
HAL Id: hal-00965737
https://hal.science/hal-00965737

Submitted on 25 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topological Order Based Planner for Solving POMDPs
Jilles Dibangoye, Guy Shani, Braim Chaid-Draa, Abdel-Illah Mouaddib

To cite this version:
Jilles Dibangoye, Guy Shani, Braim Chaid-Draa, Abdel-Illah Mouaddib. Topological Order Based
Planner for Solving POMDPs. Proc. 21st International Joint Conference on Artificial Intelligence
(IJCAI 2009), 2009, pasadena, United States. pp.425–430. �hal-00965737�

https://hal.science/hal-00965737
https://hal.archives-ouvertes.fr

Topological Order Planner for POMDPs

Jilles S. Dibangoye

Laval University

gdibango@ift.ulaval.ca

Guy Shani

Microsoft Research

guyshani@microsoft.com

Brahim Chaib-draa

Laval University

chaib@ift.ulaval.ca

Abdel-Illah Mouaddib

University of Caen

mouaddib@info.unicaen.fr

Abstract

Over the past few years, point-based POMDP
solvers scaled up to produce approximate solutions
to mid-sized domains. However, to solve real world
problems, solvers must exploit the structure of the
domain. In this paper we focus on the topologi-
cal structure of the problem, where the state space
contains layers of states. We present here the Topo-
logical Order Planner (TOP) that utilizes the topo-
logical structure of the domain to compute belief
space trajectories. TOP rapidly produces trajecto-
ries focused on the solveable regions of the belief
space, thus reducing the number of redundant back-
ups considerably. We demonstrate TOP to produce
good quality policies faster than any other point-
based algorithm on domains with sufficient struc-
ture.

1 Introduction

POMDPs provide a powerful framework for planning in do-
mains involving hidden states and uncertain action effects.
While exact solvers can only handle small domains [Cassan-
dra et al., 1997], approximate methods have shown the abil-
ity to handle larger problems. A well known approach for
computing approximate solutions is the point-based method
[Pineau et al., 2003a]. Point-based algorithms compute a pol-
icy using point-based backups (updates) over a finite subset of
reachable belief states, hoping that the computed policy will
generalize well to other, unobserved beliefs.

In many cases, real world environments contain much
structure. Indeed, several forms of structure have been inves-
tigated in the past [Shani et al., 2008; Pineau et al., 2003b].
Algorithms that take advantage of such structure can solve
structured problems much faster than generic algorithms.

While generally it is possible for an agent to move back
and forth between world states, in many cases effects of
actions cannot be undone. In a manufacturing plant, for
example, robots may glue together two components. Af-
ter the components are glued, it is impossible to “unglue”
them. Thus, transitions into the state where the components
are glued cannot be traversed backwards. In such cases we
can divide the problem state space into layers — groups of
states; the agent can move between each two states of a layer;

when the agent leaves a layer, it cannot return to it. We
call this a topological structure [Dai and Goldsmith, 2007;
Bonet and Geffner, 2003; Abbad and Boustique, 2003] and
say that a problem has much topological structure when the
problem state space has many layers. These characteristics
are embodied in many real-world applications including as-
sembly line optimization; network routing; or railway traffic
control. Consider the assembly of a car that consists in mul-
tiple steps: first the car moves to the engine installation; then
the engine installation crew checks for malfunctions; there-
after finishing the engine installation the car moves respec-
tively to the hood and the wheel stations. Each transition
from a station to another is preceded by a quality measure-
ment procedure that prevents car malfunctions. Whenever
malfunctions perceived by noisy sensors occurred the car is
sent back to the former station. However, once a car has been
properly assembled it is never disassembled. In this paper,
we aim at tackling real-world applications that yield such a
significant topological structure.

Given such topological structure a point-based algorithm
can focus its attention on subsets of the belief space where
the value function can be improved, reducing the number of
redundant backups. Indeed, generic point-based algorithms
execute in many cases a very large number of backups that
result in no improvements to the value function [Pineau et
al., 2003a; Smith and Simmons, 2005; Shani et al., 2007].
As the point-based backups lie at the core of a point-based al-
gorithm, reducing the number of executed backups can speed
up an algorithm considerably.

In this paper we present the Topological Order Planner
(TOP) that uses the topological order of the underlying MDP
to find good belief space trajectories. TOP groups together
states into layers, creating an acyclic layer graph. Layers are
solved in reversed topological order, starting with layers that
contain goal states. Belief space trajectories are directed to-
wards the solveable layers of the model. Once a layer has
been solved, trajectories that reach that layer can be termi-
nated, resulting in shorter trajectories and thus — less point-
based backups. Before choosing TOP we should first check
whether the domain contains multiple layers. When the do-
main does not contain such structure, choosing other point-
based algorithms is reasonable. However, when the domain
contains a significant topological structure, TOP will outper-
form other point-based algorithms.

1684

We describe the family of topological solvers and explain
when such a solver is expected to compute an optimal pol-
icy. We then suggest a specific instance of this family, ex-
plaining the difficulties in implementing the various parts of
the algorithm in a POMDP context. We provide an extensive
experimental study of our algorithms in environments with
different levels of topological structure, showing how our al-
gorithm gains more power as the number of layers grows.

2 Background and Related Work

We begin with an overview of Markov Decision Processes
(MDPs) and Partially Observable Markov Decision Processes
(POMDPs). We then discuss the point-based approach to
solving POMDPs, focusing on trial-based algorithms in this
family.

An MDP is a tuple (S, A, T,R, γ) where: S is a discrete
and finite state space; A is a discrete and finite action space;
T (s′|s, a) is a function of transition probabilities, i.e., the
probability of transiting from state s to state s′ when taking
action a; R(s, a) is a real-valued reward function, that defines
the outcomes received when taking action a in state s; γ is a
discount factor.

A POMDP is a tuple (S, A, T,R, Ω, O, γ, b0) where:
S, A, T,R are the same as in an MDP; Ω is a discrete and
finite set of observations; O(o|s′, a) is the probability of ob-
serving o after executing a and reaching state s; A belief state,
describes the probability distribution over states, providing a
sufficient statistic for a given history. b0 defines the initial be-
lief state, i.e., the agent belief over its initial state. The next
belief state, denoted b′ = τ(b, a, o), that incorporates the lat-
est action-observation pair (a, o) and the current belief state
b, is updated as follows:

b′(s′) =
O(o|s′, a)

∑
s b(s)T (s′|s, a)

pr(o|b, a)
(1)

pr(o|b, a) =
∑

s

b(s)
∑

s′

T (s′|s, a)O(o|s′, a) (2)

Given a POMDP, the goal is to find a policy, mapping his-
tories or belief states to actions, that maximizes some aspect
of the reward stream, such as the average discounted reward
(ADR). A popular approach to computing such policies is by
computing a value function that assigns values to belief states.
A value function V can be represented as a set of α vectors,
i.e., V = {α1, α2, · · · , αm} , such that: V (b) = maxi αi · b.

2.1 Point-Based Value Iteration

It is possible to compute an optimal value function for the
entire belief space through iterative complete backups [Cas-
sandra et al., 1997]. However, the number of α-vectors gen-
erated by complete backups is exponential in the horizon of
the problem — the number of steps required to achieve a re-
ward. As such, exact computation of the value function does
not scale beyond small toy problems.

However, V can be iteratively improved using backup op-
erations over specific belief points, known as point-based
backups [Pineau et al., 2003a; Spaan and Vlassis, 2005;

Smith and Simmons, 2005]:

gα
a,o(s) =

∑

s′

O(o|s′, a)T (s′|s, a)α(s′) (3)

gb
a = ra + γ

∑

o

arg maxgα
a,o : α∈V (b · gα

a,o) (4)

backup(b) = arg maxgb
a : a∈A (b · gb

a) (5)

where ra(s) = R(s, a) is a vector representation of the re-
ward function.

Instead of computing an optimal value function over the
entire belief space, we can compute V only over a finite sub-
set B of belief states [Lovejoy, 1991]. As a result, the backup
operator is polynomial and the complexity of the value func-
tion is bounded by the number |B| of belief states. This
method yields good policies if an optimal value function
over B may generalizes well other belief states. To collect
good belief subsets, point-based algorithms collect only be-
lief states that are reachable from the starting belief state b0

[Pineau et al., 2003a]. Techniques of this family differ on the
method used to collect the reachable belief states and the way
they order the point-based backups on the collected beliefs.

One approach to collect belief states is the trial-base ap-
proach [Bonet and Geffner, 2003], in which an algorithm ex-
ecutes a trajectory in the belief space, usually starting from
b0. Trial-based algorithms iteratively compute such a trajec-
tory, execute backups on the belief states in the trajectory,
and then compute a new trajectory. The algorithm therefore
needs only remember the beliefs of the current trajectory, but
can still compute a value function for many belief points.

Of this family of algorithms, heuristic search value iter-
ation (HSVI) has demonstrated an impressive performance
on a number of larger domains [Smith and Simmons, 2005].
HSVI creates trajectories based on an upper bound and a
lower bound over the value function, denoted V̄ and V re-
spectively. Each such trajectory starts with the initial belief
state b0. HSVI always executes the best action specified by
the upper bound, and then selects the successor belief state,
which maximizes the gap between the bounds. Once the tra-
jectory is finished, the belief states are updated in reversed
order (Algorithm 1).

HSVI generates good trajectories, especially after the
bounds become reasonably tight, but the maintenance of the
two bounds incur considerable overhead. Hence, the gain re-
sulting from the reduced number of backups does not fully
manifest in the total execution time.

The Forward Search Value Iteration algorithm (FSVI
[Shani et al., 2007]) uses the underlying MDP Q-value func-
tion as a heuristic to traverse the belief space (Algorithm 2).
Through the traversal, it maintains both the underlying MDP
state s and the belief state b, selecting actions based on the
current state and the MDP Q-value function. FSVI proceeds
then by selecting the next state s′ and observation o by sam-
pling them from T (·|s, a) and O(·|a, s′) respectively. The ad-
vantage of FSVI is that the overhead of computing the MDP
Q-value function is negligible and so is the action selections.

One major drawback of FSVI is its inability to recognize
traversals that will improve its state information. In fact, by

1685

Algorithm 1: The HSVI algorithm.

begin

initialize V̄ and V
while V̄ (b) − V (b) > ε do

EXPLORE(b0, V̄ , V)

end

EXPLORE(b, V̄ , V)
begin

if V̄ (b) − V (b) > εγ−t then
a∗ ← arg maxa QV̄ (b, a)
o∗ ← arg maxo (V̄ (τ(b, a, o)) − V (τ(b, a, o)))
EXPLORE(τ(b, a∗, o∗), V̄ , V)
add(V̄ , backup(b, V))
V̄ ← HV (b)

end

Algorithm 2: The FSVI algorithm.

begin
Initialize V
repeat

Sample s0 from the b0 distribution
MDPEXPLORE(b0, s0)

until V has converged

end

MDPEXPLORE(b, s)
begin

if s is not a goal state then
a∗ ← arg maxa Q(s, a)
Sample s′ from T (·|s, a)
Sample o from O(·|a∗, s′)
MDPEXPLORE(τ(b, a∗, o), s′)

add(V, backup(b, V))
end

making use of the optimal Q-value function of the underly-
ing MDP, FSVI limits its ability to create traversals that will
visit states that may provide useful observations. Also, FSVI
uses a static policy for generating traversals that ignores the
current value function. As a consequence, FSVI results in
a sub-optimal value function (over visited beliefs) in certain
domains.

Both FSVI and HSVI backup the entire path that was ex-
plored. It is possible that many of these backups will result in
redudant α vectors, mostly because the value of the successor
beliefs did not change. As we will later show, on most bench-
marks, the number of these redundant backups far outnumber
the number of backups that result in useful α vectors.

3 Topological Structure

In many realistic domains, some actions could not be re-
versed. That is, once an agent has executed an action that
took it from state s to state s′, it can no longer go back to
state s.

Example 1 A factory may have an assembly line, where
products must go through multiple stations. At each sta-
tion, one or more components are being added to the prod-

uct. While there is some partial order required, since some
stations must precede other stations, in other cases the or-
der of stations is not important. It is possible, that a product
may reach a station with a malfunction, and gets sent back
to a former station for repair, but once a station has prop-
erly assembled its components, they are never disassembled.
The assembly management system can therefore balance the
workload by directing products towards free stations. Assum-
ing that components are never disassembled from the product,
this domain has a significant topological structure.

Given the topological structure we identify sets of states
that we call layers. A layer is a strongly connected com-
ponent — the agent can move back and forth between any
two states that belong to the same layer, but once the agent
has left a layer, it can no longer go back to it. The layers
of states can be organized as a DAG, where there is an edge
from layer Si to layer Sj if there exists some state si ∈ Si, an
action a, and a state sj ∈ Sj such that T (si, a, sj) > 0. In-
deed, several successful attempts were made in the past to use
this topological structure of the state space to speed up MDP
solvers [Dai and Goldsmith, 2007; Bonet and Geffner, 2003;
Abbad and Boustique, 2003].

A topological structure in the MDP state space induces a
topological structure in the belief space. For example, let b
be a belief with non-zero probabilities for some states in a
layer Si, and all the probabilities of states belonging to lay-
ers that are parents of Si are zero. Let b′ be some successor
(not necessarily immediate) of b that has zero probabilities
for states in Si. Then, while the agent can move from b to b′,
it cannot go back from b′ to b.

However, as the belief space is infinite, we cannot de-
tect the strongly connected components (layers) of the belief
space. There is also no direct mapping from the layers of
the belief space into the layer of the state space. Indeed, it is
possible for a belief to have non-zero probabilities over states
that belong to various layers. Therefore, the belief space has
more layers than the MDP state space. In some cases, it is
even possible that the number of layers in the belief space
will be infinite.

4 Topological Order Planning

Given the layers of the state space (or the belief space), a
solver can exploit this information to update states (or beliefs)
in a smart order. Cycles in the state space force value and pol-
icy iteration algorithms to repeatedly update the value of the
same state, until convergence. In our case, cycles exist only
within a layer. However, the layer structure is by definition
acyclic. As such, we can solve each layer only once.

To define the correct order by which layers should be
solved, we introduce the notion of solved layers and solve-
able layers. A layer Si is solved if for each state s ∈ Si,
V (s) is within ǫ of its optimal value. Thus, the value of all
states in a solved layer cannot be further improved. A layer
Si is solveable if it does not have any successors, or if all of
its successor layers are already solved. A topological order
solver executes updates only on states in the solveable layers,
because backups on solved layers cannot improve the value
function. Backups on other non-solveable layers may not be

1686

final — these layers need to be revisited after their successor
layers have been solved.

When the domain has goal or terminal states — absorbing
states that the agent cannot leave — these states are forming
single state layers. These layers are always solveable.

Theorem 1 A topological order solver, that updates only
states in solveable layers, converges to an ǫ optimal value
function if:

1. Each layer becomes solveable throughout the algorithm.

2. Each solveable layer eventually becomes solved.

5 Topological Order Planner for POMDPs

In a POMDP, because we cannot compute the topological
structure, an implementation of the pure topological solver
requires some approximations. A POMDP topological solver
requires a number of key components:

• Identifying that a layer is solved.

• Identifying that a layer is solveable.

• Finding beliefs that belong to solveable layers.

Below, we explain the challenges and suggest solutions to all
of these components.

Our approach is motivated by the trial-based, point-based,
family of POMDP solvers. We execute traversals in belief
space towards the solveable layers, and update only beliefs
that belong to solveable layers.

5.1 Identifying Belief Space Layers

As we explained above, it is impossible to identify the layers
of the belief space in the general case. We will therefore map
the layers of the POMDP onto the MDP layers. We do so by
running trajectories in both belief space and state space at the
same time, as was done by the FSVI algorithm. Throughout
the trajectory we generate pairs of states and beliefs. We say
that a pair (s, b) belongs to a layer Si if s ∈ Si. This approach
is only an approximation of the true belief layers. First, it
may be that a single belief will be a part of multiple layers,
associated with different MDP states. Second, this method
maps many different belief layers into the same MDP layer.
However, as we will later show, this approximation is very
useful in practice, and allows us to estimate whether a belief
belongs to a solveable layer.

Formally, a layer Si is solved, if for every state s ∈ Si, and
every belief b such that b(s) > 0, the value that b can gain
from state s cannot be improved. That is, if V is the current
value function, and V ∗ is the optimal value function, let αb =
maxα∈V b ·α and α∗

b = maxα∈V ∗ b ·α, then αb(s) = α∗

b(s).
We introduce s.SOLVED as a means of checking whether state
s and its corresponding layer Si are solved.

While the above is correct, we cannot check every b that
has a non-zero probability on a single state s because the
number of such beliefs is infinite. We overcome this by main-
taining an estimate on whether beliefs associated with a state
can be further improved. For each state s we maintain p(s)
which is an estimate of the potential improvement to beliefs
associated with s. We initialize p(s) = maxa R(s, a). Each
time a belief associated with s is updated, we set p(s) = 0.

When a backup for a belief b associated with s′ generates a
new α vector that improves the value of s′ by δ, we iterate
over the predecessors of s′. For each predecessor s of s′, we
set p(s) = max{δ · T (s′|s, ·), p(s)}. Thus, a state, and all its
associated beliefs, are considered solved, when all its succes-
sor states and their associated beliefs have been solved. This
describes the UPDATE procedure, see Algorithm 3.

5.2 Traversing the layers

TOP is a trial-based algorithm, that is, TOP executes traver-
sals in belief space, and afterwards updates beliefs that were
observed during the traversal in reversed order. As we are in-
terested only in the solveable layers, we need to create reach-
able trajectories within these layers. To achieve that, we tra-
verse both the MDP state space and the POMDP belief space
together, as was suggested by the FSVI algorithm.

Before the trial begins we choose a start state s0 randomly
and a goal state sg reachable from s0 for the current trajec-
tory. When there are no solved layers, the goal state can be
either a terminal state of the domain, if such a state exists,
or any other state of a solveable layer otherwise. After lay-
ers have been solved, we choose a goal state from one of the
solved layers that is reachable from the selected start state.

Our trials move from the start state to the goal state using
the most likely path in MDP state space. We use the Floyd-
Warshal algorithm, that computes maximum weight paths in
graphs to find the path for us. As we do not select action out-
comes stochastically, this method assures that every traversal
will end at the goal state.

During the traversal we maintain the observed state-belief
pairs. Once the traversal ends, we execute backups in re-
versed order. However, we limit the value function updates
only to state-belief pairs that belong to a solveable layer.

After the update is completed, we check whether the solv-
able layer we have visited became solved. If all the states in
that layer have a potential improvement p(s) = 0, we con-
clude that the layer is solved. Otherwise, the layer remains
solvable. The algorithm is terminated when all the layers be-
come solved.

Algorithm 3: Topological Order Planner for POMDPs.

TOP(b0)
begin

repeat
choose s0

choose sg

TOPTRIAL(s0, sg, b0)
until V has converged

end

TOPTRIAL(s, sg, b)
begin

if ¬s.SOLVED then

s′ ← PICKNEXTSTATE(s, sg)
a ← PICKACTION(s, s′)
o ← PICKNEXTOBSERVATION(s′, a)
TOPTRIAL(s′, sg, τ(b, a, o))
If (s, b) belongs to a solveable layer UPDATE(b, V)

end

1687

6 Empirical Evaluations

We now evaluate the performance of TOP in comparison
with other recent forward search algorithms such as HSVI
[Smith and Simmons, 2005], and FSVI. In addition, we have
also added some solvers including PVI, a prioritized POMDP
solver [Shani et al., 2006], PBVI [Pineau et al., 2003a], and
SCVI [Virin et al., 2007]. Experiments have been run on
an Intel Core Duo 1.83GHz CPU processor with 1Gb main
memory.

6.1 Results

We begin by demonstrating the advantage of TOP as the num-
ber of layers in the domain increases. To show that, we mod-
ified the well known maze navigation domains Hallway and
Hallway2, introducing “one way doors” that work only in the
direction of the goal. As we can see in Table 1, while the per-
formance of HSVI and FSVI remains roughly fixed for a fixed
target ADR as the number of layers grows, TOP performance
improves significantly.

As we explain above, TOP reduces the number of redun-
dant backups. Such backups can originate from a number
of cases — backups over beliefs that already achieved their
maximal possible value, backups on beliefs whose successors
have not yet improved, or backups on beliefs that improve the
value, but are too early. In the last case, additional backups
will later be needed on the same belief. To estimate the first
two types of redundant backups by counting the number of
backups that did not provide an improving α vector, which
we call useless backups. To estimate the last type of redun-
dant backups, we can compare the number of useful backups,
by subtracting the useless backups from the total number of
backups.

We continue to compare the performance of TOP to other
algorithm over well known benchmarks. In non-layered do-
mains, there is no reason to expect TOP to outperform FSVI,
as both methods use a similar strategy in selecting their trajec-
tories. We therefore created modified layers of non-layered
domains by introducing one-way doors towards the goal. The
well known RockSample benchmarks are very structured, in-
deed when a rock is sampled it cannot be unsampled. In these
domains TOP outperforms all other algorithms. We can see
that this improvement is mainly because TOP executes much
less backups, and almost no useless backups in all problems.

7 Discussion

Other researchers have suggested to leverage different types
of structure. For example, [Shani et al., 2008] explain how to
solve factored POMDPs using Algebraic Decision Diagrams
and [Pineau et al., 2003b] suggested to create hierarchies of
POMDPs to solve large problems. Topological structure is
orthogonal to such approaches. It is possible that a factored
POMDP would also possess a significant topological struc-
ture. As such, we believe that our approach is complimentary
to most other types of structure and can be integrated into
other structured solvers. However, as we work with the state
space, some modifications should be made to TOP in order to
handle such domains. We intend to investigate such improve-
ments in the future.

Method ADR V (b0) |V | Time #Backups Useless Scale

(sec) #Backups

Hallway-layered #layers : 10
HSVI 0.62 1.46 143 27 199 35 ×6.75

FSVI 0.62 2.08 337 57 612 143 ×14.2

PBVI 0.60 2.18 249 155 3659 1289 ×38.7

SCVI 0.62 1.88 693 58 1420 104 ×14.5

PVI 0.50 0.36 64 288 120 12 ×72

TOP 0.62 1.43 25 4 127 0 ×1

Hallway-layered #layers : 15
HSVI 0.62 1.54 57 11 123 10 ×11

FSVI 0.62 2.21 266 49 612 139 ×49

PBVI 0.62 2.24 127 87 2581 1045 ×87

SCVI 0.62 2.0 609 56 1430 109 ×56

PVI 0.50 0.36 64 288 120 11 ×288

TOP 0.62 0.47 12 1 34 0 ×1

Hallway2-layered #layers : 10
HSVI 0.48 0.60 357 200 473 64 ×10.5

FSVI 0.48 0.60 450 127 408 293 ×6.68

PBVI 0.47 0.64 32 94 795 23 ×4.94

SCVI 0.48 0.65 1448 435 2230 148 ×22.9

TOP 0.48 0.34 63 19 135 6 ×1

Hallway2-layered #layers : 15
HSVI 0.57 2.42 368 244 1114 258 ×10.2

FSVI 0.57 1.51 290 71 357 60 ×2.95

SCVI 0.57 1.61 482 120 1280 127 ×5

TOP 0.57 0.95 48 24 164 0 ×1

Hallway2-layered #layers : 20
HSVI 0.57 2.73 296 201 1102 133 ×14.4

FSVI 0.57 1.55 218 65 357 38 ×4.64

SCVI 0.57 1.58 388 48 1240 109 ×3.43

TOP 0.57 0.77 38 14 104 8 ×1

cit-layered #layers : 12
HSVI 0.83 0.66 492 2170 873 370 ×50

FSVI 0.83 0.68 403 1278 1122 718 ×29.7

SCVI 0.83 0.72 535 224 550 5 × 5

TOP 0.83 0.16 36 43 134 0 ×1

Mit-layered #layers : 11
HSVI 0.90 0.85 731 1515 1076 214 ×39

FSVI 0.90 0.80 164 494 1275 248 ×13

SCVI 0.90 0.63 496 101 520 4 ×2.65

TOP 0.90 0.53 47 38 196 0 ×1

Rock Sample (4,4) #layers : 17
HSVI 18.04 17.92 173 11 239 33 ×5

FSVI 18.04 13.63 79 7 98 12 ×3

SCVI 16.80 15.93 405 520 16350 797 ×260

TOP 18.04 13.60 37 2 63 0 ×1

Rock Sample (5,7) #layers : 129
HSVI 24.2 22.96 208 2754 461 124 ×5

FSVI 22.2 14.97 353 4057 384 12 ×8

SCVI 21.3 20.22 432 535 800 147 ×1.09

TOP 24.3 14.51 68 488 95 0 ×1

Rock Sample (7,8) #layers : 257
HSVI 20.1 19.69 178 7641 226 31 ×6.87

FSVI 19.7 18.43 105 4503 185 16 ×4.04

TOP 20.1 17.68 73 1112 72 0 ×1

Table 1: Performance measurements on layered domains.

The idea of using the topological structure of the state
space has been studied repeatedly in the context of MDPs
[Dai and Goldsmith, 2007; Bonet and Geffner, 2003]. In an
MDP, once the layers (strongly connected components) have
been identified, we can execute value iteration only over state
in a single solvable layer, until it becomes solved.

As we have discussed above, a direct application of these
ideas to POMDPs is challenging. First, the belief space
MDP has an infinite state space, making the identification
of strongly connected components difficult. Also, beliefs are
not continuous — in general we cannot expect that a transi-
tion to a close belief (using standard distance metrics) will
be more probable than a transition to farther belief state. As
such, identifying belief partitions using distance metrics will
not honor the topological structure.

Our algorithm also bears some similarity to prioritized
solvers. [Wingate and Seppi, 2005] has thoroughly discussed
prioritization in the context of MDPs, using the Bellman er-
ror. In that context, the priority of the state is the poten-

1688

tial increase in its value function given a backup. [Shani et
al., 2006] have extended these ideas into the POMDP space.
They also used the Bellman error, but over beliefs rather than
states. One problem with this approach is that it is time con-
suming to update the priorities of beliefs. We note, however,
that a high Bellman error does not indicate that a belief be-
longs to a solveable layer. A belief b, such that b(s) > 0 and
R(s, a) > 0 may initially have a high Bellman errors, even
though s may belong to a layer far from the solved layers, and
TOP will update b only late in the process.

A second prioritization approach was suggested by [Virin
et al., 2007]. Their SCVI algorithm partitions the state space
into clusters of states with similar MDP value. They collect a
finite set of beliefs and assign cluster weights to beliefs based
on the probabilities of states in each cluster. Then, they iter-
ate over clusters by decreasing cluster value and update the
beliefs associated with the cluster. It is possible to think of
SCVI as if it induces layers in domains with no a-priori topo-
logical structure. SCVI is not a trial-based algorithm, but it
may be that their ideas could be brought into TOP in order to
handle generic domains by introducing artificial layers.

For trial based solvers it is crucial to balance between the
identification of good trajectories, and the time that is re-
quired to compute them. HSVI uses an upper bound and a
lower bound over the value function, to identify belief states
where the gap between bounds can be reduced. Traversals are
therefore not necessarily directed towards the regions where
the lower bound, which controls the policy, can be improved.
Also, the maintenance of the upper bound is extremely time
consuming and therefore HSVI spends much time on com-
puting the trajectories.

FSVI, on the other hand, is very fast in computing forward
trajectories. As it only uses the static value function of the
underlying MDP, computing the next state becomes very fast.
However, FSVI does not change its traversal strategy as the
value function gets updated. Therefore, FSVI might repeat-
edly revisit areas of the belief space that were already solved.

Both FSVI and HSVI execute many redundant value func-
tion updates, as they do not contain a mechanism for know-
ing whether a backup will be beneficial, or whether additional
backups will be needed afterwards. As we have demonstrated
above, TOP reduces the number of redundant backups be-
cause it considers only the solveable layers.

8 Conclusion

We have introduced a new POMDP solution method — topo-
logical order-based planning (TOP), that uses the structural
properties of POMDPs to reduce the number of costly value
function updates. Our method uses the layers of the MDP
state space to identify layers in belief space. TOP updates
only beliefs that belong to solveable layers and thus reduces
the number of times that a belief is visited. We have demon-
strated how TOP outperforms other POMDP solvers in do-
mains that contain significant topological structure.

In this paper we identified the general requirements from
a TOP solver, and suggested a possible implementation for
POMDPs. In the future, we will investigate the integration of
methods from other solvers into TOP, such as priorities, and

value-directed clustering. We also intend to apply TOP to fac-
tored domains, formalizing layers in terms of state variables
instead of states as it is currently assessed in a human-robot
interaction scenario of sharing a mission of object transporta-
tion.

References
[Abbad and Boustique, 2003] Mohammed Abbad and Hatim Bous-

tique. A decomposition algorithm for limiting average markov
decision problems. Oper. Res. Lett., 31(3):473–476, 2003.

[Bonet and Geffner, 2003] Blai Bonet and Hector Geffner. Faster
heuristic search algorithms for planning with uncertainty and full
feedback. In Proceedings of IJCAI, pages 1233–1238, 2003.

[Cassandra et al., 1997] Anthony Cassandra, Michael L. Littman,
and Nevin L. Zhang. Incremental Pruning: A simple, fast, exact
method for partially observable Markov decision processes. In
Proceedings of UAI, pages 54–61, 1997.

[Dai and Goldsmith, 2007] Peng Dai and Judy Goldsmith. Topo-
logical value iteration algorithm for Markov Decision Processes.
In Proceedings of IJCAI, pages 1860–1865, 2007.

[Lovejoy, 1991] W. S. Lovejoy. Computationally feasible bounds
for partially observable markov decison processes. Operations
Research, 39:175–192, 1991.

[Pineau et al., 2003a] Joelle Pineau, Geoffrey J. Gordon, and Se-
bastian Thrun. Point-based value iteration: An anytime algorithm
for pomdps. In Proceedings of IJCAI, pages 1025–1032, 2003.

[Pineau et al., 2003b] Joelle Pineau, Geoffrey J. Gordon, and Se-
bastian Thrun. Policy-contingent abstraction for robust robot
control. In Proceedings of UAI, pages 477–484, 2003.

[Shani et al., 2006] Guy Shani, Ronen I. Brafman, and
Solomon Eyal Shimony. Prioritizing point-based pomdp
solvers. In Proceedings of ECML, pages 389–400, 2006.

[Shani et al., 2007] Guy Shani, Ronen I. Brafman, and
Solomon Eyal Shimony. Forward search value iteration for
pomdps. In Proceedings of IJCAI, pages 2619–2624, 2007.

[Shani et al., 2008] Guy Shani, Pascal Poupart, Ronen I. Brafman,
and Solomon Eyal Shimony. Efficient add operations for point-
based algorithms. In Proceedings of ICAPS, pages 330–337,
2008.

[Smith and Simmons, 2005] Trey Smith and Reid G. Simmons.
Point-based POMDP algorithms: Improved analysis and imple-
mentation. In Proceedings of UAI, pages 542–547, 2005.

[Spaan and Vlassis, 2005] Matthijs T. J. Spaan and Nikos Vlassis.
Perseus: Randomized point-based value iteration for POMDPs.
Journal of Artificial Intelligence Research, 24:195–220, 2005.

[Virin et al., 2007] Yan Virin, Guy Shani, Solomon Eyal Shimony,
and Ronen I. Brafman. Scaling up: Solving pomdps through
value based clustering. In Proceedings of AAAI, pages 1290–
1295, 2007.

[Wingate and Seppi, 2005] David Wingate and Kevin D. Seppi. Pri-
oritization methods for accelerating mdp solvers. J. Mach. Learn.
Res., 6:851–881, 2005.

1689

