N

N

Navigation Method Selector for an Autonomous
Explorer Rover with a Markov Decision Process
Simon Le Gloannec, Abdel-Illah Mouaddib

» To cite this version:

Simon Le Gloannec, Abdel-Illah Mouaddib. Navigation Method Selector for an Autonomous Explorer
Rover with a Markov Decision Process. Proc. 2nd International Conference on Intelligent Robotics
and Applications (ICRA 2009), 2009, Kobe, Japan. hal-00965859

HAL Id: hal-00965859
https://hal.science/hal-00965859
Submitted on 27 Mar 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00965859
https://hal.archives-ouvertes.fr

Navigation Method Selector for an Autonomous
Explorer Rover
with a Markov Decision Process

Simon Le Gloannec and Abdel-Illah Mouaddib

GREYC, UMR 6072
Université de Caen Basse Normandie
14000 Caen, France

Abstract. Many high level navigation methods exists for autonomous rovers.
Usually, fixed methods is choosen for the rover to follow its trajectory. In some
cases, a rover can have several embedded navigation methods, but there is cur-
rently no automatic approach to select the best method. In this paper, we propose
an automatic navigation method selector using Markov Decision Process (MDP)
framework. Navigation method are modelized in the MDP transitions functions.
Results we achieved were promissing.

1 Introduction

In the robotic application fields, robots often have several actuators and sensors in or-
der to interact with the environment (cameras, telemeters, GPS, wheels, arms...). Some
high-level methods are then implemented in the robot’s kernel to produce complex be-
haviours. For example, some robots recognize objects (methods) with a camera (sensor)
in order to follow or grab them (behaviour). Many methods can also produce the same
behaviour with different sensors.

We consider here the proble of a robot that have to follow a given trajectory. The
trajectory is composed of points that the rover must approach as best as possible. There
exist many methods to go from one point A to another point B. A robot can move
forward by using only its odometer, or by following a wall detected with a telemeter.
These methods produce more or less good results but they are more or less difficult to
get start. Following a wall by using the telemeter has a cost because at the same time,
the robot can not use it to perform an other task. The main problem in this context
is to select the appropriate method to perform the desired behaviour, i.e. follow the
trajectory. In our case the methods are : move towards an object, move along a wall
and move without help except the robot odometer. Some objects in the environment can
then help the robots : walls, trees, houses, other vehicules. Methods are implemented to
use these objects in order to follow this path. We do not present these methods in details
but we are concerned with the module that permits the robot to select the best method
at the right time.

"'This work is supported by DGA (Délégation Générale pour I’Armement) and THALES
company.

Markov Decision Processes (MDP) are used to modelize this selec-
tion problem [LMCO08],[MZ00]. Even if most of the time the policy computation is
“only” quadratic in the problem state space, the state space is generally huge. More-
over, if a new useful object appears in the environment, the policy must be recomputed
online. We tackle this two problems in this paper with an acyclic directed graph in the
MDP.

The first part of this article shows the autonomous rover context. Then we modelize
the problem into an MDP. We describe the algorithm that produces the policy. In the
same section, we show how to recompute a part of this policy when a new object appears
in the environment. Finally we present some experimental results

2 The Target Application

This work is developped in a project in collaboration with THALES company under
grant of DGA. The project consists of an autonomous rover has to follow a given tra-
jectory. This path is defined as a set of points (see Fig.[I). The objective for the rover
is to pass throw these points or as near as possible. It has three high-level methods to
move to the next point. The first method is to use an odometer that is quite imprecise.
The second method is to recognize a particular object in front of the rover, it will then
move toward this object during some time [CBC*05], [SRCO06], [BMO07]. The third
method is to detect a wall on the side. The rover has to move along the wall.

The three methods end up with in the same behaviour which is to move toward a
particular point. The first method is less precise than the others but the environment
does not always provide good objects to use. Between some points, the method to apply
is fixed. For example, during the first part of the trajectory depicted in Fig.[T] the rover
must move along the wall. In some region, no methods are selected (third part in Fig.
[1). We propose in this case an automatic navigation method selector, We formalize this
problem with an MDP. In addition, the rectangles offers a simple strucutre to perform
easily computation since it allows us to transform the space as a grid. If the rover is far
from it’s path, we consider it is in a failed state. We define a rectangle around each pair
of points. Beyond these rectangles, the rover is in a failed state.

We also suppose that the rover never turn back. This assumption is important because
it permits us to have an acyclic structure problem. We will show in the next section how
to use this acyclic property to solve the problem more efficiently.

Fig. 1. The rover must follow a trajectory and select navigation methods

3 Formal Framework

The problem is formalized in a Markov Decision Process MDP model. We calculate a
policy with this model that indicates the action to select given a particular state.

3.1 Background : MDP Model

An MDP is a tuple S, A, T, C where

S is a finite set of states,

— A is a finite set of actions,

— T is a transition function. It gives the probability of being in the next state given the
selected action and the current state,

— C s a cost function. This cost includes many features like distance and changing

action.

Actually a state is the rover position combined with its orientation. S = R?x] — 7, 7].
But not all states are accessible according to the previous assumption. We transform the
state space into an acyclic graph that is much easier to solve with an MDP. As shown
in Fig.[T] (right side), we transform every single segment of the path into a rectangular
shape area. States that are outside these boxes are failed states. All the failed states are
considered as a unique failed state.

At this point the transformation is not finished. We combine three geometrical tran-
formations (rotation, scale, translation) in order to obtain a simple grid for each rectan-
gular shape. The grid ratio A transforms a [x L rectangle into a M x N matrix where
M = L/Aand N = [/A. An « rotation is needed to straighten up the grid. Finally,
the left lower corner is moved to the origin (translation). We do this transformation for
each rectangle.

The graph is not yet acyclic. To reach this, we only keep angles that are not moving
backward. We select N, angles (for example five in Fig.[2) appropriate to our target
application. The state space is now composed by n M x N x N, matrix. The state
space is acyclic : while moving forward, the rover cannot not enter the same state twice.

Grid

. VA CITTTTT]

Fig. 2. Transformation from a continuous state space into a 3D discrete M x N X N, matrix

There are 3 kinds of actions

1. a,, consists of moving along the path without help (except an odometer),
2. a,, consists of moving towards the object i,
3. ay, consists of moving along the wall j.

In each rectangle/grid, the rover can only follow one of two possible objects or one of
two walls. Thus, the rover can perform 5 actions in a given grid ay,, G, , Goy s Quwy 5 Gupy s
where 01, 02, w1, wo are respectively object 1, object 2, wall 1 and wall 2. The transition
function represent the uncertainty model the uncertainty reliable to the rover movement
method. When the rover helps itself with an object or a wall we consider the transition
as perfect (i.e. deterministic)

T({z,y,w), ao, (x +v.cosw,y +v.sinw,w)) = 1. (H

where v represent the rover speed.
Without helping, the Transition is uncertain. The rover can deviate from dw

Tz, y,w), am, (x + v.cos(w),y +v.sin(w),w)) =1—-2p (2)
T((x,y,w), am, (x + v.cos(w + 0w),y + v.sin(w + dw),w + ow)) =p (3)
T((z,y,w), am, (x + v.cos(w — dw),y + v.sin(w — dw),w —dw)) =p (4)

where v represents the rover velocity.
The cost function C is a sum of four atomic cost functions:

1. the distance cost Cy((x,y,w)) measures the distance between the current state and
the ideal path

2. the cost of using an action a C,(a) occurs each time the rover performs the action.

3. the changing cost C.(a, a’) is paid each times de rover changes its current action

4. the distance C;({x,y,w, n)) that we will discuss later on.

In this context, T and C are sligthly different from the usual definition because we have
to take the cost of the action change into account. We will detail all costs in the next
section.

To solve the MDP we have to calculate a value function. This Value function V is
as usually calculated with the Bellamn Equation. But in our context, we have to take
the change cost into account. Thus, in order to memorize the last action, we calculate Q
values on pairs of (state, action). The objective here is to minimise the cost.

Q(s,a) = (Illllelg C(s,a,8",a)+T(s,a,5).Q(s",a") (5)
seS
We compute the Cost value to the last line of the last grid. Then, the calculation is done
backward from the last grid to the first one. In the last grid, the algorithm computes the
cost value to the last line. Then, the entire Q-Value function is calculated backward on
the grid according to the previous equation. The policy is finally saved in a file. Then,
the algorithm step back to the previous grid until the first grid is reached.

7 (s) = argming,Q(s, a) (6)

Only grid G;4+1 remains in memory during the calculation of grid G;’s values. All
previous ones are freed after being saved in a file. The state space is strutured on ordered
grids where each grid is a subpace that can be considered solely for computation. This
is an advantage of having an acyclic graph structure. The program does not need a
lot of memory, since the memory space is an important issue of the trooper rover from
THALES. Some states are sometimes declared two times when many rectangles overlap
each other. In this case, the algorithm does consider the latest state, i.e. the one in the
gr id Gi+1 5

Once the policy is entirely calculated, the rover only has to read the files in order to
select the best action.

3.2 Cost Functions
The cost function is divided into four parts.

1. the distance cost Cy((x,y,w)) measures the distance between the current state and
the ideal path

2. the cost of using an action a C,(a) occurs each time the rover performs the action.

3. the changing cost C.(a, a’) is paid each time the rover changes its current action

4. the distance cost C; ({x, y, w, n)).

'y measures the distance cost between the current state and the ideal state. Equation
calculates this cost (also see Fig.[3). This measure is divided into two parts. It measures
first the euclidian distance from the straight line 4A; in relation to the rectangle width .
Secondly, it measures the angle deviation from the current ideal orientation ;. There is
no penalty when the angle brings the rover closer to the straight line A;. Thus, equation
[8lis applied to the left part of the rectangle only. We introduce a (3 weighting factor
(generally equal to 0,5) in order to give more importance to the distance or to the
deviation.

d((z,y), 4; max(0,w — oy
(@9).8)) _ 5 maz(0.0—a)
l/2 Omax
In order to avoid to use the odometer that is quite imprecise, we introduce a using cost

for each action. C,(a) is a constant positive integer. When the rover activates an high-
level method like move toward an object, it monopolizes an effector like a camera. It

Cd(<$7yaw>) =p. @)

Fig. 3. Distance cost in rectangle 4 Fig. 4. Objects eligibility

also takes some time to locate the target. To take this into account, we define a change
cost C.(a, a’) as a 2 dimensionnal matrix.

Finally all costs are added together to form the global cost. Factors wg, wg, w,. (and
w,,) weight this sum, they could be adapted during a learning step.

3.3 Object Eligibility

The rover can only move toward an unique object at a given time. But it has many
sensors (or camera) ready to capture an object. Thus in each rectangle of the path, we
have to select 0, 1 or 2 objects. This selection is made like it is shown in Fig. |4 All
objects outside a /6 angle are excluded from the selection. Then we keep the two
closest objects if there are any. In this Fig., object 2 and 3 will be selected.

The Wall selection is quite similar. We select the closest wall from the left/right side
of the rover if it is not too far from the trajectory (e.g. three meters).

3.4 Including Uncertainty in the State Description

While moving with the help of the odometer, the rover has an uncertain position. The
longer it moves without assigning a helping object, the more uncertain it will be about its
the position. To modelize this, we define IV, levels of uncertainty. Thus we add a variable
to the state. It becomes (z, y, w, u) € R x Rx|—m, 7] x [1, N,]. Each uncertainty level
corresponds to an elliptical area E that represents where the rover can be. A normalized
gaussian curve indicates the position probability (P ({z, y,w)) —]0, 1]). In Fig.[5] there
are 4 level of uncertainty. At the 4t" level, the rover could be in a failed state. Each time the
rover moves with the odometer, the uncertainty increases to the next level (s1,. .., S4).
If the uncertainty level is equal to the maximum N,,, the level stays at this maximum.
Elliptical range and their associated gaussian are predefined (as the number N,,).

With this uncertainty level, we can introduce the uncertainty cost. It is the probability
for being in a failed state mulitplied by the failed state cost.

EX]|—m,7]

Cu({z,y,w,u)) = VFA,L/ P((z,y,w) = FAIL).dz.dy.dw 8)

z,Y,w

:

H:>
i chann

Fail zone
Autoriz
Fail Zone

@
[y

Fig. 5. Uncertainty in the model

Where FAIL is the failed state and V471, a constant value. It has an high cost. When the
rover uses an high-level method, uncertainty automatically decreases to 1. The object
and the walls give a good localization to the rover. This cost is in our opinion more
realistic that the cost C,,. But it also increases the algorithm complexity.

3.5 Complexity

The algorithm we presented previously is linear in the state space. The result of this
policy is a policy that the rover must follow once it is calculated. Thus the complexity
depends on the path total lenght L, the channel width 1, the grid ratio size A, the
angle number, the uncertainty levels and the action number (here 5). This leads to the
following complexity :

Ly % 1/A? % Ny % Ny x A 9)

In order to have a very precise policy, we can increase N, and N; or decrease A. This
model is interesting because it’s adaptive. The policy can be calculated very quickly if
necessary. Drawback of MDP model is their lack of adaptivity when th environment
changes after the policy has been calculated. In this paper, we can take some changes
in the environment into account without calculating the policy entirely.

4 Dynamic Environment

During the exploration mission, the path never changes. But sometimes, new objects
or walls that the rover had not detect yet could appear and be very helpfull. Generaly,
problems modelized with MDP model calculates a definitive policy that indicates the
rover the action to select during execution time. But here, the graph induced by the
MDP is acyclic. Thus, if something change the policy or the value function in the 7**
rectangle of the path, only the i first rectangle of the path are affected. Moreover, if
this change appears during the mission, the change affects the rectangle fromj to i if the

new object : O
water tower

object 1:
apple tree

Fig. 6. A new object in the environment does not affect the entire policy

rover is currenctly in rectangle j. Fig.[6]lexplains this principle. The rover in rectangle 2
has detected a water tower in the distance. This object can not be usefull for now. But it
will be for rectangles 4, 5, 6, and 7. Then it has to calculate a new policy from rectangle
7 to rectangle 2.

When a new interesting object is detected, we first search the first rectangle where
this object is eligible. If no rectangle is affected, the policy does not change (this object
was not so interesting). Otherwise, we load the policy in rectangle i+1 and calculate the
new policy fromi to j very quickly. Then, the rover selects new actions according to the
new policy.

5 Experimental Results

We develop a C++ program that calculates the MDP policy on a given trajectory. We
have included a graphical interface that shows the policy and also the Q-Value functions.

5.1 Interface

This is a very helpful tool to simulate the rover’s [==
behaviour. With this graphical interface, youcan: | = T

load a trajectory from a file, see the corresponding ') ‘f“t. v
channel and rectangle around this trajectory, add a > v
new object or a new wall, calculate the Q-Values [——\L B
and the policy, see the Q-Values and the policy, & >, L
change the parameters A, N, ... : "F‘ﬂ h

A trajectory file is a set of points. After being o
loaded into the main application, the user can see
the corresponding channel inside which the rover
has to move (Fig.[7)). Fig.7. A trajectory and the corre-

We define a color gradient green, yellow, or- sponding channel
ange, red that represents values. Green corre-
sponds to 0 while red corresponds to Vi 45r,. Value functions are painted for different
reasons.

1. showing the policy value function, i.e. the value of the best action for each state.
2. it also shows all QValue function values, in order to see the values for a particular
function.

The goal is to minimize the cost. Thus the typical result is to have a red on the channel’s
border and green in the middle. The beginning of the path is more red than the end
because the state’s values are an accumulation (or sum) of atomic using costs (plus
other costs). The value function decreases slowly from the beginning to the end of the
path.

The parameters can also be changed directly in the interface. When A is very small,
there are lots of states. In this case the solution comes slowly. The cost function weight-
ing factors wy, . . . w, can be changed before calculating the policy. It has a great influ-
ence on the value function. We tuned this parameters in order to have a ”good” value

Fig.8. A value function Fig. 9. With an Object Fig. 10. Policy
without object

function. We do not want to have a completely red value function neither a completely
green function but a gradation of colors. Without helping objects , we obtain the value
function shown in Fig.[§]

In Fig.[9] the rover follow the tree in the dotted rectangle area. We see that the values
are lower in this region than in Fig.[8] The policy of the first case (Fig.[8) is not depicted
because there is only one action : trust the odometer.

5.2 Running Time and Memory Requirements

We measure time and memory required for some cases.

Total length L (meter)|1672,64({1672,64(3092,43|3092,43
Channel width [(meter) 20 20 20 20
Grid ration A 10 1 1 1
Number of angle N, 21 21 21 5
State space 8.10°| 4.10°|7,3.10°[1,7.10°
running time (s) 1 62 119 27

We used a 2.60GHz CPU to perform these tests. The function that take the more time
is the state’s transformation. The memory requirement is not so huge because grids are
saved into file one per one during the calculation.

5.3 Behaviour Analysis

We add some objects in order to see whether the behaviour change or not. In this exam-
ple, we add an object in the rigth up corner. It can help the rover at the beginning of the
turn. Effectively, it does. The value function turns into green in the rectangle where this
object is elligible. As a result, the corresponding policy also change : the rover move
towards this object when it is on the right part of the rectangles. It does not move to-
wards it on the left side because in this case it would come off [or leave] the channel. In

Fig. the rover moves towards an object when the states are blue. Otherwise, it just
follows the path without help.

6 Conclusion

In this paper we consider the problem of an autonomous rover that have to follow a path.
This is developped in a project in collaboration with THALES company under the grant
of DGA. The rover has many methods to direct itself. It can move towards object, follow
a wall side by side or use his imprecise odometer. We showed how the rover can select
the best method to use in order to follow the trajectory. This selection is based on a
Markov Decision Process framework. A policy is calculated off-line. On-line, the rover
reads the instructions. MDP framework often suffer from a lack of adaptivity, but we
found a method that transforms the problem into an acyclic structure. Then, the policy
calculation time is linear in the state space. This allows us to consider dynamic changes
during running time : it is now possible to compute a policy with a new environment
quickly. Some experiments have been developped to test running time and memory
requirement. The behaviour of the rover is interesting : it helps itself with objects in
order to follow the path. This automatic selection method is under integration on a six-
wheel Trooper rover soon equiped with these behaviours.

References
[Bel57] Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton
(1957)

[BMO7] Benhimane, S., Malis, E.: Homography-based 2D Visual Tracking and Servoing.
The International Journal of Robotics Research 26(7), 661-676 (2007)

[CBC*OS] De Cabrol, A., Bonnin, P., Costis, T., Hugel, V., Blazevic, P.: A new video rate
region color segmentation and classification for sony legged robocup application
(2005)

[LMCO8] Gloannec, S.L., Mouaddib, A.-1., Charpillet, F.: Adaptive multiple resources con-
sumption control for an autonomous rover. In: Bruyninckx, H., Preucil, L., Kulich,
M. (eds.) Proc. European Robotics Symposium 2008 (EUROS 2008), pp. 1-11.
Springer, Heidelberg (2008)

[MZ00] Mouaddib, A.-I., Zilberstein, S.: Optimizing resource utilization in planetary rovers.
In: Proceedings of the 2nd NASA International Workshop on Planning and Schedul-
ing for Space, pp. 163-168 (2000)

[Put94] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., New York (1994)

[SRCO06] Segvic, S., Remazeilles, A., Chaumette, F.: Enhancing the point feature tracker by
adaptive modelling of the feature support. In: Leonardis, A., Bischof, H., Pinz, A.
(eds.) ECCV 2006. LNCS, vol. 3952, pp. 112-124. Springer, Heidelberg (2006)

