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Abstract : The shape description of the surface of three-dimensional discrete objects is
widely used for displaying these objects, or measuring some useful parameters. Elementary
components of discrete surfaces, calted surfels, contain somne geometric information, but at a
scale that is too small with respect to the scale at which we actually want to describe objects.
We present here a fast computational technigue te compute the vormal vector field of a
discrete object at a given scale. Iis time cost is propertional to the number of surfels at and
little dependent on the scale. We prove that our algorithm converges toward the right value in
the case of a plane surface, We also give some experimental results on families of curved

surfaces.

Tndex Terms - Discrete surfaces, surfels, geometric invariant.

1 Introduction

Modern imaging techniques like MRI or confocal microscopy, produce 3-D digital images
from real world scenes. A segmentation step followed by a labelling of the resulting binary
image yields well identified 3-D discrete objects. The local orientations of their surface, and
their areas characterise these objects. For example, they can be used for registration,
recognition and medical diagnosis. We use here discrete surfaces composed of surfels. This
kind of surface is still actively studied in arbitrary dimension [4], [9], but its detection, and
properties are already well known in 3-D ( [6] ). The method described here uses the regular
structure of the discrete surface as the support of functions of vectorial values that describe
the geometry of the surface at the surfel scale. Then, we convolve recursively these values by
a low pass filter, in order to get a regional average of these local geometrical values. The
result is a geometrical value at a less local scale that describes better the reat world object.

One of the strength of this method is its low time complexity O(aw/; +n), where o is the
scale parameter of the calculus, and n the number of surfels of the object.

This paper is organised as follows : basic definitions relative to the discrete surfaces used are
first given. Then, the recursive calculus of a convolution product involving a summable
function and a periodic function is recalled. Next, the algorithm is described. Afterwards, the
proof of the convergence in the case of plane surfaces is given, We show that one pass method
leads to errors is some cases. Two alternative methods are then presented, both correcting this
failure. The time complexity is then estimated. Then come experimental results on families of
analytic objects, as well as sowe direct applications and perspectives.

2 Notations and basic definitions

2.1 Surfaces of 3-D discrete objects

These definitions are mainly deawn from [4}, [6] or [9]. The used notion of discrete surface,
made of surfels, has been chosen for its regularity, and its analogy with continuous surfaces.
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2,1.1 Main vectors of R*, A, operations involving these vectors

We consider the euclidian vectorial space R and a direct orthonormal basis (0,w,,0,,0,).

We will use the sets of indices 1* ={1,2,3}, I’={0}uL u{— 4 xe[i}, and I} =1*/{0}.

We define Viel’,8, =w,8,=-8 =-w,, the null vector &, A:{S,.lielj} and

A, ={6i|r’eIf}. Finally, we define the multiplicative operator ® from the vector cross
PxI—7F

product A : & (_‘-,).) =@yl =0, A6y .

2.1.2 Voxel, binary scene

Let ve R, We denote x; the ith coordinate of x. R? is divided into unit cubes called voxels by

a set of planes orthogonal to the axes {ij,ieﬁ,jEZﬁ-% et :{xeR3|_1-f. =j}}. We

identify each voxel with its central point of YA binary scene of 7 is a function

B.Z° - {01}. We call B(v) the value of the voxel v. We note I(B}=B"(l) and

o{B)=B0).

2.1.3 6-neighbourhood, 18-neighbourhood, n-path, n-object, n-background

Two voxels ¢ and d are said to be 6-canrected iff they share a face, that is ¢ —d €A, . They
arc 18-connected iff they are G-connected or if they share an edge : 3(51 ,62) eA’, § #8, and
8 #-8, and c—d =8 +8,. For ne{6,18}, an n-path of length [Vo- V1o v is a
sequence of 41 voxels so that Vje[O...!—l],vJ, etv,,, are n-connected. Let E be a st of

voxels. Let x and y be members of E. If there exists a n-path from x to y in E, we say that x
and y are n-connected in E. A set E of voxels is n-connected iff ¥(a,b)€E*, a and b are

n-connected in E. n-connected components of E are equivalence classes of the restriction to £
of the equivalence relation « to be n-connected » If B is a binary scene, an n-object is an

n-connected component of {{B}. A n-background is an n-connected component of o(B).

2.1.4 Surfel, Surfel type, Surface, Boundary, Border, Bel

A surfel is an oriented surface element. A surfel s is identified by the pair (vl,vz) of 6-
connected voxels, of which it is the common face. Therefore, the vector n=v, —v, =8, €A,
can take six distinct values. The rype of the surfel s is T(s}=i . We will call v; the start voxel

of 5, and vz its end voxel. A surface is a set of surfels. The boundary of two disjoint of voxels

E; and E3 is the set ﬂ(El,Ez)s{s=(al,a2) and @y € E } A bel of a

sEZandaleEl 5

binary scene B is a surfel a =(c,d)so that cel{B) and 4 €(B). The boundary of a binary
scene is the set of its bels. A kA —border is the boundary of two components, the first one



k —connected of 1(B), the other one A —connected of 0(B). In what follows we will only

consider A —border , where Kk is 6 and A is 18, Such a border is proved to be connected, to
have a well connected interior and exterior and o have the Jordan property.

2.1.5 Edgel, Edgel’s type, Bel adjacency, Surface graph
We call edgel of the surfel a the pair ¢=(q,8;), with 3, €4, and i} # IT(a)] T{e)=i is the

type of e. We also say that the surfel a={e,d)meets the surfel a'=(c'.d") at the edgel
e=(a,8) ilf a and a’ share an edge. The proposition 3.5 of [9] states that for any binary scene

any bel & of this scene, and any edgel e of b, there is exactly 1 bel or exactly 3 bels that meet &
in e (Fig. 1). Twobels a ={c,d) et a':(c',d') are said to be adjacent if they meet at an edgel

e= (a,5) and if @’ is the only bel that meets @ in e, or, in the case in which 3 bels meet a in e,
if @' is the bet {c,c+8) ( sce Fig. 1). We can say that a’ is the neighbour of a at e or @’ is the

neighbour of a at & . This neighbouring relation define the notion of path on a surface and of
connected component of a surface, as well as the notion of surface graph. Each surfel has
exactly four neighbours { one per edgel ).

2.1.6 Slices, Slice contour, Slice contour function

A slice of Z° is a set of voxels in which one coordinate is fixed, the two others being free. The
slice denoted Tri; is the set of voxels whose ith coordinate is j. Let b= (c.d) be abel of type i.

It belongs exactly to two slice contonrs denoted by CTr,, fori€l; / {[T(b){} . We call i the type
of the stice contour CTr,. These slice contours are images of stice contour functions, denoted
FCTy;, . The succession of slice contour bels is naturally defined by their adjacency relation
Z—- B

z—> FCTr, (z)

e=03 nw,. FCTy;, isthen recursively defined in the following way :

and their type: FCTr,: with : FCTr;ﬁ(0)=b, VieZ, I:T(z), and

FCTy;,(z+ 1) is the adjacent bel of FCTr,,(z) at e.
FCTy; ,(z— 1) is the adjacent bel of FCTy;,(z) at—e.

Slice contours of finite objects are periodic lists of adjacent bels whose start voxels are in a
same plane. A slice can contain several slice contours as shows Fig. 2 for horizontal slices.

2.2 Recursive caleulus of a discrete convolution product

Let P be the class of functions that are positive, even, increasing on ]—==,0], decreasing in
[0,+eo[ , with unit norm. Let g, bethe restriction to Z of g € P. Let fbe a periodic function of
Z with values in R. We want x =g, * f . For some functions, the convolution product can be

strictly recursively computed. If nol, it is most of the time possible to approximate the kernel
g, by another one g',,, whose convolution product is recursively computable. One can see (2]

where is explained how to approximate a gaussian kernel by a sum of exponential as well as
the recursive implementation of a non causal filter. The & order recursive calculus of
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xX= giz*f is implemented by splitting g into a sum of two functions g et g+, respectively null

upon RY, and R . For each of these functions, we need only the & previous values of the

convolution products as well as the current value of f and its k-1 previous values. At the start of
the recursion, we can truncate g outside an appropriate interval and then compute the first £
convolutions product in a non recursive way. One can too arbitrarily chose the recursion
variables and start the recursion process, The variables will converge toward the right values
after some iterations and we will then take into account the results produced. We denote by

R—R
E(g)=1g, EP|O’ eRr: . 1 [\) the family of normalised functions deduced from g by
ro—g =
oo

Z— R
glz) .
2, 8(x)

xed

a scaling factor ¢ . We denote 8z the normed restriction of g to Z: Bizily 5 2\

3 Description of our method

We first compute the surface graph of the 6-connected object thanks to a surface tracking
algorithm ¢see [1] or [9]). Then, with a transversal of this graph, the length a well as a start
surfel for each slice contour is determined. The next step is to associate to each surfel two
elementary geometrical values that solely depends on the type of this surfel and on the slice
contour the value correspond to (we recall that any bel belongs exactly to two slice contours).
So, we get slice contour functions whose values are no more surfels, but geometrical. We can at
least derive two ways (o build the slice contour fumctions, and so to calculate the normal. They
will be explained in 5. The recursive calculus of averages of these geometrical values is then
done. As seen in 2.2, it is decomposed into two steps : an initialisation step, and a recursive
step. We will suppose from here that the surface is planar and orthogonal to the vector

(al,az,al) , and without loss of generality that a,” +a,’ +a, =1. We will prove in 4.3 that for

a discrete plane, the convolution product of any slice contour function converges toward the



average value when the scale of the convolution kernel increases toward infinity. The final step
are local computations that compute from the two former values the value of the normal.
Depending on the method we choose, we then have to do a second average of the normals in
order to avoid drawbacks that occurs in some orientations or a another local computation.

4 Convergence of the method for the surface of a discrete plane

Although the usefulness of the technique is for curved finite discrete object, we will show here
that it converge toward the continuous value for any surfel of & discrete plane when the scale
increase toward infinity.

4.1 Uniformly distributed functions

Let & be the set of functions of Z— R. We denote by &, £, €& the class of functions
whose distribution of values is uniform, called wriformiy distributed :

1 et e
= -—<—-mm < —_
Vf€Q , 3e>0, 31 d=d(f)eR| VaeZ Yk eN, d———— <1 E,f() d+o

Lemma 1: Slice contour functions are uniformby distributed for plane surfaces and

d(f) _a -!a(r) +a, -h(!')

a, Fa,
scalar value associated to each surfel type.

if the surfels present on the contour are of type f and #” and £ is a

4,2 Convergence of the convolution product toward the average for uniformly
distributed functions

Lemma 1 : if f is uniformly distributed and if g&P then Ul_i"gqm x= %8y :d( f) and the
l
convergence speed is in o~
. oc(g.,lZ ) €R,
ieN 4

4o (I(goi7)
2y+1

Proof of lemna 1: For any ga|z|ga EE(g) we define the list [a(goiz)J

a(galz)j:(2i+I)v(gall(i)~gulz(i+l)). So we have VieZgg,(i)= and

= 4 Ol 8,
Egﬂlz( )—l that is Zg,,P( 22% If we group the terms in [a(gﬂlz),) we

jr—e I=—sex=|i] feN

s o 20). $iafan] -

have
%x—vi 2 +I i=0

x:l

sen
This transforimation expresses a cut in horizontal slices of the sum Eg,lz (). The discrete

jm—a

convelution product ¥ = f#g,, can then be rewritten in function of the [ (g°| z) J
iJien



y=te=

Ay=(r8 )= 2 (£6-5)-24,0)) =)§n[f (t=2) 2w|a£g“|: 1)]

yu—wm y=—so

We now group the terms in | ol g, . This yields : x b
oz
iJeN =0 2)' + 1 x=i-y

Moreover, if feQ,, 3e>0, VseZ, (d(f)—-f} L<x§}( —\)S( (f)+—Z~)-k.So, for

each term of the sum over y, we have

a(Sa(z) x=tty

e 2y +1 y e 2y+1
ofsae), {155 20 < = B s o), {055 B

I={—y

e'a(gap;) a(go|z)_ x=14¥ e'a(ga|z)
d(f)'a(galz)y—' 2})+1 z =< 2y+1} 'N‘E_yf(r_x) = d(f)a(gcr'[)y +~—2y+{ z
and by summing over y and applying ia( Su;z) =1, we obtain :
y=0 4
coofindof oo, el
=)= <d(f)+y——+
() o 2y +l Z() }ZD 2y+1 Iny (f) m 2y+1
d ia(ga"')y <y < d w~—a(g°!z)’
(f)ue-)l=0 il S x{(f) < r(f)-re-)‘:0 5l
i a(galz)_
We  recognise gﬂlz(0)=2 2)“’, and the previous expression  becomes :
y0 &Y

A(F)-e 5 0) 20)<d(F) +e 82, 0).

We now need the following lemina that can be proved by elementary ways :

Lemma 1.I: Let feP and f, cE(f). We have G{-g(‘}zO)< "I'(O)<GJ—C(J:')20) or more
generally Vze Z, o+(}(0) -f,(z)sfﬂlz(z)SE%@ £.(z).

Finally, this lemma: 0
d 2. __,E.,(m.)_

. .1
The convolution product converges in — foward a‘( f ) .
o

End of proof of lemumna 1.



4.3 Conclusion : Convergence for tangents

. .1
The convolution product of vector that depends only on the type of surfels converges in —
o

toward their average value. We have seen this for each component of the vector. For example, if
these vectors are unif tangents, and then we obtain the tangent to the slice contour.

5 Methods proposed

Two direct methods are first proposed, that appear to give some erroneous results for some
surface orientations. We then propose some improvements the correct this drawback.

5.1 One step methods

Two similar methods that uses only one averaging and one local calculus are preseated. In the
first one, drawn from classical differential geometry, the averaged value depends on the slice
contour type, not the tocal operation. Contrarily, in the second one, the averaged value is the
normwl to the surfel, for both slice contours, but the final calculus depends on the surfel type.

5.1.1 First method

When {wo curves on a regular surface intersect at a point P, and are not parallel at this point,

then the surface norinal is colinear to the vector cross product of their tangents. Hence, an idea

is 1o compute the tangent of each slice contour and then to perform a cross product. More

precisely, for each surfel s whose type is ¢, and each slice contour it belong to, we associate the

Z— R’

value f, that expresses a elementary move through the surfel when one
Plz—= 6 o
&(T=£CTry,(2).4)

walks along the slice contour. Therefore, f, *g, converges toward the vector whose jth

i)

- and whose
®(r,1) a, +a,

coordinate is null, and whose coordinate 1’ |®(1, j)I is a(f)=

. _ o) o, .
|® (f ,j)’ th coordinate is d(f):—.-————— . The same calcutation applies for the other
®(r',;) a ta,.
slice contour whose type is t'. The vector cross product of the two previous vectors yields, for
example with (1,1, /) =(1,2,3} :

a, @ @
a, '
- a+a a,+a, a ta
0 +a, 1 Ha, 1T 4+, a,
0 Al - a; I . _ a, | a
= = 2
a a, +a, a,+a; ata, (a,+a2)-(al+a3) a
. 3
a, +a 0 - 2
114, ’
a+a, a ta,
“ 4 q
L | a, |=n, | a, | forasurfel of typeis 1.

The general expression is ————7——~
(ar + a,.) ' (ﬂ, +(I,..)
ay !



5.1.2 Second method

For each slice contour we calculate a vector contained in the slice plane and that is orthogonal
1o the contour that pass through the surfel. For both contours the value convolved is the unit
norinal vector of the surfel. On a surfel of type ¢, the limit of the convolution product is v or v’
depending on the slice contour. For the one whose type is ¢’ the coordinates of v are

a «a

v, =t |y, =0 and v. =—L— For the surfel whose type is ¢”’, the coordinates
a, tag. a, tae
a a, .
ae v, =———, v =—1— and v,.=0. We then compute v this way:
a, +a, ' a +ta,
f T f i
1 1
Vv Y o _
v, :——'———‘24 =y, Vs v = v, Vs v e = e Soowe
a,a a,.a a4, -a
have : v = " —t i . The

and v'.=
) "

"o, ta) (0 +a.) Yes (a,+a,)-(a, +a, a, +a,) (a +a.)

final value obtained is the same as in the first method,
5.1.3 Insufficiency of the one step method in some particular orientations

First, we notice that the frequency of a surfel of type ¢ is proportional to the fth component of
the discrete plane normal. We examine here angular errors of the normal calculated with the
first one step methods. Tangent vectors will be considered as the sum of two vectors. The first
one is the ideal tangent vector of which the l-norm (sum of the absolute values of the
coordinate) is 1, (because the 1 norm of the initial geometrical values arc one and the

convolution kernel is of norm 1), The second one is an error term ¢;. So we have 1, =T, +e¢;.

Then:tiAtJ,=(?;+ej)A(7}+eJ,):'1,TATj+'I;AeJ,+’I}Aef+efAej=N(,-+E with N, =T AT,

Ny

and E=T re, +T, ne, +€ ae,. Angular accuracy is an increasing function of L The
Y g
v b

a;

, The euclidian norm of each
a, +a,)(a, +a,)

norm of the normal on surfel of type k is a, =

1
of the tangents is between E and I, but HN,J] can be small if tangents are nearly parallel.

This case appears when the surfel of the calculus is of a sparse type. Therefore the one step
method leads to a big error if the normal of the plane contains a near zero coordinate, cven if

a.
1+~
. H a .
the error on tangents is small. Moreover, we have ~% = aJ . Thus, the more frequent in the
”,l 1+ 28
a,

plane the surfel is, the greater is the norm of the calculated normal, and so the greater is the
precision. In discrete planes and straight lines, spare surfels are always isolated. One can show
that the norm of the vector cross product calcutated on a surfel that is not of the rarest kind is

1 .
not less than —==10,408 , and that the one calculated at surfel of the most frequent type is not

J6

3 . \ .
less than — =0,433. We will now infer from these remarks some calculus methods that



guarantee a small angular error whatever the surfel type is.

5.2 Improved one step methods
A simple correction is to check the norm of the normal and, if it is lower than some fixed value,

1 . .. R
— for example, to take for final value a linear combination of the normal obtained on

76

. . 1 .
adjacent surfels, that have certainly a norm greater than 78_ Cne can also check if the norm

ratio between the surfel and some surfels in its neighbourheod is lower than a fixed value,

5.3 Two steps method

Another possibility is to perform another recursive calculus to get an average of the normal
obtained at the first step. This is correct because in each of the slice contour, the average norm

a a; . 1
of the calculated normal +' 1y + -5, admits the lower bound ﬁ The average of

a, +a; o +a,
: : 1|_ga ] 4 a
this value for the two slice contours — H oyt n; + -n, | has
2| a +aq a; +a, a, +a, a +a,

0,429 for lower bound, for rarest surfels. This value increase for more frequent surfels. This
two steps method produces the better experimental resuits on curved object and will be
evaluated in section 7. An essential difference with the previous one step methods is that it take
into account not only surfels of the two slice contours, but also those of a 2D neighbourhood
around the central surfel. Thus the method is not very sensitive to noise.

The previous corrections guaraniee that as the errors made in the caleulus on the tangents
decrease, then the angular error on the final normal decreases oo, for any type of surfel.

6 Lvaluation of the algorithmic complexity

If the object is in a cube with n voxels edges, the number of slice contours is roughly 3.n, and
its number of surfels is around #*. We want to compute the normal field at the scale o . The
cost of the initialization of the recursive calculation is proportional to the number of slice
contours and to the scale : O{o-n). The recursive computation needs a constant computational
amount for each surfel. There are then only local computations. If the two steps method is used,

we just have to double this cost. To conclude, the cost of our method is O(G-n +nz) .

7 Experimental results and applications

Applications of geometric ficlds of the surface of an object are numerous and important since
such values are the basis of most of the recognition or interpretation processes. Moreover, it is
useful to know the limits of the calculus algorithms used, especially when the values computed
are used to measure real world quantities.

1.1 Angular errors

We have done several calculus upon families of spheres and toruses, using the two steps
method and varying the scale of the filter used for each step. We have first noticed that the
nature of the fow pass filter used had little consequence on the quality of results. So, it is
possible to use a first order recursive filter that implements the convolution product by the



[ 4

\ 1 - .
function —-e '?'. Some scales produce best results for mean and maximal angular errors.
o

These scales depend on the surface of the object. For planes suefaces, the larger the scales are,
the better the results. For curved surfaces, these optimal scales depend on the curvature of these
surfaces. As we want a local value, if we increase the scale, we take into account a wider
neighbourhood of surfels and if the distribution of surfels is not uniform, we increase the error,
On the other hand, if we decrease the scale, the value on the central surfel becomes
predominant, and we get a value that corresponds to the structure that describes the objeet, but
not to the object itself. We notice that for the sphere the average error is smaller than the
variation of the normal orientation along a single surfel. The accuracy of the methoed is at the
scale of the surfel for a sphere. But the case of sphere is advantageous since its slice contours
are convex, and that we then take advantage of the local symmetry. This is not the case for the
torus for which, compared to a sphere with equal curvature we get a greater error. But this does
not break the rule : the smaller the curvature, the smaller the angular error, and the greater the
scale leading to the minimal error. In ather words, we can say that the accuracy increases when
the discretization step decreases. The error considered is the angle in degree between the
normal calculated by our algorithm and the theoretical normal at the centre point of the surfel.

6.5 —¢— Minimal average error

- . Exponential filter
55 -~ Minimal maximal erTor P
' ~—=— Minimal average error Gaussian filter

- Minimal maximal error

- Variation of the nomal over one surfel

Radius of the sphere

,

10 20 30 40 50 Error iﬁ\\
25 T degree
Fig. 4. Scales leading to the
minimal maximum angular error 15 -:h—\“&
{samn of the scale of each step) s .%‘T“—‘“‘“"‘“ﬂ"" e—— 3
10 Radius 20 invoxel. 30 40 50
Fig, 5

7.1.1 Results for spheres

For spheres, cach orientation is equally represented, and the problem of discretization
orientation does not exist. Scales that lead to a minimal error are roughly identical for the two
steps. We recall that the first step consist in calculating the tangents of each slice contour
passing through a surfel and that the second step produce an average of the normals obtained by
cross product. We say that the scale of the calculus is the sum of the scales of each step.

7.1.2 Results for toruses

These toruses are revolution surfaces around the Z axis generated by circle of 1, called small
radius. This circle is in the Oz Ox plane. Its centre is at a distance r2, called big radius, of the Z
axis. The curvature of a # r2 torus correspond to the one of a ry sphere. The results are not as
good as those of the spheres because slice contours have inflexion points. Nevertheless, they
follow the rule given in 7.1. The value of the minimum error in Fig. 6 is repeated in Fig. 7.
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7.2 Area calculus

Another application is the computation of the area of a discrete surface. If we do this by

counting the munber of surfels, the result for a plane surface may be from 1 to \fé times the
right value, depending on the orientation of the plane. For a discrete sphere of radius r ( the
unit is the discretization step )}, the area will roughly be of 6.7 %, whereas the right value is
around 4 -7+ r® . A much better value is obtained by noticing that the contribution of a surfel to
the total areca is the area of its projection on its normal plane. For spheres, the relative error
with this technique is less than 0.1%, and for toruses, around 1%. Since the area of each surfel
is constant, the calculus of an area is the sum of the scalar product of the normal of the surface
with the normal of each surfel. Since only one component of a normal o a surfel is non zero, we
just have to sum the corresponding components of the calculated surface norinal.

7.3 Applications

A straightforward application of the normal field of the surface, iNustrated Fig. 9 is the display
of voxel objects, with object space shading. The precise structure of the object is preserved, and



no smoothing artefact due to image space shading is introduced. It is also possible to compare
orientations of two normal fields computed at two different scales to exhibit some details
specific to a scale. This is shown on a brain in Fig. 10 and Fig. 11.

8 Conclusion and perspectives

We have described an accurate and efficient technique for compute the normal field of a
discrete surface made of surfels. It depends on a scale parameter. Both time and space
complexity is linear with respect to the number of surfels. The calculus of the normal field of
the surface of an human brain composed of 170000 surfels takes ten seconds on a SUN SPARC
10. We have proved the convergence of the method at each surfel for a plane surface. Qur
method differs from the ones proposed in [8] where partial derivatives of the grey level image
are used. We here just use the discrete surface of the object, a two dimensional struciure that
has most of the time a far less cardinality than the 3-D volume enclosing the object. Our
method is fast enough to be useful in an interactive tool of manipulation of discrete surfaces, or
in a multi-scale context. The interest of such a toof should be greatly improved if higher order
differential invariants like curvatures were available. We can consider the surface as a classical
2-D grey level image where the grey level is a geometrical value. It is then possible to adapt
some operators working on classical 2-D grey level images to do sonie segmentation work. Our
goal is indeed to segment complex surfaces like human cortex surfaces by mean of local
geometrical properties. We have seen that the comparison of the local orientation of the surface
computed at two different scales could be a good starting point to achieve this project.
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