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Abstract— In this paper, we put forward a method for
humanoid robot indoor localization and navigation, using 2D
bar codes, running on embedded hardware. Our approach is
based on camera image processing and the detection of 2D bar
codes stuck to the walls. The particularities of our approach
are: it works without odometry, fast localization (≈1s) that
allows for kidnapping and falls, and it does not require the
manual edition of a map (thus no extra computer is needed).

Results of an experimental study conducted with three
different NAO robots in our office show that the proposed
system is operational and usable in domestic environments.
The NAO robots are able to navigate through a corridor of
5m in under 86s on average. Moreover using our system the
robots manage to map and navigate a complex environment
with multiple rooms that includes doors and furniture.

Taken together our results demonstrate that our navigation
system could become a standard feature for our robots.

I. INTRODUCTION

Aldebaran2 main objective is to make humanoid robot a

real companion for domestic applications. To reach this goal

humanoid robots need to be able to localize and navigate in

the user’s domestic environment.

We are particularly interested in systems that use only

2D camera information. Such a system should meet the

following requirement:

• rely on one 2D camera only (i.e. no laser, nor 3D

camera)

• run on the embedded hardware (i.e. no need of a remote

computer)

• tolerant to falls, extinction and kidnapping problem

• support of indoor environment update (e.g. adding new

rooms, update some way points path)

• usable by a wide audience (e.g. no manual map edition)

• allowing an unsupervised learning of the environment

• does not require a continuous flow of stable images

(which is difficult to get on an humanoid robot during

the walk)

In this paper we propose to use 2D bar code stick to the

walls in order to answer these needs. The proposed approach

enables the automatic creation of the indoor environment

maps and allows humanoid robot like the NAO robot to

navigate the environment.

This paper is structured as follows. Related work is

presented in Section II. In Section III we detail our approach

based on 2D bar code detection. An implementation of this

approach has been evaluated using three NAO robots and is

1[lgeorge, amazel]@aldebaran-robotics.com.
2Aldebaran-Robotics, 170 rue Raymond Losserand, Paris, France.

presented in Section IV. We discuss results in Section V.

The main conclusions are summarized in Section VI.

II. RELATED WORK

Several techniques have been investigated for indoor en-

vironments navigation (e.g. RFID identification, Wlan con-

nectivity, laser [1]). In this section we present related works

based on computer vision for indoor navigation [2], [3].

Positioning vision based systems could use landmarks

presented in the environment. The landmarks could be nat-

ural or artificial. SLAM techniques could be used based

on natural keypoints [4] or on specific texture available in

the environment, like marks on the wood floor [5]. Using

this last approach, a duration of 90s is required to travel

a 5m corridor with the NAO robot. However this approach

strongly relies on the floor texture and won’t be usable on a

uniform floor (e.g. in a hospital corridor). Moreover SLAM

could be CPU intensive, and would not allows additional

tasks during navigation. The introduction of artificial markers

could then provide a solution that works in a wide range of

environments. Moreover the use of artificial markers allows

to simplify the identification of targets which could result in

an increase of navigation speed.

Xu et al. investigate the use of printed pictures pasted on

the walls of a corridor to track the robot position [6]. But

they proposed to manually construct a map of the indoor

environment with the position of the printed pictures. Their

system allows to navigate a 5 meters corridor in 200s1.

Elmogy et al. proposed a similar approach based on 2D

symbols (e.g. trademarks symbol of restaurant) to fast detect

landmark during navigation [7]. They use stereo vision to

estimate distance of landmarks and deported processing on

a laptop to provide real-time processing.

Another approach consists in using artificial marks that

are well suited for fast image detection such as 2D bar

codes. Classical bar codes such as QR code or Datamatrix [8]

could be used. Specific bar codes have also been designed

specifically for mobile robot positioning [9]–[11]. The aim

behind the design of new marker, whereas existing bar

code such as Datamatrix or QR code are used in numerous

industrial contexts, is to provide a marker well suited for

localization application and not just to carry information.

However the free availability of Datamatrix and QR codes

and the existence of dedicated open source library for their

1The navigation speed is not provided by the authors, however the video
of their navigation allow us to compute an approximate duration.



corners detection make them suitable for pose estimation in

robot navigation context.

To our best knowledge there is no previous work based on

artificial landmark detection and 2D camera, that runs on em-

bedded hardware (i.e. without requiring remote computer),

that does not require the manual creation or the edition of a

map and that allows a humanoid robot to navigate accurately

in indoor environments.

III. USING 2D BAR CODES FOR LOCALIZATION

AND NAVIGATION

This section describes our approach to humanoid robot

navigation using 2D bar codes. Bar codes are stuck to the

walls in an indoor environment (see Figure 1). The density

and placement of the bar codes is strongly linked to the

geometry of the room, see Appendix A for examples.

Camera images are acquired and processed in order to

estimate the pose xt (position and orientation) of the robot

in respect to the viewed bar codes.

Fig. 1: The indoor environment with the bar codes stuck on

the walls.

A training stage is used to learn a 2D map of the bar codes

available in the environment. During this stage the robot pan

his head to detect the bar codes.

The navigation relies on the robot pose estimation based

on the current seen bar codes and on the learned 2D map. A

way points path to reach the robot destination is created and

updated each time a pose estimation is computed. The map is

also used to orientate the robot camera. The next best visible

2D bar code in terms of view angle and distance is computed

based on the robot future position. This allows to reduce

the searching of bar code and to increase the speed of the

navigation. It should be noted that all the processing is done

on the on-board computer and does not require any remote

connection. We detail the different steps of our approach in

the following sections.

A. Bar code detection and pose estimation

We use DataMatrix as the artificial landmarks. A Datama-

trix is a two-dimensional bar code [12] composed of an or-

dered grid of dark and light dots bordered by a finder pattern.

The finder pattern defines the shape and the dimension (i.e.

number of row and column) of the bar code. In our approach,

we use 10x10 matrix (that is the smallest dimensions of a

datamatrix) of 8.0 cm. The data information contained in

each mark is composed of Ascii digits which constitute a

unique label (e.g. ’A01’). Contrary to previous work [8],

[11], there is no direct relation between the bar code data

and its position in the environment. Thus the user is free to

put the bar codes where he wants and does not need to edit

them.

In order to estimate 2D bar code pose (position and

orientation) 3 steps are used: image preprocessing, detection

and recognition process, and finally pose estimation.

a) Preprocessing: The aim of the preprocessing step

is to find image regions that seems to contain a bar code.

This step involves the use of Canny filter to find the edges in

the image [13]. Then a dilation operator is used to remove

potential holes between edges segments. A bounding box

of each contour is then computed. Finally a score based on

size, width/height ratio, area and histogram is computed for

each image region. These scores are used to sort the image

regions.

b) Detection and recognition process: To extract the

label and precise coordinates of the bar code the open

Source library libdmtx2 is used. This software is based on

the time consuming Hough algorithm and allows to extract

the 4 corners of the bar code [14]. In order to limit the

time consumption of the processing we use a timeout of one

second for each image and process only the first candidate

region based on the preprocessing scores. This allows to

increase the responsiveness of the system.

c) 2D bar code pose estimation: To determine the

precise pose of a 2D bar code we use the OpenCV implemen-

tation of the RANSAC algorithm which allows to compute

the unique solution to the perspective-4-points problem [15].

This algorithm requires to find the intrinsic and extrinsic

parameter of the camera. Thus we use a calibration step

where several views of a chessboard printed pattern is

presented to the robot camera3.

For these processing we use an image resolution of

1280x960 that allows to detect bar code at a distance of 2.5m

and a maximum angle of π/4. However the pose estimation

accuracy decreases with high distance (>1.5m).

The three steps (preprocessing, detection and pose estima-

tion) allow to estimate the pose of each bar code in respect

to the robot camera position.

B. 2D bar codes map creation

A learning step is used to construct a map of the bar codes

presented in the environment. This step involves several

observation points. Two versions of the learning procedure

are available: the supervised one and the automatic version.

In supervised version, the user places the robot at chosen

observation points (e.g. points far from obstacles, points that

2http://www.libdmtx.org/
3On the NAO robots used during the evaluation the same intrinsic and

extrinsic parameter are used.

http://www.libdmtx.org/


allow to see numerous 2D bar codes). The user can also

tell the robot (e.g. using voice recognition) the name of

the current observation point. In the automatic version the

robot moves around in the environment and regularly stops

to create observation points.

In both versions, for each observation point, the robot

looks around by panning his head4 in order to find the

visible bar codes. For each found 2D bar code, the pose is

estimated as presented in Section III-A. In order to increase

the accuracy of the pose estimation several images are used

for the same 2D bar code (in our experimentation we get

good results by averaging the estimation on 15 images

which takes approximately 15 seconds for each 2D bar

code). Moreover an index of confidence based on variance of

landmark corners is computed. If the corners positions show

an important variance then the landmark is ignored. It could

happen when the landmark is far from the camera (i.e. more

than 2m).

A local map of visible landmarks is then created (by using

the panning angle combined to the pose estimation). This

local map consists in a list of landmarks associated to a

unique label name. The information stored for each 2D bar

code is the coordinates relative to the current observation

point, the normal vector which correspond to the bar code

orientation, and the optional associated name of the landmark

(see Figure 2).

Fig. 2: Local map that corresponds to the picture presented in

Figure 1. The map has been automatically build thanks to the

bar codes pose estimation and NAO accurate head panning.

Black arrows indicate the mean position and orientation of

2D bar codes stuck on the walls. Green circle indicates the

observation point used. All units are in meters.

When numerous local maps have been learned a global

2D map could be constructed. The global map consisted in

the connection of the different local maps. The connection of

two local maps is done using a bar code that is visible in both

local maps. If there is such a landmark the two maps could be

4This method is particularly efficient on NAO robot where the panning
rotation is very accurate. This allows to get precise head yaw angle.

Fig. 3: A global map (on the right) built using two local

maps (on the left). The bar code A36 is used to connect the

two local maps (the second local map has been associated

to the label name Kitchen by the user).

connected using rotation and translation of the second local

map. If more than one 2D bar code is visible in both local

maps, the 2D bar code that is the closest to the observation

points is used. Figure 3 shows a global map constructed using

two different local maps. The creation of a new global map

could be done at any time, for instance when a new local

map is learned or when a local map is deleted. This could

be used to update the maps when adding new rooms.

Another feature of the system is the possibility to have

different global maps. It allows the robot to navigate rooms

that are not connected (e.g. even if the robot knows the

kitchen and the bedroom but not the path linking them,

the robot can still localize and navigate inside each room;

lately the connection could be made, by learning the corridor

between the rooms).

The global map also provides information concerning

points that are reachable (e.g. no obstacle). For this purpose

the observation points are used: the robot has been at each

observation point during the learning so they can be consid-

ered as reachable. Moreover in the supervised learning it is

the human user who has chosen the observation points for

their reachability. For this reason we save these observation

points in the global map. They will be used to build a way

point path for navigation.

Finally, the interaction API also allows the user to enhance

the map by adding information such as action to perform near

a specific point (e.g. walk slowly near specific point, etc.).

C. Robot pose estimation

The observation of one bar code visible in the global

map is sufficient to estimate the pose xt (position and

orientation) of the robot at time t in the environment. Indeed

the observation of one landmark allows to compute the

robot relative position/orientation to this mark by solving the

pose estimation problem. Then using the previously learned

information (i.e. position and normal vector of the mark in

the global map) the robot position and orientation in the

global map could be computed using simple geometrical

translation and rotation operations.



This pose estimation is done using a single camera shot.

The robot can thus know his localization in about one second

(i.e. time for image processing) if a bar code is visible.

Moreover if the robot is moved by the user, just after seeing

a mark the robot knows his new localization.

D. Navigation

To navigate the indoor environment, a path from the

current robot position to a destination has to be computed.

Thus three kinds of information are used: the robot pose

(position and orientation), the destination point coordinates

and the observation points coordinates. The robot pose

corresponds to the current robot position and orientation

in the global map, estimated thanks to a viewed landmark

(see Section III-C). The destination point is any point in

the global map. It could be an observation point but not

necessarily. The observation points are the places where the

poses of the landmarks have been learned (see Section III-

B). They are considered to be reachable in the environment.

Two observation points are assumed to be connectible (i.e.

the robot can go from one point to another) if one bar code

is visible from the two observation points.

The first step in the navigation procedure is to go to

an observation point. Then from one observation point to

another, approach the destination point. And finally go to

the destination point. In order to accomplish this procedure,

we first determined the closest observation point to the

robot position (p1). We also compute the closest observation

point to the destination (plast). Then using a shortest-path

algorithm we construct the path of observation points from

p1 to plast.
While navigating, in order to avoid turnaround (i.e. loop

during navigation), we use a condition on the angles concern-

ing the use of the first way point pi. If the use of pi causes

a turnaround we use the second point on the path (pi+1)

instead. More precisely we use the following condition:

rcoord, rvect ← robot position, robot orientation

a1← angle(rvect, pi − rcoord)

a2← angle(pi − rcoord, pi+1 − pi)
b3← angle(rvect, pi+1 − rcoord)

if abs(a1) + abs(a2) > abs(b3) + π/2 then

Use pi+1

else

Use pi

The whole navigation procedure (closest observation

point, path construction) is launched each time the robot

position is updated. This is not optimal in terms of computing

time, but it allows to be tolerant to kidnapping problems. For

instance, if the robot is moved during a navigation, the robot

can still continue to walk to his destination.

When the robot is walking from one way point to another,

his head orientation is updated in order to always look at

the best bar code (in terms of distance and angle of view).

To reduce the blur of movement during the walk and still

be able to see the landmarks, the camera exposure time is

reduced. However the walk could still introduce error in pose

estimation, thus the image analyzed during the walk is just

used to check that the robot is still on the path. If he has

drifted too much since the last movement order the robot is

stopped and a new image analysis is done.

IV. EVALUATION

To evaluate our approach to navigation based on 2D bar

code we carried out a real-world experiment in an office

environment using humanoid robots. Two navigation tasks

(corridor navigation, multiple rooms navigation) have been

tested.

A. Apparatus

NAO robots have been used during the evaluation. NAO is

a small humanoid robot (58 cm tall). It is equipped with two

video cameras located in the head. Each camera provides a

horizontal field of view of 60.9 degrees, and vertical field of

view of 47.6 degrees.

It’s known that the more a robot is used, the more the

backlash increases which results in inaccurate walk and

drift. These errors are unfortunately not detected with the

odometry on NAO robot that is why we do not rely on

odometry. To check that our approach still allow the robot to

navigate with this problem we use three different robot with

different wears for the evaluation. A first one just unpack

from the box (NAO A), a second one that has been used in

our team since some months (NAO B), and the last one that

has been used extensively in demonstration (NAO C).

B. Procedure

Two navigation tasks have been used. The first one named

corridor navigation consists in reaching a point located

at 5m from initial position in a corridor. The corridor is

2m20 wide and 6m long. Seven bar codes have been stuck

at a height of 55cm on either side of the corridor and at its

end5. The average distance between marks is about 1m. Five

runs have been recorded for each robot.

The second task, multiple rooms navigation, aims at

addressing a general navigation scenario that could occurs at

the home of our customers. It consists in navigating from one

point to a non-visible one. We used our office and the office

reception (approximate distance: 15 meters, 15 bar codes

stuck on walls and doors at a height of 55cm). One run has

been recorded for each robot.

For both tasks, the move command used after each position

estimation is a movement of 75cm length in the direction of

the next way point.

C. Collected data

For each navigation task and each run we recorded the

navigation duration, the robot position (based on seen 2D bar

codes), and the navigation distance. Moreover the computed

theoretical way points, based on the move commands sent

to the robot, have also been recorded.

5Corridor setup is presented in the video available at http://bit.
ly/navmark

http://bit.ly/navmark
http://bit.ly/navmark


D. Corridor navigation results

Figure 4 shows the detailed path taken by the first robot to

reach his destination. Results of the five runs are presented

in the last column of Table I. As expected the navigation

task for the newest robot (NAO A), which has a low level of

wear, is faster (mean duration of 58.2 sec vs. approximately

100 sec for the two other robots). Moreover the navigation

is fast for all the robots. The average duration time on the

three robots is below 86 sec which is better than previous

results with NAO robot (Osswald et al. reported a navigation

duration of 90 sec [5], Xu et al. show a navigation duration

of approximately 200s for 5m [6]). This result could still be

improved; indeed the theoretical best duration is about 30

seconds (NAO maximum speed in straight line for 5 meters).

Fig. 4: A navigation path followed by the robot NAO A

during the corridor task. It corresponds to the navigation

run presented in the video available at http://bit.

ly/navmark. Blue arrows indicate robot position and

orientation estimated using bar code detection, including the

associated elapsed time. Green arrows indicate theoretical

robot position computed using the move commands. Current

used bar code associated to a robot position are indicated

with a straight line at the bottom of each blue navigation

arrow.

The distance to reachable way points during the navigation

is a parameter as important as the duration of the navigation.

Indeed if a robot goes far from the navigation reachable

points it increases the risk of collisions and falls. To evaluate

this distance in the different navigation runs we computed the

ratio between theoretical best path (straight path from initial

position to destination) and the estimated path followed by

the robots. Results are presented in Table I.

TABLE I: Navigation duration and distance error to theoret-

ical path for the three robots on five runs during the corridor

navigation task (move command of 75cm length).

Robot Duration (s) Estimated
error (%)

NAO A 59.73 1.14
NAO A 49.66 2.19
NAO A 56.88 2.47
NAO A 76.56 4.33
NAO A 48.26 1.79

NAO B 77.59 29.95
NAO B 105.53 3.87
NAO B 101.77 27.63
NAO B 94.41 1.11
NAO B 117.67 118.72

NAO C 109.70 45.40
NAO C 57.06 0.91
NAO C 153.15 33.54
NAO C 129.68 78.16
NAO C 64.74 2.96

Avg. 86.83 23.61

The first robot, NAO A, remained close to the theoretical

straight path (error below 3% on average). The second and

third robots (NAO B and C) show a higher error distance

(average error of 33% and 36% respectively). This could be

explained by the higher level of wear of the two last robots.

Figure 5 show the corresponding navigation paths for each

robot. The drift of the robot NAO B and NAO C are clearly

visible here, whereas NAO A remains close to the straight

theoretical path.

To reduce the error distance to theoretical straight path,

two solutions could be explored. The first one consists

in doing registration of path planning during movements.

However the blur introduced by the motion and the variation

in robot pose could introduce errors in pose estimation and

results in an important error in move commands. Preliminary

results tend to confirm this hypothesis: registration of pose

during movement show an increase in navigation duration in

preliminary tests. To handle the pose estimation error the use

of a filter is required as the UKF filter proposed in [5]. A

second approach is to reduce the navigation movement length

used after each pose estimation. A side effect of reducing the

navigation movement length is an increase in the number

of stops which introduces an increase of global navigation

duration. On the other side, the robot will benefit of a

reduced mark finding duration: it would be better oriented

due to reduction of drift and would then require less time

consuming panning. Results obtained with robot NAO C

when using a movement length of 20cm are presented in

Figure 6. These results show that the robot remains close to

the straight theoretical path (average error below 19 percent

vs. 32 percent using 75cm movements). The duration of

the navigation is increased on average by 16 seconds. This

increase duration could be compensated by the avoidance of

obstacles in more complex navigation task where remaining

close to the reachable points is required.

http://bit.ly/navmark
http://bit.ly/navmark


(a) NAO A. (b) NAO B. (c) NAO C.

Fig. 5: Navigation paths for the three robots during the corridor task (move command of 75cm length).

Robot Duration (s) Error (%)

NAO C 102.10 24.27
NAO C 122.75 11.08
NAO C 107.36 22.50
NAO C 137.50 16.70
NAO C 124.35 16.81

Avg. 118.8 18.27

Fig. 6: Duration, error distance and navigation path for robot

NAO C (move command is 20cm length). Results show that

the robot remains close to the theoretical path.

E. Multiple rooms navigation results

To check that our system allows humanoid robot to

navigate from room to room we conducted three navigation

runs from our office to the office reception using the three

robots. The navigation length is about 15 meters. The two

rooms are separated by a door of 80 cm wide. Different

furniture or objects are present on the path (e.g. a sofa, tables,

a fire extinguisher, etc.). The light is not uniform on the path

(e.g. destination room presents a huge window whereas office

rooms is illuminated with artificial light).

Results of the runs show that our approach allows all

the robots to reach their destination despite the difficulty

of the task. The duration of the runs are 245s, 496s and

379s for robot NAO A, NAO B, and NAO C respectively. It

should be noticed that the robot NAO B has fallen during the

run. He has drifted too much and collided with a piece of

furniture. However after he got up, he continues to navigate

the environment successfully.

V. DISCUSSION

The main limitation of our approach concerns the intru-

siveness of the proposed setup. Indeed black and white bar

codes are particularly visible (8cm wide) and thus could be

disturbing in the user environment. An interesting solution

to this limitation is the one proposed by Huh et al. [16] who

proposed to use invisible bar code illuminated by UV-light.

Another solution is to use smaller bar code, but it would

introduce more error in pose estimation. In our experiment

we use the same bar code size, but it could be interesting

to use different sizes (e.g. small bar codes in small rooms).

A good way to enable this would be to include the physical

size of the bar code directly in the bar code data [8].

During the different evaluation runs, humans users present

at the office report that the head rotation of the robot head

could be disturbing because it went over pi/4. A threshold

on the head orientation should thus be envisioned.

Concerning the reorientation of the robot during the walk,

more analysis should be conducted. In this paper we do



not use movement reorientation during the walk as it shows

poorer outcomes in preliminary tests. However this solution

provides a more natural walk without any stops and thus

should be explored. It could for instance increase acceptance

of the robot by the users.

The use of an automatic adaptation of the movement

length based on indoor information (e.g. number of obstacles,

wide of corridors) or on the robot estimated drift could also

be envisioned in order to reduce the error distance between

robot and theoretical path.

Concerning the 2D barcode used, datamatrix provided

accurate and fast detection. However the use of specific

markers designed for robot vision like ARTag [9] needs to

be evaluated.

VI. CONCLUSION

In this paper we propose to use bar code landmarks in

order to provide an accurate indoor navigation capabilities

to NAO humanoid robot. Experimental results obtained with

three different robots show that the proposed system is fully

operational and robust. Moreover the navigation speed is

quite fast compared to previous work found in the literature

and the proposed approach even works on robot with a huge

drift. Future work will focus on the improvement of the

landmark detection during movements and in different light

conditions. Applications that could be based on our approach

include: objects search in the user’s flat, going to the charging

station, or game application like hide and seek.
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APPENDIX

A. Bar code positioning

Fig. 7: Theoretical positioning of 2D bar codes in a corridor.

On the left a good compromise between coverage and

number of bar codes. On the right a full coverage of the

corridor. Black arrows indicate position and orientation of 2D

bar codes stuck on the walls. Blue areas show the positions

from where the robot could see a bar code with a good

confidence. Green cross represent a possible robot learning

position.
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