An Hdiv-based mixed quasi-reversibility method for solving elliptic Cauchy problems - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2013

An Hdiv-based mixed quasi-reversibility method for solving elliptic Cauchy problems

Résumé

This work considers the Cauchy problem for a second order elliptic operator in a bounded domain. A new quasi-reversibility approach is introduced for approximating the solution of the ill-posed Cauchy problem in a regularized manner. The method is based on a well-posed mixed variational problem on H 1 × H div , with the corresponding solution pair converging monotonically to the solution of the Cauchy problem and the associated flux, if they exist. It is demonstrated that the regularized problem can be discretized using Lagrange and Raviart-Thomas finite elements. The functionality of the resulting numerical algorithm is tested via three-dimensional numerical experiments based on simulated data. Both the Cauchy problem and a related inverse obstacle problem for the Laplacian are considered.
Fichier principal
Vignette du fichier
9.pdf (823.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00965900 , version 1 (10-10-2019)

Identifiants

Citer

Jérémi Dardé, Antti Hannukainen, Nuutti Hyvönen. An Hdiv-based mixed quasi-reversibility method for solving elliptic Cauchy problems. SIAM Journal on Numerical Analysis, 2013, 51 (4), p. 2123-2148. ⟨10.1137/120895123⟩. ⟨hal-00965900⟩
79 Consultations
128 Téléchargements

Altmetric

Partager

More