
(

(uδ
D − uD,pδ

N − pN ), (v,q)
)

.

Choosing (v,q) = (ũδ
ε − ũε, p̃

δ
ε − p̃ε) in (22), we obtain

∥

∥(ũδ
ε − ũε, p̃

δ
ε − p̃ε)

∥

∥

2

ε
=

∫

Ω

(fδ − f)(∇ · (p̃δ
ε − p̃ε)) dx− aε

(

(uδ
D − uD,pδ

N − pN ), (ũδ
ε − ũε, p̃

δ
ε − p̃ε)

)

,

where ‖(·, ·)‖ε denotes the ε-dependent norm on H1(Ω)×Hdiv(Ω) induced by the bilinear form aε. Due
to the definition of aε and the assumption on the noise level, it obviously holds that

∫

Ω

(fδ − f)(∇ · (p̃δ
ε − p̃ε)) dx ≤

∥

∥fδ − f
∥

∥

L2(Ω)

∥

∥∇ · (p̃δ
ε − p̃ε)

∥

∥

L2(Ω)
≤ δ

∥

∥(ũδ
ε − ũε, p̃

δ
ε − p̃ε)

∥

∥

ε
,

and
∥

∥(uδ
D − uD,pδ

N − pN )
∥

∥

2

ε
≤ (1 + 2‖A‖∞ + ‖A‖2∞ + ε)

∥

∥(uδ
D − uD,pδ

N − pN )
∥

∥

2

H1×Hdiv

≤ 2 c2 (1 + 2‖A‖∞ + ‖A‖2∞ + ε) δ2,(23)

where the last step follows from the fact that an estimates of the type (5) and (21) naturally holds also
for the differences uδ

D−uD and pδ
N −pN by virtue of the linearity of the right inverses for the associated

trace maps.
Together with the Cauchy–Schwarz inequality, the previous three formulas induce the estimate

∥

∥(ũδ
ε − ũε, p̃

δ
ε − p̃ε)

∥

∥

2

ε
≤ δ

(

1 +
√
2 c

√

1 + 2‖A‖∞ + ‖A‖2∞ + ε
)

∥

∥(ũδ
ε − ũε, p̃

δ
ε − p̃ε)

∥

∥

ε
,

which in turn leads to
√
ε
∥

∥(ũδ
ε − ũε, p̃

δ
ε − p̃ε)

∥

∥

H1×Hdiv

≤
∥

∥(ũδ
ε − ũε, p̃

δ
ε − p̃ε)

∥

∥

ε
≤ δ

(

1 +
√
2 c

√

1 + 2‖A‖∞ + ‖A‖2∞ + ε
)

.

Combining this with (20) and the corresponding decomposition for (uε,pε), we finally have
∥

∥(uδ
ε − uε,p

δ
ε − pε)

∥

∥

H1×Hdiv

≤
∥

∥(ũδ
ε − ũε, p̃

δ
ε − p̃ε)

∥

∥

H1×Hdiv

+
∥

∥(uδ
D − uD,pδ

N − pN )
∥

∥

H1×Hdiv

≤ δ√
ε

(

1 +
√
2 c

√

1 + 2‖A‖∞ + ‖A‖2∞ + ε
)

+
√
2 c δ,

where the second term on the right-hand side of the first inequality is estimated as in (23). The claim
now follows from the triangle inequality. �

The following corollary is an immediate consequence of Proposition 4.7 and Theorem 4.3.

Corollary 4.9. For any choice of the regularization parameter ε = ε(δ) such that

(24) lim
δ→0

ε(δ) = lim
δ→0

δ2

ε(δ)
= 0,

it holds that
(

uδ
ε(δ),p

δ
ε(δ)

)

→ (u,p) in H1(Ω)×Hdiv(Ω)

as δ goes to zero.
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According to Corollary 4.9, any choice of ε = ε(δ) that satisfies (24) is admissible. For example, one
could set ε(δ) := δα with any α ∈ (0, 2). However, for a fixed noise level, there naturally exist choices
of regularization parameter that are better (in some sense) than others. The task is then to choose
the optimal parameter — and also the considered optimality criterion. In the following, we will briefly
describe two methods that could be used to set the regularization parameter.

In [15], a method based on a balancing principle is proposed to choose the regularization parameter
for the standard QR method described in Section 3.1. If translated to the setting of the new mixed
QR method and Proposition 4.7, the idea of [15] can be described as follows: The right-hand side
of the error estimate (19) is composed of two terms, namely f1(ε) = C(ε) δ/

√
ε + C ′δ and f2(ε) =

‖(uε − u,pε − p)‖H1×Hdiv
, which have opposite behaviors with respect to ε. Indeed,

lim
ε→0

f1(ε) = ∞, lim
ε→∞

f1(ε) = 2C ′δ

and

lim
ε→0

f2(ε) = 0, lim
ε→∞

f2(ε) = ‖(u,p)‖H1×Hdiv
,

where the first inequality follows from Proposition 4.7 and the second one straightforwardly from the
estimates in the proof of Proposition 4.1. Therefore, if δ is sufficiently small, it is clear that there exists
a unique εopt > 0 such that f1(εopt) = f2(εopt) by virtue of Theorem 4.8 and the monotonicity of f1.
In a sense, such a parameter choice balances the error due to the noise in the data and the discrepancy
between the exact and the regularized solution for the noiseless case. Unfortunately, εopt cannot be
determined directly since f2 is unknown. The authors of [15] use Carleman inequalities to obtain an
estimate for f2 inside the domain, i.e., far from the complementary boundary Γc where the boundary
conditions are unknown. They are then in position to propose an iterative algorithm that produces
ε̃opt ≈ εopt, even without knowing explicitly the constants appearing in the estimate (19). A close look
at [15] shows that the balancing principle could be adapted to our mixed formulation, using in particular
the present result of monotonic convergence (theorem 4.8).

Another technique for finding an optimal regularization parameter is proposed in [11]. The method is
based on the well-knownMorozov discrepancy principle, which states that εopt > 0 should be the (largest)
regularization parameter for which the discrepancy in the data fit equals the noise level. The authors
of [11] propose an algorithm based on duality in optimization for computing such εopt exactly (up to
numerical errors). The method has been tested successfully with the standard QR formulation. However,
a closer look at [11] demonstrates that this dual optimization algorithm could also be adapted without
difficulty to our mixed QR setting, leading to a method for automatically obtaining the regularization
parameter that satisfies the Morozov discrepancy principle. The exact formulation of the algorithm,
together with a proof of convergence and numerical tests, is left for future studies.

4.4. Discretization. The mixed QR method of Definition 4.2 can obviously be discretized with con-
forming finite elements. Indeed, the considered Sobolev spaces, namely H1(Ω) and Hdiv(Ω), are standard
spaces appearing, e.g., in mathematical analysis of fluid mechanics and electromagnetism. Consequently,
their finite element discretization has been studied extensively; see, e.g., [14, 16] and the references
therein.

In this section, we assume that Ω is a two-dimensional polygonal domain (resp. a three-dimensional
polyhedral domain). We define Th to be a regular triangulation of Ω in the sense of [16], such that the
diameter of each triangle (resp. each tetrahedron) is bounded by h > 0. We assume that Γ is the union
of edges (resp. faces) of some triangles (resp. tetrahedra) of Th. For k ∈ N and a triangle/tetrahedron K
of Th, we define Pk(K) to be the space of polynomial functions of degree lower or equal to k in K. The
standard Lagrange finite element space Lk

h is then defined to be the set of functions vh ∈ C0(Ω) such
that vh|K ∈ Pk(K) for any K of Th. It is well-known that Lk

h ⊂ H1(Ω), and thus we can use Lagrange
finite elements to approximate V and V0.

To be more precise, we assume that gD ∈ H1/2(Γ)∩C0(Γ), and define gD,h to be its interpolant over
the traces of Lk

h-functions on Γ with some fixed k ∈ N; here and in what follows, we define an interpolant
as the element of some (context-dependent) finite element subspace with the same degrees of freedom as
the function that is interpolated. We then set

V k
h :=

{

vh ∈ Lk
h : vh = gD,h on Γ

}

, V k
0,h :=

{

vh ∈ Lk
h : vh = 0 on Γ

}

⊂ V0.

By assumption V k
h is non-empty, as is V k

0,h.
12



In order to obtain conforming approximations of D and D0, which are subsets of Hdiv(Ω), we use the
well-known Raviart–Thomas RT k

h finite elements (cf., e.g., [14]), which are defined as follows:

RT k
h :=

{

qh ∈ Hdiv(Ω) : qh|K ∈ Pk(K)d + xPk(K) for all K ∈ Th
}

, k ∈ N0,

with x ∈ R
d being the spatial variable. If the Neumann data gN is assumed to be in L2(Γ), we can

introduce its interpolant gN,h over the space of the normal components on Γ of vector fields in RT k
h , and

then define

Dk
h :=

{

qh ∈ RT k
h : qh · ν = gN,h on Γ

}

,

Dk
0,h :=

{

qh ∈ RT k
h : qh · ν = 0 on Γ

}

⊂ D0.

Again, Dk
h 6= ∅ 6= Dk

0,h.
With the help of these finite element spaces, we can now define the discretized version of the mixed

QR problem.

Definition 4.10 (Mixed QRh problem). For ε > 0 and some k ∈ N, find (uh,ph) ∈ V k
h × Dk−1

h such

that for all (v,q) ∈ V k
0,h ×Dk−1

0,h

(25)














∫

Ω

(A∇uh − ph) ·A∇v dx+ ε

∫

Ω

(∇uh · ∇v + uh v) dx = 0,

−
∫

Ω

(A∇uh − ph) · q dx+

∫

Ω

(∇ · ph)(∇ · q) dx+ ε

∫

Ω

(

(∇ · ph)(∇ · q) + ph · q
)

dx =

∫

Ω

f(∇ · q) dx.

The unique solvability of (25) follows in exactly the same way as that of (4).

Proposition 4.8. For all ε > 0, the mixed QRh problem of Definition 4.10 admits a unique solution
(uε,h,pε,h) ∈ V k

h ×Dk−1
h .

The main theorem of this section provides an estimate for the convergence of (uε,h,pε,h) towards
(uε,pε).

Theorem 4.11. Suppose that the solution of (4), i.e., (uε,pε), belongs to (Hk+1(Ω) ∩ C0(Ω)) ×
Hk+1(Ω)d. Then,

‖(uε − uε,h,pε − pε,h)‖H1×Hdiv
≤ c hk

√

1 + 2‖A‖∞ + ‖A‖2∞ + ε

ε

√

‖uε‖2Hk+1(Ω)
+ ‖pε‖2Hk+1(Ω)d

,

where c > 0 is independent of h > 0 and ε > 0.

Proof. It follows directly from the Cea’s lemma [16] and the estimates in the proof of Proposition 4.1
that

‖(uε − uε,h,pε − pε,h)‖H1×Hdiv
≤ C(ε) inf

(v,q)∈V k
h ×Dk−1

h

‖(uε − v,pε − q)‖H1×Hdiv
,

where

C(ε) =

√

1 + 2‖A‖∞ + ‖A‖2∞ + ε

ε
.

As uε ∈ Hk+1(Ω) ∩ C0(Ω), we can define its interpolant ũε,h in Lk
h. By definition, the trace of ũε,h

on Γ is equal to gD,h, making it an element of V k
h . Furthermore, it holds that [16]

‖uε − ũε,h‖H1(Ω) ≤ chk|uε|Hk+1(Ω),

with a constant c > 0 that is independent of h and ε. Accordingly, if pε is an element of Hk+1(Ω)d, we

can define its interpolant p̃ε,h in RT k−1
h , which by definition is an element of Dk−1

h , and we have [14]

‖pε − p̃ε,h‖Hdiv(Ω) ≤ chk‖pε‖Hk+1(Ω),

where c > 0 is again independent of h and ε. The assertion now follows by combining the above three
estimates. �

Remark 4.12. Theorem 4.11 concretizes the well-known fact that the choice of the regularization param-
eter ε > 0 cannot be independent of the mesh size h > 0. More precisely, it is useless to choose a very
small ε if the size of the mesh h is not small as well.

13
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Figure 1. The target solution of (26).

5. Numerical experiments

In this section, we test the new mixed QR method numerically. We start with the Cauchy problem
and subsequently move on to the inverse obstacle problem for the Laplacian. All forward solutions are
computed with FreeFem++ [26] coupled with the mesh generator Gmsh [20].

5.1. Cauchy problem. Let us denote by D(x, r) the open disk of radius r > 0 centered at x ∈ R
2.

For the Cauchy problem, we choose Ω = Cg \ Cs ⊂ R
3, i.e., the body of interest is the great cylinder

Cg := D(0, 1)×]0, 2[ without the small cylinder Cs := D(0, 0.4)×]0.7, 1.4[. In all examples, Γ is a subset
of ∂Cg, for different parts of which we introduce the following shorthand notations:

Γl = ∂D(0, 1)×]0, 2[, Γt = D(0, 1)× {2}, Γb = D(0, 1)× {0} .
In the first experiment, we set A ≡ I, i.e., consider the Cauchy problem for the Laplacian. The data

are simulated by solving the boundary value problem

(26)















∆u = 0 in Ω,

∂u

∂ν
= w on ∂Cg,

u = 0 on ∂Cs,
where w ≡ 1,−1 and 0 on Γt, Γb and Γl, respectively, using the FEM with L2

h Lagrange elements. The
corresponding solution is visualized in Figure 1.

Let us first consider the case of exact data and Γ = ∂Cg. In other words, the Dirichlet and Neumann
traces of the FEM solution to (26) on the whole exterior boundary of Ω are used directly as the latter
two components of the data (0, gD, gD) for the new mixed QR method introduced in Section 4. We
choose the value ε = 10−4 for the regularization parameter. In order to avoid an inverse crime, we use
different meshes to solve the direct and inverse problems. The discrepancy between the first component
of the solution to (25) and the FEM solution of (26) is visualized in Figure 2, both inside Ω and on the
lateral boundary of the void Cs. Apparently, the method works as desired. Here and in all the following
numerical tests, we have used k = 1 for the discretized problem of Definition 4.10.

In practise, the measurements always contain uncertainties, and thus it is essential to also test the
new mixed QR method with noisy data. In addition, we make the Cauchy problem more demanding by

14



-0.13 -0.00242 0.125 X Y

Z

Figure 2. The discrepancy uε − u in Ω (left) and on the lateral boundary of Cs (right)
for Γ = ∂Cg and the Laplace operator. Relative L2(Ω)-error: 3.6%

-0.218 -0.0158 0.186 X Y

Z

Figure 3. The discrepancy uε − u in Ω (left) and on the lateral boundary of Cs (right)
for Γ = Γt∪Γb, the Laplace operator and 5% of noise in the data. Relative L2(Ω)-error:
9.0%

using data only on Γ = Γt ∪ Γp, i.e., only at the top and the bottom of Ω. The exact data (0, gD, gN )
are replaced by (0, gδD, gδN ) such that

(27) ‖gD − gδD‖L2(Γ) = 0.05 ‖u‖L2(Γ), ‖gN − gδN‖L2(Γ) = 0.05 ‖w‖L2(Γ)

due to introduction of additive noise (defined in a suitable way). We still use ε = 10−4 as the regulariza-
tion parameter. The corresponding discrepancy between the regularized solution provided by the new
mixed QR method and the target solution of (26) is shown in Figure 3. Obviously, the reduction in the
amount of data and the addition of noise have increased the discrepancy, but the proposed QR method
still seems to function relatively well.
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Figure 4. The logarithmic discrepancy (28) as a function of log ε for u = x2+y2−2 z2,
Γ = ∂Cg and h ≈ 0.05.

We continue to consider the same geometrical setting and the Laplacian, but next choose u = x2 +
y2 − 2 z2 to be the exact solution of the Cauchy problem. In other words, the explicit expressions for
the Dirichlet and Neumann traces of this potential are employed to compute the latter two components
of the (noiseless) Cauchy data (0, gD, gN ) on Γ = ∂Cg; note that once again the first component of the
data triplet vanishes as the chosen target function satisfies the Laplace equation. Figure 4 shows the
logarithmic discrepancy

(28) log
(

‖(uε,h − u,pε,h −∇u)‖H1(Ω)×Hdiv(Ω)

)

between the chosen target potential and the solution of the mixed QRh problem of Definition 4.10, with
h ≈ 0.05, as a function of log ε. As predicted by Theorem 4.8 for the exact QR solution of (4), for
fairly large values of the regularization parameter the discrepancy decreases monotonically when ε gets
smaller. However, for small ε > 0 the error between the solutions of (4) and (25) seems to dominate
(cf. Theorem 4.11), and the convergence stalls. It is to be expected that for a finer discretization,
i.e., for a smaller mesh parameter h > 0, the monotonic convergence would continue for even smaller
regularization parameters ε > 0.

In our final numerical experiment with the Cauchy problem, we assume that the object of interest
Ω = Cg \ Cs is anisotropic. To be more precise, we choose the ‘diffusion matrix’ in the Cauchy problem
of Definition 2.1 to be

(29) A ≡





1 −0.0607 0.1344
−0.0607 0.2 0.1051
0.1344 0.1051 1



 ,

which is a randomly picked symmetric and positive definite matrix with the eigenvalues 0.179, 0.8855,
and 1.1355. The latter two components of the data triplet (0, gD, gN ) on Γ = Γl are simulated by solving
the boundary value problem (26) with the Laplacian and the standard normal derivative replaced by
∇ · A∇ and the conormal derivative ∂u/∂νA from (1), respectively. Subsequently, 5% of noise is added
to the data in the sense of (27). The corresponding target potential is shown in Figure 5.

The discrepancy between the target potential and the QRh solution of (25), corresponding to ε = 10−4

and the Cauchy data with 5% of noise on Γ = Γl, is visualized in Figure 6. Even in this noisy anisotropic
case, the difference between the target solution and the one provided by our mixed QR method is of an
order of magnitude smaller than the values of the target potential itself.

5.2. Inverse obstacle problem. Let us next focus on the Dirichlet obstacle problem for the Laplace
equation. Suppose that we have access to the Cauchy data (gD, gN ) ∈ H1/2(∂Ω)×H−1/2(∂Ω) on ∂Ω.1

The problem we are interested in consists of finding an open set O ⊂ Ω with a continuous boundary such

1In fact, we could deal with partial Cauchy data, i.e., data defined only on a part of ∂Ω, in exactly the same way.
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Figure 5. The target solution of (26) with I replaced by A of (29).

-0.361 0.00596 0.373 X Y

Z

Figure 6. The discrepancy uε−u in Ω (left) and on the lateral boundary of Cs (right) for
Γ = Γl, the diffusion matrix from (29) and 5% of noise in the data. Relative L2(Ω)-error:
8.7%

that Ω \ O is connected and the problem

(30)































∆u = 0 in Ω \ O,

u = gD on ∂Ω,

∂u

∂ν
= gN on ∂Ω,

u = 0 on ∂O
17



Figure 7. Performance of the exterior approach algorithm for three targets. Left: the
obstacle used in data simulation. Right: the corresponding reconstruction.

admits a solution u ∈ H1(Ω \ O) ∩ C0(Ω \ O). It is well-known that this inverse obstacle problem is
severely ill-posed but has at most one solution.

To solve the above introduced problem numerically in a regularized manner, we resort to the exterior
approach introduced in [11, 12]. Here, we only outline a slightly simplified version of the reconstruction
method for finding O:

I Initialization: Choose an initial guess ω0 such that O ⊂ ω0 ⊂ Ω. Set m = 0.

II Iteration:
18



(1) Reconstruct a potential u in Ω \ ωm from the Cauchy data available on ∂Ω, i.e., solve the
Cauchy problem

(31)



















∆u = 0 in Ω \ ωm,

u = gD on ∂Ω,

∂u

∂ν
= gN on ∂Ω,

with your method of choice.
(2) For a sufficiently large constant C, solve the following Poisson problem in ωm:

(32)

{

∆vm = C in ωm,

vm = |u| on ∂ωm

using, e.g., some FEM.
(3) Define

ωm+1 := {x ∈ ωm : vm(x) < 0} .
(4) If the chosen stopping criterion is satisfied, terminate the iteration. Otherwise, increase m

by one and return to step (1).

This algorithm builds a sequence of open sets (ωm)m∈N verifying O ⊂ ωm, and it is proved in [12, 18]
that this sequence converges to the searched obstacle if, e.g., the boundaries of the open sets are smooth
enough. For more information on the details of the exterior approach, such as the stopping criterion or
the choice of the free parameters, we refer to [11, 12, 18].

In our implementation of the exterior approach, we use the mixed QR method introduced in Section 4
for solving (31). More precisely, we set ε = 10−4 and utilize the combination of first order Lagrange and
zeroth order Raviart–Thomas elements, i.e., we choose k = 1 in Definition 4.10. The Poisson problem
(32) is solved by a FEM employing first order Lagrange elements.

Let Ω be the open unit ball; the initial guess ω0 is chosen to be a smaller concentric ball of radius 0.8
in all our tests. Figure 7 presents the reconstructions produced by the above outlined exterior approach
algorithm for three different target obstacles O: a small ball, a union of two balls, and a torus. The
corresponding Cauchy data were simulated by solving (with first order Lagrange elements) the well-posed
boundary value problem obtained by deleting the second equation of (30), setting gN ≡ 1, and choosing
O accordingly. Afterwards, gD was defined to be the Dirichlet trace of the corresponding FEM solution.

In each of the three cases, the qualitative shape of the obstacle is reproduced accurately; in particular,
the homotopy classes of the obstacle and the corresponding reconstruction are the same in all three tests.
Here, we considered only exact Cauchy data (not accounting for numerical inaccuracies), but according
to our experience the performance of the method with noisy data is comparable to what is presented in
[11, 12, 18] for the corresponding two-dimensional setting.

6. Concluding remarks

We have introduced a novel mixed QR method for regularizing the ill-posed Cauchy problem of
Definition 2.1 without resorting to optimization schemes. Our method provides an approximate solution
that converges monotonically to the exact one, if such exists; the technique for proving the monotonicity
property in Section 4.2 can also be applied to the original QR method of [29]. Like the first mixed
QR method in [9], our new formulation can be discretized using standard finite elements that are often
available in numerical solvers. Furthermore, both components of the solution (uε,pε) ∈ H1(Ω)×Hdiv(Ω)
to the new mixed QR problem (4) provide information about the solution u of the original Cauchy
problem: while uε approximates u, the vector field pε gives an estimate for the corresponding flux
A∇u. The functionality of our new method was demonstrated via three-dimensional numerical studies
considering both the Cauchy problem and a related inverse obstacle problem.

In our numerical experiments the choice of the regularization parameter ε > 0 was not considered in
detail, but its value was just picked so that the resulting reconstructions appeared reasonable (ε = 10−4

in most tests). It should be noted, however, that the new QR method seems surprisingly insensitive to
the size of a smallish ε. Moreover, the method of [11] for choosing the regularization parameter as a
function of the noise amplitude for the standard QR formulation can be straightforwardly adapted for
our new method; see Section 4.3 for more information. As a consequence, it seems that the proposed
mixed QR method can be coupled with a systematic technique for choosing the regularization parameter,
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assuming that there exists accurate enough information on the amount of measurement noise. Further
considerations of this matter are left for future studies.
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[11] L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence

of noisy data, Inverse Problems, 26 (2010), 095106.
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[30] J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique

continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var., DOI:10.1051/cocv/2011168.
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