
HAL Id: hal-00965545
https://hal.science/hal-00965545v1

Submitted on 25 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constructing an n-dimensional cell complex from a soup
of (n–1)-dimensional faces

Ken Arroyo Ohori, Guillaume Damiand, Hugo Ledoux

To cite this version:
Ken Arroyo Ohori, Guillaume Damiand, Hugo Ledoux. Constructing an n-dimensional cell complex
from a soup of (n–1)-dimensional faces. International Conference on Applied Algorithms, Jan 2014,
Kolkata, India. pp.37-48, �10.1007/978-3-319-04126-1_4�. �hal-00965545�

https://hal.science/hal-00965545v1
https://hal.archives-ouvertes.fr


Constructing an n-dimensional cell complex
from a soup of (n − 1)-dimensional faces⋆

Ken Arroyo Ohori1, Guillaume Damiand2, and Hugo Ledoux1

1 Delft University of Technology, Delft, Netherlands
2 Université de Lyon, LIRIS, UMR 5205 CNRS, 69622 Villeurbanne, France

Abstract. There is substantial value in the use of higher-dimensional
(>3D) digital objects in GIS that are built from complex real-world
data. This use is however hampered by the difficulty of constructing such
objects. In this paper, we present a dimension independent algorithm to
build an n-dimensional cellular complex with linear geometries from its
isolated (n − 1)-dimensional faces represented as combinatorial maps.
It does so by efficiently finding the common (n − 2)-cells (ridges) along
which they need to be linked. This process can then be iteratively applied
in increasing dimension to construct objects of any dimension. We briefly
describe combinatorial maps, present our algorithm using them as a base,
and show an example using 2D, 3D and 4D objects which was verified
to be correct, both manually and using automated methods.

1 Introduction

Higher-dimensional digital objects represent well-defined extents of space in ar-
bitrary dimensions. In geographic information systems (GIS), these can be gen-
erated when 2D/3D space, time [12], scale [15], semantics [1], or others are all
treated as independent axes of a coordinate system. An example of such an object
is presented in Fig. 1. This form of representation offers interesting advantages
compared to traditional ones where multiple representations of the same object
are stored separately and linked in an ad hoc fashion, such as conceptual sim-
plicity, immediate access to all existing topological relationships, the possibility
to represent complex events like motion and the ease of maintaining consistency
between objects [14].

However, creating higher dimensional digital objects from real-world data is
inherently difficult on multiple levels. Since we are usually only familiar with up
to 3D physical space, describing such objects might be straightforward mathe-
matically, but it is nonetheless unintuitive. Higher dimensional data models are
also complex, and thus realising even very simple objects requires a large num-
ber of operations on abstract elements. Finally, manipulating the related data

⋆ Paper published in Proceedings of 1st International Conference on Applied Al-
gorithms, LNCS 8321, pp. 37-48, January 2014. Thanks to Springer Berlin Hei-
delberg. The original publication is available at http://dx.doi.org/10.1007/

978-3-319-04126-1_4

http://dx.doi.org/10.1007/978-3-319-04126-1_4
http://dx.doi.org/10.1007/978-3-319-04126-1_4


(a) 3D model (perspective projec-
tion of 0-, 1- and 2-cells)

(b) 4D model (double perspective
projection of 0- and 1-cells only)

Fig. 1. The Aula Congress Centre in the TU Delft campus represented as extruded 3D
and 4D models.

structures while ensuring that all its required references are correctly kept is
already non-trivial in 3D [9], and increasingly difficult in higher dimensions.

Nonetheless, it is possible to use the concepts behind boundary representa-
tion to significantly reduce the difficulty of the problem. In boundary represen-
tation (b-rep or BREP), an n-dimensional closed object can be unambiguously
described by the (n− 1)-dimensional boundary that encloses it, as originally de-
fined by Baumgart [2] and Braid [3] for a (3D) solid with a (2D) surface boundary
composed of flat polygonal patches. This concept is valid in higher dimensions
as well, and is related to the concept of a cell complex [7] in topology, where an
n-dimensional cell (n-cell) in the complex has a number of (n − 1)-cells (faces)
as its boundary, and these faces are also part of the complex. An n-cell is an
abstract object which is considered to be homeomorphic to an n-ball (e.g. point,
segment, disk, ball, etc.). In this paper we use combinatorial maps to represent
a cell complex, which are described in Sec. 2.

The (n−1)-dimensional boundary of an n-cell is much easier to conceive than
the original n-cell, since the (n−1)-cells that it is composed of can be themselves
described individually. However, this requires the existence of an algorithm that
is able to connect these separate (n − 1)-cells to form the n-cell in an efficient
manner, abstracting such issues as incompatible orientations in the model, the
handling of duplicate cells and the identification of common boundaries. This
operation, fully dimension independent, presented in Sec. 3 and the focus of the
present paper, can be performed recursively in increasing dimension to generate
arbitrary cell complexes in any dimension, and thus we refer to it as incremental
construction.

Another possible use of incremental construction is to generate the topolog-
ical information, i.e. incidence and adjacency, between a set of existing objects.
This is in fact simply a subset of what the problem incremental construction is
meant to solve—the identification of common boundaries—, and fits very well



within the frame of GIS, where data models tend to contain very limited topo-
logical information but topological queries are of great importance [5]. Some GIS
models, like the OGC Simple Features Specification [10] have no topology in their
structure, even repeating the coordinates of individual points when these appear
in multiple line segments or polygons. Others, such as CityGML [11], only have
implicit topological information (e.g. these surfaces should form a closed shell)
which is often unenforced in their geometry.

We have implemented our algorithm based on the CGAL Combinatorial
Maps and Linear Cell Complex packages, which are described in Sec. 4 together
with the details of our implementation, including a discussion of the compu-
tational complexity of our approach. In Sec. 5, we present an example in 4D
that shows this approach in practice, comparing its output with correct results
which have been generated by the Linear Cell Complex package and verifying it
analytically. We finish with conclusions and discussion in Sec. 6.

2 Combinatorial maps

Combinatorial maps (or simply maps) are an ordered topological model origi-
nally proposed by Edmonds [4] to describe the 2D surfaces of 3D objects. Their
extension to arbitrary dimensions is described by Lienhardt [8] for objects with-
out boundaries and extended by Poudret et al. [13] to objects with boundaries.
They are able to describe subdivisions of orientable quasi-manifolds3.

Intuitively, a combinatorial map is composed of two elements: darts and
relations between them (β). The precise definition of a dart is related to an
underlying simplicial decomposition of the object, each dart being equivalent to
a simplex in it. However, intuitively it can be seen as an oriented edge on the
boundary of a facet, which itself is on the boundary of a solid, which itself is on
the boundary of a 4-cell, and so on. It is therefore equivalent to the half-edge
data structure in 2D, but extends naturally to higher dimensions. Meanwhile,
the relations are functions connecting darts that are related along a certain
dimension. In this manner, β1 joins consecutive oriented edges within a facet
forming a loop, β2 joins adjacent facets within a solid, β3 joins adjacent solids
within a 4-cell, and so on. As in other models based on directed elements, βi-
joined darts for i > 1 have opposite orientations.

More formally, an n-dimensional combinatorial map (or n-map) is defined by
an (n + 1)-tuple M = (D,β1, . . . , βn) where D is a finite and non-empty set of
darts, β1 is a partial permutation on D (a function f : D ∪ {∅} → D ∪ {∅}
such that ∀d1 ∈ D, ∀d2 6= d1 ∈ D, f(d1) 6= ∅ and f(d2) 6= ∅ ⇒ f(d1) 6= f(d2)),
∀2 ≤ i ≤ n, βi is a partial involution (a partial permutation f such that ∀d ∈ D,
f(d) 6= ∅ ⇒ f(f(d)) = d), and ∀1 ≤ i < i + 2 ≤ j ≤ n, βi ◦ βj is also a partial
involution (see an example in Fig. 2).

Here, ∅ is a special value used to indicate that a given dart d has no other
dart in relation by a given βi. In such a case we have βi(d) = ∅ and that means

3 A specific combinatorial interpretation of the concept of a manifold. See Lienhardt [8]
for details.



Fig. 2. (Left) A 3D cellular complex composed with two tetrahedra sharing a common
face. There are 2 3-cells, 7 2-cells, 9 1-cells and 5 0-cells. (Right) The corresponding
3D combinatorial map having 48 darts.

that d belongs to the i-boundary of the described object (it belongs to only one
i-cell). A dart d is said to be i-free when βi(d) = ∅. Otherwise it is i-sewn with
a second dart d′ and we have βi(d) = d′ 6= ∅.

In order to traverse an n-map, the orbit operator< A > (d) =< βa1, . . . , βak >

(d) obtains all the darts that can be reached from dart d by successive applica-
tions of the links βa1, . . . , βak ∈ A. Certain orbits are particularly interesting:
for any 1 ≤ i ≤ n, < ✁✁βi > (d) =< β1, . . . , βi−1, βi+1, . . . , βn > (d) contains all
the darts in the i-cell of d, while < {βi ◦ βj |∀i, j 1 ≤ i < j ≤ n} > (d) contains
all the darts in the 0-cell (vertex) of d. As two darts linked by a βi have opposite
directions (for 2 ≤ i ≤ n), they belong to the two vertices of a same edge. Thus
by combining two β, we obtain a dart of the same vertex than d.

When the relations in an orbit are applied in a well-defined order, these
orbits are generated in a consistent manner. This makes it possible to generate a
canonical representation of (a subset of) the darts in a map, which combined with
labelled darts can be used to test combinatorial map isomorphism in quadratic
time, as shown by Gosselin et al. [6] and demonstrated by searching for patterns
in images.

The incremental construction of cells in a combinatorial map is based on
the sewing operator, which joins two i-cells along an (i− 1)-cell which after the
operation lies in their common boundary. Intuitively, given two i-free darts d1
and d2, the i-sew operation between d1 and d2 will pairwise link the orbits of
these two darts by βi so that we will obtain βi(d1) = d2.

We can see in Fig. 3 an example of the 3-sew operation. Starting from a 3D
combinatorial map describing two isolated tetrahedra, we identify two faces by
using the 3-sew operations on darts d and d′. This operation puts in relation all
the darts of the two initial faces by pairs so that we obtain a valid combinatorial
map (i.e. the constraint that β1 ◦ β3 is a partial involution is still satisfied).

A combinatorial map only describes the topological part of an object in term
of a cell complex, i.e. the set of cells in all dimensions and all the incidence and
adjacency relations. Applications often require adding information associated
with specific cells (e.g. to associate a colour to each vertex, or a normal to
each face). This is possible thanks to the attribute notion. An i-attribute is the



d’

d

Fig. 3. (Left) A 3D combinatorial map describing 2 isolated tetrahedra. (Right) The
3D combinatorial map obtained after 3-sewing darts d and d′. All the darts of the two
initial faces are 3-sewed by pairs.

information associated with i-cells. As cells are implicitly represented by sets
of darts in combinatorial maps, links between i-attributes and i-cells are done
through the darts of the i-cells: all the darts belonging to a same i-cell are linked
to the same i-attribute.

These attributes are very useful as they allow to associate any information
to any cell, and given a dart, we have a direct access to all of its associated
attributes. Moreover, these attributes can be used to describe the geometry of
the objects. Indeed, we can associate to each vertex of a combinatorial map
a point in R

d2 by using 0-attributes. A combinatorial map with this type of
embedding gives a linear cell complex. Indeed, in this case, the geometry of each
edge is a segment, the geometry of each face is a planar polygon, and so on.
d2 is the dimension of the geometry, i.e. the dimension of the ambient space.
Generally we have d2 ≥ d (d being the combinatorial dimension). For example
we can use d = d2 = 2 to describe a planar graph embedded in a plane or d = 2
and d2 = 3 to describe a polyhedral mesh embedded in R

3.
Now given two i-cells in a linear cell complex, we can test if these two cells

are identical, i.e. if they have both the same topology and the same embedding
information. To test if they have the same topology, we use the technique intro-
duced above for combinatorial map isomorphism, by considering only the two
i-cells instead of two whole combinatorial maps. Testing if the two cells have the
same embedding can be done during the isomorphism test, simply by testing
if two darts d and d′ considered by the isomorphism function are linked with
two points with the same coordinates. Note that we have to consider the two
possible orientations of one of the two i-cells in order to detect also if the two
cells are identical but with reverse orientations. We make use of this technique
to efficiently test for the identity of two cells in Sec. 3.

3 Incremental Construction

Since an n-cell in a cell complex can be described by the (n − 1)-cells on its
boundary, the same thinking can be applied in reverse: a yet unbuilt n-cell can
be constructed based on a set of (n−1)-cells which are known to form its complete
(closed) boundary.



The algorithm is applied object by object in increasing dimension, construct-
ing isolated 0-cells first, and continuing through 2-cells, 3-cells and further. Our
explanation follows the construction of single cell of a certain dimension, start-
ing with unique isolated vertices in Sec. 3.1. 1-cells are skipped since 2-cells
can be easily described as a succession of 0-cells. 2-cells are then built from an
ordered sequence of 0-cells, as covered in Sec. 3.2. Finally, for n-cells (n > 2),
the method receives an unordered set (soup) of (n − 1)-cells, the geometries of
which are used as faces of the finished n-cell that is returned, as explained in
Sec. 3.3. These individual cell creation algorithms are applied object by object
in order of increasing dimension, so that the lower dimensional cells generated
as the output of earlier stages can be used as the input of latter stages.

The incremental construction algorithm as a whole keeps track of already
built cells by maintaining a reference to one of their darts, making sure that no
identical cells (with equal geometry and topology) are ever created. For efficiency
reasons, it is convenient to use darts which are embedded into the lexicograph-
ically smallest points of each cell, which combined with smallest point indices
for all existing n- and (n− 1)-cells, and the (n− 2)-cells on the boundary of the
(n− 1)-cells to be used, greatly accelerates this process.

3.1 Vertices (0D)

A single point, as defined by a unique tuple of coordinates, can be present in
multiple higher dimensional cells and thus described multiple times. However,
to ensure the correct generation of topology and enforce the orientable quasi-
manifold criterion, it should only be created once. When doing so, a new point
embedding at that location should be created, and a new free dart representing
the 0-cell should be created and linked to it. Every new instance of the same
point should then link to this original dart.

The output of this step is thus a map from each input point to a 0-cell (dart
embedded into a point) at that location (see an example in Fig. 4(a)).

3.2 Facets (2D)

In order to create a 2-cell from a sequence of 0-cells, three general steps are
needed:

1. The unique 0-cells, as resulting from the evaluation of the 0-cells’ point
embeddings in the map obtained when processing all 0-cells, are obtained.
The result of this evaluation might be the same 0-cell as provided, or an
already existing 0-cell at that location. Each of these 0-cells might be a
single 1-free dart, in which case it can be used directly (see an example in
Fig. 4(b)), or it can be a non 1-free group of darts, in which case it has
already been used as part of a different 1-cell (and possibly other higher
dimensional cells). These darts used in 1-cells can be reused only when they
would become part of the 2-cell that will be built and are not part of any 2-
cell. If the darts cannot be reused, a copy of them with opposite orientation



has to be created, linking it to the same embedding as the original (see
examples in Fig. 4(c) to (h). In all these cases, there is at least one dart
which is duplicated). The opposite orientation ensures that the two (old and
new) can then be 2-sewn when constructing a 3-cell in a subsequent step.

2. The darts obtained in the previous step are 1-sewn sequentially, and the last
is 1-sewn to the first, forming a closed loop.

3. Just as in the creation of 0-cells, a 2-cell can be on the boundary of multiple
higher dimensional cells (or simply described multiple times in the input),
and as such, it is necessary to check if the 2-cell has already been created.
If any comparison returns that the 2-cell already exists, the newly created
darts are deleted4 and the existing one is returned, otherwise the new 2-cell
is returned.

(a) 1

2

3

4

5

(b)

a

31

2

5

4
b

(c)

31

2

5

4

(d)

d

31

2

5

4

(e)

c

31

2

5

4

e

(f)

31

2

5

4

(g)

f

31

2

5

4

g

(h)

Fig. 4. Illustration of the different steps of the reconstruction of 2-cells. (a) Ini-
tial configuration: one dart per vertex. (b) After a = make 2 cell(1, 2, 3). (c) Af-
ter b = make 2 cell(2, 4, 3). (d) After d = make 2 cell(1, 4, 3). (e) After
c = make 2 cell(1, 4, 2). (f) After e = make 2 cell(1, 3, 5). (g) After f =
make 2 cell(5, 3, 4). (h) Final result, after g = make 2 cell(4, 5, 1).

3.3 3-cells and higher (dimension independent)

The method to create n-cells from their (n − 1)-cell boundaries is identical for
all n > 2, allowing a dimension-independent function to be created. As with the
creation of 2-cells from 0-cells, it consists of three general steps:

1. First of all, whether each (n − 1)-cell has already been created beforehand
is checked. This is meant so that multiple identical (n − 1)-cells are never
created in the final cell complex, even when they are given as input. If an
(n−1)-cell already exists and it is (n−1)-free, it is reused as part of the n-cell

4 Since the 2-cell already exists, all the used darts are copies of existing ones. This
deletion thus does not erase any unique instance of a 0- or 1-cell.



(see an example in Fig. 5(a)). If it exists but is already part of a different n-
cell, it is duplicated with reverse orientation (see an example in Fig. 5(b) for
face labeled d). As in the case of 2-cells, this is done so that it has the same
geometric embeddings and attributes, but its opposite orientation ensures
that the two (old and new) can be directly n-sewn together.

2. The (n − 1)-cells (faces) are (n − 1)-sewn along their common (n − 2)-
dimensional boundaries (ridges). If two groups of connected (n − 1)-cells
with incompatible orientations would be joined by this operation (i.e. the
pair of two corresponding ridges have the same orientation), the orientation
of one of the groups is reversed before the link is created. If more than one
match for a ridge is found, the object being represented is not a quasi-cellular
manifold, and thus cannot be represented using combinatorial maps.

3. The newly constructed n-cell is finally compared to other n-cells to check if
it already exists. If an n-cell is found to exist, the algorithm should delete
the darts that are part of the newly created n-cell and instead return the
existing cell. This ensures that only a single instance of an n-cell is created.

c

a

g
e

fd

b

(a)

c

a

g
e

f

b

d

(b)

Fig. 5. Illustration of the two steps of the reconstruction of 3-cells. We start from the
combinatorial map given in Fig. 4(h) which is the result of the reconstruction of 2-cells.
(a) After make 3 cell(a, b, c, d). (b) Final result, after make 3 cell(d, e, f, g).

4 Implementation and Complexity

We have implemented the incremental construction algorithm in C++ using the
Combinatorial Maps and Linear Cell Complex packages in CGAL5. In order
to improve the performance of the incremental construction algorithm, we use
some indices that map the lexicographically smallest point embedding of some
cells of a given dimension to a dart embedded at that location. These indices
are implemented as C++ Standard Library6 maps with point embeddings as
keys and lists of darts as values, using a custom compare function so that
the points are internally sorted in lexicographical order. Because std::map is

5 The Computational Geometry Algorithms Library: http://www.cgal.org
6 For instance, the GNU Standard C++ Library: http://gcc.gnu.org/libstdc++/

http://www.cgal.org
http://gcc.gnu.org/libstdc++/


normally implemented as a self-balancing binary search tree, O(log n) search,
insertion and deletion times and O(n) space can be expected.

Since we create objects dimension by dimension, it is not necessary to main-
tain indices for all the cells of all dimensions at the same time. The only ones
used are: all n- and (n − 1)-cells, and the (n − 2)-cells on the boundary of the
(n− 1)-cells for that step. Most of these can be built incrementally, adding new
cells as they are created in O(log c), with c the number of cells of that dimension,
assuming that the smallest vertex and a dart embedded there are kept during its
construction. The complexity of building any index of cells of any dimension is
thus O(c log c) and it uses O(c) space. Note that this also gives the computational
complexity of creating a map of all unique 0-cells in the cell complex.

Checking whether a given cell already exists in the cell complex is more
complex. Finding a list of cells that have a certain smallest vertex is done in
O(log c). Theoretically, all existing cells in the complex could have the same
smallest vertex, leading to up to c quadratic time cell-to-cell comparisons just
to find whether one cell exists. However, every dart is only part of a single
cell of any given dimension, so while every dart could conceivably be a starting
point for the identity comparison, a single dart cannot be used as a starting
point in more than one comparison, and thus a maximum of dcomplex identity
comparisons will be made for all cells, with dcomplex the total number of darts in
the cell complex. From these dcomplex darts, two identity comparisons are started,
one assuming that the two cells (new and existing) have the same orientation,
and one assuming opposite orientations. Each of these involves a number of
dart-to-dart comparisons in the canonical representations that cannot be higher
than the number of darts in the smallest of the two cells. The number of darts
in the existing cell is unknown, but starting from the number of darts in the
newly created cell (dcell), it is safe to say that no more than dcell dart-to-dart
comparisons will be made in each identity test, leading to a worst-case time
complexity of O(dcomplexdcell). Note that this is similar to an isomorphism test
starting at every dart of the complex.

Finally, creating an n-cell from a set of (n− 1)-cells on its boundary is more
expensive, since the (n− 2)-cell (ridge) index needs to be computed for every n-
cell. Following the same reasoning as above, it can be created in O(r log r) with
r the number of ridges in the n-cell, and uses O(r) space. Checking whether
a single ridge has a corresponding match in the index is done in O(dcelldridge),
with dcell the number of darts in the n-cell and dridge the number of darts in
the ridge to be tested. Since this is done for all the ridges in an n-cell, the total
complexity of this step, which dominates the running time of the algorithm, is

∑

ridges

O(dcelldridge) = O(d2cell).

The analyses given above give an indication of the computational and space
complexity of the incremental algorithm as a whole. However, it is worth noting
that in realistic cases the algorithm fares far better than in these worst-case
scenarios: the number of cells that have a certain smallest vertex is normally far



lower than the total number of cells in the complex, most of their darts are not
embedded at the smallest vertex, and from these darts most identity comparisons
will fail long before reaching the end of their canonical representation.

Finally, one more nuance can affect the performance of this approach. We
have discussed that when two groups of darts with incompatible orientations have
to be joined, the orientation of one of these has to be reversed. This is easily done
by obtaining all the connected darts of one of the groups, preferably the one that
is expected to be smaller, and reversing their orientation 2-cell by 2-cell. Every
dart d in a 2-cell is then 1-sewn to the previous dart in the polygonal curve of
the 2-cell (β−1

1 (d)). A group of n darts can then have its orientation reversed in
O(n) time. This is not a problem in practice since GIS datasets generally store
nearby objects close together, but if a cell complex is incrementally constructed
in the worst possible way, i.e. creating as many disconnected groups as possible,
this could have to be repeated for every cell of every dimension.

5 Example

The CGAL Linear Cell Complex package provides functions to generate a series
of primitives which are known to be created with correct geometry and topol-
ogy, and can then be sewn together to generate more complex models. We have
therefore created various 2D, 3D and 4D cell complexes using both these func-
tions and our approach. In this manner it was possible to test the validity of our
models using the identity comparison described in Sec. 2, as well as manually
verifying all β-links.

In the following we show an interesting case, how a tesseract (see Fig. 6) can
be generated using our approach. A tesseract is the 4D analogue of a cube, and
is a 4-cell bounded by 8 cubical 3-cells, each of which is bounded by 6 square
2-cells. It thus consists of one 4-cell, 8 3-cells, 24 2-cells, 32 1-cells and 16 0-cells.

Using our approach, an empty 0-cell index is first created. Then, the 16
vertices of the tesseract, each vertex pi described by a tuple of coordinates
(xi, yi, zi, wi, can be created as pi = make 0 cell(xi, yi, zi, wi), which returns a
unique dart embedded at each location, and added to the 0-cell index. At this
point, the algorithm would have built an unconnected cell complex consisting
solely of 16 completely free darts.

An empty index of 2-cells is then created. Each of its 24 square facets can
be built based on its vertices as fi = make 2 cell(pj , pk, pl, pm), which 1-sews
(copies of) these darts in a loop and returns the dart embedded at the smallest
vertex of the facet. These are added to the index of 2-cells. Since every vertex is
used in 6 different 2-cells, each dart would be copied 5 times. The cell complex
at this point thus consists of 24 disconnected groups of 4 darts each.

Next, an empty index of 3-cells is created and the index of 0-cells can be
deleted. For each of the 8 cubical 3-cells, a function call of the form vi =
make 3 cell(fj , fk, fl, fm, fn, fo) is made. At this point, an index of the 1D
ridges of each face is built, which is used to find the 12 pairs of corresponding
ridges that are then be 2-sewn together. When a 3-cell is created, it is added



Fig. 6. (Left) A tesseract (edges only). (Right) A combinatorial maps representation
of a tesseract, β3 and the “external” cube are omitted for clarity.

to the index. Since every facet bounds two 3-cells, each dart is duplicated once
again, resulting in a cell complex of 8 disconnected groups of 24 darts each.

Finally, the tesseract is created with the function t = make 4 cell(v1, v2, . . . , v8).
This can use the index of 2-cells to find the 24 corresponding pairs of facets that
are then 3-sewn to generate the final cell complex.

We tested the validity of this object by performing a series of tests on the
structure (complete and symmetric sewing), testing whether each cube was iden-
tical to the expected outcome, and manually verified the β-links of its 192 darts.

6 Conclusions and future work

We have shown that it is possible to apply the fundamental concept of boundary
representation, describing an n-cell by its (n−1)-dimensional faces, to incremen-
tally construct cell complexes of any dimension. To the best of our knowledge,
this technique is the only one that has been described and/or implemented for
4D cell complexes or higher. Using a variety of indices is efficient, generating an
n-cell in O(d2) in the worst case, with d the total number of darts in the cell,
and our algorithm should fare markedly better in realistic datasets.

We intend to use this approach, supplemented with techniques under devel-
opment that generate the required (n−1)-dimensional faces, to generate objects
for higher dimensional geographic information systems, as well as other appli-
cations. This will allow us to take real-world 3D city models and incorporate
additional dimensions to them, such as time and scale, to create 4D/5D objects
to which higher dimensional analyses can be performed.



7 Acknowledgments

This research is supported by the Dutch Technology Foundation STW, which is
part of the Netherlands Organisation for Scientific Research (NWO), and which
is partly funded by the Ministry of Economic Affairs (Project code: 11300).



Bibliography

[1] Alkyoni Baglatzi and Werner Kuhn. On the formulation of conceptual
spaces for land cover classification systems. In Danny Vandenbroucke,
Bénédicte Bucher, and Joep Crompvoets, editors, Geographic Information
Science at the Heart of Europe, Lecture Notes in Geoinformation and Car-
tography, pages 173–188. Springer, 2013.

[2] Bruce G. Baumgart. A polyhedron representation for computer vision. In
Proceedings of the May 19-22, 1975, National Computer Conference and
Exposition, pages 589–596, 1975.

[3] I.C. Braid. The synthesis of solids bounded by many faces. Communications
of the ACM, 18(4):209–216, 1975.

[4] J. Edmonds. A combinatorial representation of polyhedral surfaces. Notices
of the American Mathematical Society, 7, 1960.

[5] Max J. Egenhofer and R. D. Franzosa. Point-set topological spatial rela-
tions. International Journal of Geographical Information Systems, 5(2):161–
174, 1991.

[6] Stéphane Gosselin, Guillaume Damiand, and Christine Solnon. Efficient
search of combinatorial maps using signatures. Theoretical Computer Sci-
ence, 412(15):1392–1405, March 2011.

[7] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
[8] Pascal Lienhardt. N-dimensional generalized combinatorial maps and cellu-

lar quasi-manifolds. International Journal of Computational Geometry and
Applications, 4(3):275–324, 1994.

[9] Martti Mäntylä. An introduction to solid modeling. Computer Science
Press, New York, USA, 1988.

[10] OGC. OpenGIS Implementation Specification for Geographic Information
- Simple Feature Access - Part 1: Common Architecture. Open Geospatial
Consortium, 1.2.1 edition, May 2011.

[11] Open Geospatial Consortium. OGC City Geography Markup Language
(CityGML) Encoding Standard, 2.0.0 edition, April 2012.

[12] Donna J. Peuquet. Representations of Space and Time. Guilford Press,
2002.

[13] M. Poudret, A. Arnould, Y. Bertrand, and P. Lienhardt. Cartes combi-
natoires ouverts. Technical Report 2007-01, Laboratoire SIC, UFR SFA,
Université de Poitiers, October 2007.

[14] Jantien Stoter, Hugo Ledoux, Martijn Meijers, Ken Arroyo Ohori, and Peter
van Oosterom. 5D modeling - applications and advantages. In Proceedings
of the Geospatial World Forum 2012, page 9, April 2012.

[15] Peter van Oosterom and Martijn Meijers. Towards a true vario-scale struc-
ture supporting smooth-zoom. In Proceedings of the 14th ICA/ISPRS
Workshop on Generalisation and Multiple Representation, Paris, 2011.


	Constructing an n-dimensional cell complex from a soup of (n-1)-dimensional faces

