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ABSTRACT

A strategy to control an animal disease within an area is often based on one or more actions systemati-
cally implemented. In this paper, we illustrate how to use a Markov Decision Process (MDP) to compute
an adaptive strategy depending on the pathogen spread within a group of farmers with only one decision-
maker for the group. The objective at the group level is to decrease the cost of the disease and its control.
Status for each farm is assumed to be exactly known each year by the decision-maker. Possible actions
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each year are Doing nothing or Vaccinating. The computed MDP policy results in a non-systematic vac-
cination. Although the objective is only based on the total costs, the computed MDP policy reduces the
prevalence, that is the amount of infected herds, compared to a systematically Doing nothing strategy.

1. Introduction

The decision to control the spread of a pathogen within a live-
stock population is related to various actors (farmers, veterinari-
ans, associations. ..) who consider different criteria. For regulated
animal diseases such as Foot-and-Mouth Disease (FMD), strategy
for control is then defined at the country level and is mandatory.
For other animal diseases, the farmer often decides whether to
control them or not, on a voluntary basis. Their decisions are based
on criteria, often economical ones (Klein et al., 2007). For a disease
that can be transmitted by animal purchases, direct contact or by
air, such a decision in a single farm is rarely sufficient as the path-
ogen spread within a farm is influenced by its spread in neighbour-
ing farms. Since some farmers are grouped in associations, decision
making for such disease control can be defined at the level of a
group of farms to enhance its efficiency. The group proposes which
control action should be implemented over time and farmers apply
it.

To define a control strategy at a group level, the group of farm-
ers should have an objective and should take into account both
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uncertainty about the future pathogen spread and that some farm-
ers may not always apply the proposed action. Example objective
can be the limitation of the cost of the disease spread or the num-
ber of infected farms. Pathogen spread is not a deterministic pro-
cess as transmission is not systematic. It results in uncertainty
about the pathogen spread; mainly on the possible extent of infec-
tion or clearance (Dangerfield et al., 2008). To make the right deci-
sion, the variability of the pathogen spread should be taken into
account. Moreover, the group should assume that some farmers
may refuse or wrongly implement the retained policy. The fact that
not all farmers take an action may decrease the efficiency of a
strategy (Vonk Noordegraaf et al., 1998).

Modelling approaches are often used to explore the impact of
decisions on pathogen spread in order to inform a leader for its
decision. Classically, strategy consists of only one action applied
every time but very few approaches consider different application
times of the action. Often, studies concern the efficiency of a strat-
egy consisting in applying an action either every year (O’Callaghan
et al., 1999) or at each new case detection (Backer et al., 2009;
Tildesley et al., 2006; LeMenach et al., 2005; Keeling et al., 2003;
Ferguson et al., 2001). For pathogen spread within a livestock pop-
ulation, the definition of rules to adapt a strategy according to the
current prevalence of the infection in an area is often based on ex-
pert knowledge (such as in Seegers et al., 2006). The best action at a
time can also be determined by considering a decision tree based on
the expected utility of actions (Rat-Aspert and Fourichon, 2010) or



by simulating possible behaviours in the future (Merl et al., 2009) or
even by other optimisation methods (Kristensen, 2003; Toft et al.,
2005; Kobayashi et al., 2007; Ge et al,, in press, 2010).

Markov Decision Processes (MDP) are classically used to define
a policy optimising an objective function under uncertainty in var-
ious domains but rarely in animal epidemiology. MDP can formal-
ise a problem with a choice of actions at each time step, actions
that influence the future evolution of the system (Puterman,
2005). They are often used for planning in robotics and for manag-
ing resources. For example, Forsell et al. (2011) proposed a graph-
based MDP to manage forests considering wind damage. For the
study of pathogen spread within a livestock population, few stud-
ies used MDP-based approaches. One model concerning one herd
used a MDP-based approach to define actions to manage the herd
when there is one pathogen spread (Toft et al., 2005). For decision
to control FMD in Ge et al. (in press, 2010), an MDP coupled with a
Bayesian approach to estimate some epidemiological parameters
of a Multi-level hierarchical MDP (Kristensen and Jorgensen,
2000) was used. In the case of an epidemic disease for which erad-
ication should be achieved, the action “Do Nothing” is possible to
represent flexibility before taking a specific action (Ge et al,
2007). For an endemic disease, control is not regulated and the ac-
tion “Do Nothing” is a real option to consider. Decision-makers
face the choice of controlling the disease or doing nothing. To
our knowledge, no MDP approach was ever used to compute a pol-
icy for endemic diseases at the area level.

Defining a policy at the area level without considering explicitly
each decision at farm level avoids the problem of the model dimen-
sion. For endemic diseases, decisions are taken by each farmer.
When considering a global objective at the area level, the interac-
tion of all individual decisions should be considered. We face then
a multi-component problem as in (Forsell et al., 2011; Ben-Ari and
Gal, 1986; Kristensen, 1992). For such a problem, a multi-agent
Markov Decision Process (MMDP, Boutilier, 1999) or a decentral-
ized Markov Decision Process (Dec-MDP, Bernstein et al., 2002)
may be considered. The complexity of these models depends on
the number of agents and on the number of individual actions. In
a given region, there can be much more than 100 farms, making
these models impossible to use. For example, a MMDP with 10
farms, two actions and only three individual statuses would re-
quire more than 3« 2'° (more than 60 millions) tests for each
considered time-step. For a multi-component problem, approxi-
mations were obtained either using a specific approach (parameter
iteration, Ben-Ari and Gal, 1986; Kristensen, 1992) or considering a
low number of relations between components to decompose the
problem in smaller ones (Forsell et al., 2011). For our problem,
we consider here a simplified situation at the group level to avoid
approximate solution. To take into account that individual deci-
sions may be different from the one given at the group level, we
consider that some farmers would not comply with the chosen pol-
icy of the decision-maker at the group level. This induces lower
transition probabilities resulting from the action than expected.

In this paper we show how to use an MDP in order to propose a
global adaptive strategy to control a theoretical endemic pathogen
spread within a group of farms. First, we describe the model
assumptions and we give the formulation as an MDP. Results for
the model applied to a theoretical pathogen spread are then pre-
sented. Finally, the potential use of this model for a real pathogen
spread is discussed.

2. Methods
2.1. Problem description

In this paper, we consider a theoretical pathogen spread. We as-
sume that the pathogen can be transmitted by direct contacts and

by purchase of animals. Once introduced into a farm, the transmis-
sion of the pathogen is assumed to be high in order to have only
one infectious status. In few months, all animals are infected. We
assumed that unspecified actions are taken to limit the infection
within the herd. So, after a few years, infected herds can become
free of infection and then susceptible again to a new infection by
the pathogen. There is no immunity resulting from an infection.
For prevention, we assumed that a vaccine is available to protect
the susceptible farms of infection, but some farmers may be reluc-
tant to use it. The vaccination induces a temporary immunity, and
subsequently a vaccinated herd will become susceptible again. The
vaccination is assumed here of no value for the infected farms.

We consider a group of N farms in an area. Each farm can buy
animals from other farms in the group and from farms not in the
group. Farmers, except for a few ones, follow the directive of
the leader of the group. The decision-maker in this study is then
the leader of the group.

Each year, the decision-maker should propose an action that
would be applied by all the susceptible farmers. Two alternatives
are available each year: Doing nothing or Vaccinating. To make
his decision, the leader performs tests in each farm to determine
its status regarding the pathogen spread: susceptible to an infec-
tion versus infected versus vaccinated. To simplify, we assumed
that these tests are 100% specific and sensitive. Relaxing this
hypothesis will be discussed in the last part of this paper.

The decision-maker makes his decision considering the eco-
nomic consequences of the pathogen spread and the cost induced
by vaccination.

2.2. Formal framework

We begin by a short introduction to Markov Decision Process
(MDP) models, before presenting the MDP model used to model
our problem and the associated epidemiological model. The MDP
framework provides a formal description for modelling a large
variety of stochastic, sequential decision problem in an uncertain
environment (Puterman, 2005). It is a well defined framework with
on-line and off-line algorithms for determining optimal behaviour.

2.2.1. Preliminaries
A MDP is defined by a tuple (Ss,A, T,R) such as

- Ss is the finite set of all states of the model, all the values which
can be reached;

- A is the finite set of all available actions.

- T:SsxAxSs—[0,1] is the transition function. 1(s,qa,s’) is the
probability to be in s’ applying the action a in the state s. This
probability represents the uncertainty on the outcome of the
action a.

- R:Ss x A - R is the reward function. R(s,a) is the reward after
applying the action a when in the state s.

A policy 7 is a function from Ss to A assigning an action to each
possible state in Ss. Solving an MDP over an infinite horizon results
in deriving an optimal stationary policy n*. This policy is the one
which maximises the expected sum of rewards, i.e.
E[ELOV‘R(st,at)\n with 7 the discount factor (0<y<1). Algo-

rithms are available to exactly compute this optimal policy =¥, in
particular Value Iteration and Policy Iteration (Puterman, 2005).

2.2.2. Our model

The system is represented by the number of farms in the status
S (susceptible to be infected), I (infected) and V (vaccinated). It
evolves by 1-month time-steps. The decision of vaccination is
available only at the beginning of each year. In order to be consis-



tent with the Markov assumption, the state of the system includes
an indication of the actual month (t0-t11). To avoid vaccination at
other time step than the first month, the cost of the vaccination is
prohibitive except the first month (t0).

2.2.2.1. Model. Our Markov Decision Process is defined by
(Ss,A,T,R) with

- Ss, the set of states: a state of the system has two components:
- The current month ¢t;

- The state of the population regarding the pathogen spread
{[x,y,2]]x +y +z= N} corresponding to the repartition of
the N farms into the three individual statuses S (susceptible),
I (infected) and V (vaccinated).

- A, the available actions: {“Vaccinating”; “Doing nothing”}

- T, the transitions: they are computed based on a stochastic epi-
demiological model representing the pathogen spread between
farms (given in the following subsection).

- R, the rewards: For a state (h,i,j), the rewards are given by

{R((h, i,j),Doing Nothing) = —Cd - i
R((h,i,j),Vaccinating) = —Cd -i — Cv - (h +j)

with Cd the cost of the disease for each farm in the individual status
I and Cv the cost of the vaccination for each farm in the statuses S
and V (booster shot).

2.2.2.2. Epidemiological details. For modelling the pathogen spread
within the group, we consider a compartmental epidemiological
model. At each time-step, we consider the number of farms in each
status. The epidemiological model is based on a classical SIS model
used for disease without immunity after an infection (Hethcote,
2000). We add the status V for representing the vaccinated status.
In this epidemiological model, individual transitions concern a
farm. They are illustrated Fig. 1.

In our model, the set of model states for a given month t is then
all the repartition of farms among the three individual statuses
(S,LV). With three farms, Ss={(3,0,0), (2,1,0), (2,0,1), (1,2,0),
(1,0,2), (1,1,1), (0,3,0), (0,2,1), (0,1,2), (0,0,3)} where (x,y,z) are
respectively the number of farms in the status S, I and V. The state
space size is then given by

|Ss|:12*C§+2:12*w

(1)
where C? is the binomial coefficient giving the number of combina-
tions of p elements among n.

At the group level, a transition from the model state (h,i,j) to the
model state (I, m,n) corresponds to different sets of individual tran-
sitions. It depends on the number of farms moving from one status
to another. For example, the transition from (1,2,0) to (2,1,0)
without vaccination can result either (i) from a movement of one
farm from I to S as the other farms kept the same individual status

T
=

j < ht
25 ullu2!(h—ul-u2
h+v+w-ul —u2=1

i+ul—-v=m
j—w+u2=n

or (ii) from both a movement of one farm from S to I and a move-
ment of the two farms from I to S. As we do not differentiate be-
tween farms, there are then three possible movements: 2 = C,
for the situation (i) depending of which farm in the [ status moves

Doing Nothing Vaccinating

V—> S —> |
|

Fig. 1. Schematic representation of the epidemiological model applied to farms in
the group. Farms are separated according to their status regarding the pathogen
spread (S: susceptible, I: infected, V: vaccinated). For each available action, arrows
represent possible transitions between statuses.

V—>S —|
(S

and 1= C3 for the situation (ii). We have then with a=“Doing
Nothing”:
T((1,2,0),4,(2,1,0)) = (GPI — SPI —1))(CiP(S = S))

+(GP(I — S)*)(CIPS — I)).

Following this reasoning, transitions at the group level are then
computed considering all possible sets of individual transitions
compatible with the related change of states and using multino-
mial coefficients. When the action a is “Doing nothing”, the transi-
tion T((h,i,j),a,(I,m,n)) from (h,i,j) to (I, m,n) is given by

. _ [(cgp(s — I)"P(S — S)"¥) ]

J :

D htviwou=l) |HCPUI=S)PU—D")

v=0 w=f w w j—w
[*(Cj P(V —S)"P(V — VY )J

i

i+u—-v=m
j—w=n

2)
where 5{ cond 1 } is a Dirac function, equal to 1 when the condi-

cond_n
tions cond_1,. .., cond_n are all satisfied and 0 elsewhere, C? is the
binomial coefficient for p elements among n, u the number of S
farms becoming I, » the number of [ farms becoming S and w the
number of V farms becoming S.
Considering only the states satisfying conditions of the Dirac
function, equation (Eq. (2)) can be simplified to:

n<j
. m<i+h
T((h,i.j),a, (I, m,n)) = LA R
I<j-n+h+i
0 else

with
he
min(h i G-n) 1) (CﬁP(s —D"P(S —5) Y
B= Y[ (CHP SR Y 3
u=max(0,h+(j—n)-I) *(q}ﬂp(v _ S)j’"P(V — V)n)

When the action a is “Vaccinating”, the transition
T((h,i,j),a,(I,m,n)) is given by
)!P(S . I)ulp(s . V)"ZP(S . S)hl—ul—uz)
*(C/P(I — S)"P(I — I)i’”) * (C}’”P(V —S)"P(V — V)j’w) (4)

cond_1

cond_n
tions cond_1,..., cond_n are all satisfied and 0 elsewhere, C? is the

where 5{ } is a Dirac function, equal to 1 when the condi-



binomial coefficient for p elements among n, ul the number of S Table 1
farms becoming I, u2 the number of S farms becoming V, v the Parameters used for simulation (values given per month).
number of I farms becoming S and w the number of V farms Parameter Notation Value
becomlr}g S'. Lo . . Cost for each infected herd 1
Considering only the states satisfying conditions of the Dirac Cost for the vaccination of a herd at t0 7
function, equation (Eq. (4)) can be simplified to: Cost for the vaccination of a herd at other than t0 999999
Transmission rate between herds in the group Beta 0.1
m<i+h External risk of infection pOut 0.001
B ifd n<hai Recovered rate (Infected to Susceptible) P(I-S) 0.02
T((’L i,j), a, (17 m, n)) _ sSh+j Vaccination efficiency DEffV 0.95
I<j—n+h+i Rate of end of protection by vaccination PV -S) 0.1
0 else
with
h! ul u2 h1-ul-u2
min(nhh—(m—i)) | min(h—u2 h+i+(j-n)-I) <“1!“2!(h*U1*U2)!P(S = I7P(S = V)7PS = 5) )
B = Z Z *(C?Humpu - S)u1+17mP(1 - I)mful) (5)

u2=max(0,n—j) ul=max(0,h+(j—n)-1))

To compute the transitions T at the group level, we need to de-
fine the transitions P(I — S), P(V — S), P(S — V) and P(S - I). Transi-
tions from one state X to the same one are deduced from the other
probabilities as we have ", P(X — Y) = 1. The probabilities for the
transitions from [ to S and from V to S are assumed to be constant
corresponding to the inverse of the respective mean sojourn time
in the status I and V. The transition from S to V depends on the ac-
tion: with the action “Doing nothing” (S — V) =0, and with the ac-
tion “Vaccinating” P(S — V) = pEffV with pEffV the probability that
the vaccination is correctly implemented in the farms and results
in a full protection during nearly 1year. The transition P(S — I)
from S to I depends on the number of infected farms in the group,
on a constant external risk and on the action (vaccination or not).
The transition probability used has a frequency-dependent form
(Begon et al., 2002). With the action “Doing nothing”, the transi-
tion depends only on the number of infected herds and an external
risk. The probability is given by P(S — I) = (Beta. N;/Nt+ pOut) with
Beta the transmission rate, N; the number of infected farms in the
group, Ny the total size of the group and pOut the probability to be
infected from a farm outside of the group. With the action “Vacci-
nating”, a part of susceptible farms would be vaccinated and then
protected. Only those not protected by the vaccination may be in-
fected. The probability is then given by P(S — I) = (1 — pEffV)-(Beta.
N[Nt + pOut).

2.3. Computational study

We assume that the group consists of 200 farms. Since a theo-
retical pathogen spread is assumed, values of parameters (Table 1)
are independent of any disease and are chosen only to have an en-
demic situation; i.e. a constant prevalence of infected farms in the
group over time without any action. The reproduction number (Rg)
is here of 5 which corresponds to an endemic situation of 80% of
infected farms at equilibrium.

We compute the MDP policy with the Value Iteration algorithm,
assuming an infinite horizon and a discounted rate of 0.9975398
corresponding to an annual discounted rate of 97% classically used
in economic studies. We compare the obtained policy to two com-
monly used ones: Do Nothing and Systematic Vaccination, using
each year the respective actions “Doing nothing” and “Vaccinat-
ing”. The effect of these policies was tested over 50 simulated
years. For policy comparison, we consider the rate of vaccination
in the area and the variability of both the prevalence and the total

*(q}uzfnp(v N S)j+u27np(v N V)nfuz)

costs in the area. For each policy, we run 100,000 simulations with
the same initial population consisting in 80% of infected farms and
20% of susceptible ones. It corresponds to a plausible endemic sit-
uation in an area.

As the cost of the vaccine would influence the computed policy,
we do a sensitivity analysis of the model to this parameter. We run
five sets of simulations with various vaccination costs: 1, 3, 6,9 and
12.

2.4. Computation time

The computation times are evaluated for different group sizes
(Table 2). To evaluate the transition matrix density, we mention
the size of the state space and the amount of non-zero values for
each line. The matrix is relatively sparse, mainly due to the month
indicator step. Nevertheless, the computation time and the mem-
ory used are still high although we took great caution when pro-
gramming to lower them. First, we implemented the model with
a multi-threads approach both to compute the matrix for different
lines in parallel and to run Value Iteration. For the matrix creation,
the formulas (Egs. (3) and (5)) are difficult to implement directly
even for their simplified version. Instead, we decided to build the
matrix line by line, simulating possible moves of groups: for a gi-
ven initial state, we explore the movements’ tree for farms consid-
ering the individual transitions probability. When all herds have
been considered once (one branch is fully explored), the resulting
probability is added to the corresponding final state’s probability.
When all branches are done, the probability distribution of all
the final states is the expected outcome of the considered action
and initial state. Data structures were also optimised to use the
least possible memory.

3. Results

The policy computed with the MDP leads to a high number of
model states with the action “Doing Nothing” (Fig. 2). When the
number of farms in the S and I statuses are low, no vaccination is
retained which is not surprising as a high number of farms are pro-
tected by vaccination (in V status).

When simulated, the MDP computed policy induces a non-
systematic vaccination (Fig. 3). Nevertheless, in the first year, the
vaccination was used in all replications as the initial model state
is assumed to be in the area of vaccination policy. Over time, the



Table 2

Computation results for each group size (N) with the corresponding number of states (|Ss|), density indicators, computation times (in seconds) for building the matrix and solving
the model, cpu time and elapse time (in hours:minutes:seconds). The program was run (A) on a laptop (Core i5) using four threads and (B) a shared server machine (48 processors,

260 GB of memory) using 30 threads.

N |Ss| Mean density (%) Maximal density (%) Matrix building Model solving Cpu time Elapse time
(A) (B) (A) (B) (B) (B)

50 15,912 0.157 1.464 1.70 0.51 25.62 12.40 00:12:41 00:00:14
100 61,812 0.074 0.676 19.52 3.15 131.00 31.15 00:12:25 00:00:35
150 137,712 0.047 0.434 99.74 15.47 406.66 66.62 00:36:41 00:01:24
200 243,612 0.035 0.319 na 50.67 na 131.08 01:29:02 00:03:03
250 379,512 0.027 0.252 na 127.59 na 367.01 03:36:48 00:08:18
300 545,412 0.022 0.207 na 273.74 na 817.99 07:22:03 00:18:18
350 741,312 0.019 0.176 na 592.11 na 985.46 11:18:11 00:26:22
400 967,212 0.016 0.152 na 951.39 na 1253.80 17:31:45 00:36:55

na: not applicable.

3 eters used here, the prevalence is not reduced to zero even after
< 50 years of Systematic Vaccination (Fig. 4). This result is not in con-
% 1001 tradiction with the minimal coverage of vaccination that can be
¢ 80/ computed using Ry and is equal to 80%. Although this minimal cov-
f erage is lower than pEffV (Table 1), the clearance is not achieved. It
% 60 | can be explained by the fact that vaccination is used only by sus-
= 40/ ceptible farms for preventing infection and not by all farms. More-
° over, vaccination is done only once a year (1 over 12 times-steps)
g 20 with an assumption of waning immunity.
8 /=== : . : . : . : ) ; As expected, the cost of the vaccination influences the com-
& 0O 10 20 30 40 50 60 70 80 90 100 puted policy. For the values of the cost vaccination tested, the com-

Proportion of S herds (%)

Doing nothing [} Vaccinating|

Fig. 2. Policy computed by the MDP: each model state is given by (S,I) with S and I
the proportion of herds in the health status susceptible and infected, respectively.

vaccination is less used depending on the current model state at
the time when the decision should be taken.

The MDP policy allows us to propose a strategy reducing the
prevalence with a total cost nearly equivalent to the Do Nothing
strategy after 10 years (Figs. 4 and 5). Compared to the Systematic
Vaccination strategy, the total cost is lower but the prevalence is
less reduced (Figs. 4 and 5). Due to the non-systematic vaccination,
the cost of the strategy is lower than for the Systematic Vaccina-
tion strategy (Fig. 5). We note that for the epidemiological param-

puted policy corresponds to a Systematic Vaccination for
vaccination costs below 6, inducing the same prevalence and the
same total cost for the two strategies (MDP Policy and Systematic
Vaccination, Figs. 6 and 7). For vaccination costs higher than 6, the
vaccination is too expensive regarding its efficiency and its use is
limited (for value 9) or forbidden in nearly all states (for value
12) by the computed policy.

4. Discussion

In this paper, we used a classical approach for solving sequen-
tial decision problems also used for populations management. In
our study, we consider a group of herds with a unique decision-
marker. The dynamics of the transmission between herds may be
represented by a meta-population approach with movements of
animals between herds (such as in Le Menach et al., 2006). The
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Systematic Vaccination (thin solid lines) (100,000 replications for each strategy).
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Fig. 5. Boxplot of the total cost of the pathogen spread and its control within the group using the three strategies: Do Nothing, MDP policy and Systematic Vaccination at

different time steps: 5, 10, 20 and 50 years (100,000 replications for each strategy).

use of an MDP to propose a sequence of actions in order to reach an
objective in a meta-population is common in ecology, mainly for
questions related to conservation and biodiversity (Possingham,
1996; Chadés et al., 2008; Nicol et al., 2009). As in McDonald-
Madden et al. (2008), we do not consider explicitly the movement
of animals between populations. Nevertheless, in our model, the
farms are in interactions due to the pathogen spread between them
but without given the network of animal movements. Modelling
the pathogen spread influencing the choice of actions is already
considered for human population and in agriculture. For human
populations, there is one decision-maker per individual and no
decision-maker for a group of individuals. The game theory can
then be used (such as in Reluga et al., 2006). In agriculture, a more
complex approach related to MDP was proposed to consider deci-
sion regarding pathogen transmission including spatial location
(Peyrard et al., 2007).

We consider here a simplification of a multi-component prob-
lem in order to be able to compute the exact optimal policy. We
consider then no individual decision by farmer. If we wanted to
represent the individual decision, a Graph MDP (Forsell et al,,
2011; Peyrard et al., 2007) could be considered for diseases
transmitted from one farm to another by closed contact between
animals and by purchases. For parametrisation of the model,
data on animal movements between farms (as in: Ezanno
et al.,, 2006; Ribbens et al., 2009) should be available to define
a network. To represent decisions both at individual level and
at group level, interdependency between them should be
considered.

Our computed MDP policy is optimal and adaptive and may not
have been proposed by experts. Often in animal health modelling,
an action is systematically used whatever the current system state.
As in our approach, adaptation on the current system state is
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considered in some models where actions are used under con-
straints based on expert knowledge (such as in Seegers et al,,
2006). The optimality is evaluated on the simulation results for

specified policies. With our approach, we propose a policy both
adaptive and optimal. The constraints are defined mainly based
on the expected behaviour of the pathogen spread with and



without actions and the associated costs. These constraints are
complex and may not have been easily identified by experts.

For model building and optimisation, the computation time is
long although the matrix is sparse. Pre-computing transitions
matrix and multi-threading both matrix building and Value Iter-
ation reduces the computation time on computers with several
processors. The counterpart is the memory needed to store the
matrix. It explains why we did not provide computation time
on the laptop for N > 200. In case of a lack of memory space,
our program is able to compute parts of the matrix before Value
Iteration and to compute the remaining matrix lines as needed.
In this case, the computing time is highly increased. Limiting
computing time is possible providing approximations. During
the transition matrix building, transitions with very low proba-
bilities can be avoided to reduce the density of the matrix. Such
an approximation reduces the computing time for the optimisa-
tion. For example, cutting probabilities below 1078 reduces the
matrix density from 0.035% to 0.021% and the cpu time from
1H30 to 1H in the shared server machine. If only a few initial
states are needed, the states can be pruned using simulated tra-
jectories from these initial states. With three individual statuses,
the model can be computed in a shared server machine even for
a group size of 400. Nevertheless, as the number of individual
statuses increases, the model becomes intractable. With four
individual statuses and 200 herds, the space state size is then
of 12 x C3); = 12+ 1373701, that is more than 16 millions states.
Exact resolution of such a model is then not possible in a rea-
sonable time. Approximate resolution of large MDP by a hierar-
chical approach was proposed in many works such as in (Givan
et al,, 2003; Barry et al,, 2010). The use of such an approach for
our model is currently evaluated.

With an MDP, the policy is computed once for all situations of
the pathogen spread in the area, considering all possible behav-
iours from each model state. Computing the policy before the sim-
ulation reduces the simulation time. It produces a guideline that
can be used whatever the situations. The decisions are available
for situations with a fast pathogen spread and also for those with
low ones. This pre-computing step is not possible when the param-
eter values change over time as in Merl et al. (2009). With our ap-
proach, it can be of interest to do a robustness analysis to explore
the efficiency of the computed policy when some parameters are
slightly different from the ones used for computing.

In the computational study, the policy was computed assuming
an infinite horizon although the interest of decision makers can be
defined on a finite one. For an infinite horizon, a discounted rate
must be used for the algorithm to converge. The rate used here
was chosen to correspond to an actualisation rate used in eco-
nomic studies (3% per year). Due to the time step of 1 month, the
economic impact of the 5th year is reduced by nearly 14%. Our
objective was economical, so decision makers can accept the dis-
counted rate. Nevertheless, if the objective is a number of herds,
they may not accept such a decrease rate. In case of a finite horizon
noted H, a policy by year are calculated. For an animal disease, it
may be easier to have only one strategy that can be followed every
year. Using the same policy each year may induce a non-respect of
the objective. Indeed, choosing a finite horizon with the same dis-
counted rate increases very slightly the number of states with a
vaccination (results not shown). Using them whatever the year,
the MDP policies may induce similar prevalence and cost but more
cost than the true finite horizon policy. Moreover, with a finite
horizon H, the future dynamics after the year H are not considered
although decisions may continue after H. To avoid this drawback,
moving or rolling horizon was sometimes considered (van Den
Broek, 2002; Balakrishnan and Hung Cheng, 2009) but one strategy
should be computed each year and there is no guarantee of
optimality.

When considering only a vaccination every year, a 1 year time-
step is sufficient. Nevertheless, we define this model in order to ex-
tend it later to a situation with more actions. Indeed, we consider
that an action may have varying impact and cost over time due to
herd management. For example, a biosecurity action can be consid-
ered each month. Depending on the current month, the herd can be
in pasture or in a building. According to the localisation of animals
(pasture or building), the biosecurity action can have different im-
pact and costs. Introducing such a biosecurity action is possible in
our model as the current month is known for each model state. To
simplify the model presentation here, we consider only the vacci-
nation action to be independent of herd management. The action is
available every year at the same date as the boosting is often done
each year. Even without considering another action, our model can
be easily extended to a situation where the Vaccinating action
should be separated of at least 12 months. In this case, the transi-
tion from tO to t1 would only be possible in case of vaccination. In
case of the action “Doing Nothing”, the transition from t0 would be
only to t0. Vaccination occurs then at least after 12 months after
the previous one but not exactly at the same date each year.

This model is theoretical and cannot be directly used for a real
pathogen spread. Tests can be used to identify the health status of
each herd but they are often nor 100% sensitive nor 100% specific
(Christensen and Gardner, 2000). These uncertainties may be intro-
duced in the model. A Partially Observable MDP (Kaelbling et al.,
1998) can be used to formalise it, but with an increased size of
the model. Moreover, the external risk may vary, influenced by
the pathogen spread outside of the group. Indeed, individual farm-
ers can be independent or outside of the group considered here.
They may also try to limit the pathogen spread, decreasing the
prevalence outside of the group and thus the external risk of infec-
tion. Variation of the external risk can be introduced into the mod-
el considering another component of the state (an external risk of
pathogen introduction), increasing the model size. For a real path-
ogen spread, we should also take into account that the transmis-
sion parameters are often wrongly estimated. Impact of such
uncertainty can be studied considering a robustness analysis for
the computed policy. If this uncertainty influences a lot the results,
approach with a Bayesian approach as in Ge et al. (in press, 2010)
may be considered.

5. Conclusion

In this paper, we showed how to define an MDP to propose a
preventive strategy based on the computed policy to control a
pathogen spread at the level of a group of farms. The group’s objec-
tive here consists in having the lowest total cost of pathogen
spread for the farms of the group. Although the objective is eco-
nomic only, the computed policy induces a decrease of the patho-
gen spread for a cost equals or lower than a Do Nothing strategy.

Moreover, vaccination is generally applied less than in a Sys-
tematic vaccination strategy, and that implies an increased preva-
lence. However, this loss turns into an increase of the disease cost
that is compensated by the reduced cost of vaccination. The total
cost is then lower when vaccinating parsimoniously. The analysis
we conducted on the influence of the vaccination cost shows that
the MDP produces automatically the Systematic Vaccination when
its cost is cheap enough, the Do Nothing strategy when its cost is
too expensive, and finds the right threshold otherwise.
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