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Abstract

We propose a method based on a priori knowledge provided by anatomical atlases to build almost automatically
a Point Distribution Model of internal brain structures. A training set of 3D shapes is first constructed by
registering an anatomical atlas over a MRI database. Then, the set shape instances are automatically landmarked
in a Point Distribution Model optimization framework: according to the recent method developed by Davies et
al. [1], a Minimum Description Length principle-based objective function drives the optimization process to the
“best” amnotation for input training set. Preliminary results of models built for several anatomical structures are
encouraging.

1. Introduction

Magnetic Resonance Imaging (MRI) is a field that recently developed in Medicine and opened new horizons
through allowing non-invasive in-vivo observations of the human body. This technical advance is particularly
crucial in the human brain application for which it brings the opportunity to detect and possibly cure pathologies
before they reach a dramatic stage. Though, the understanding of the human brain organization and functionality
is still an emerging discipline that requires reliable cartography as far as common ways to study pathologies
involve comparison of healthy and affected populations.

Nevertheless, the practical aspects of Brain Imaging applications raise several pitfalls. First of all, the contrast
and resolution of MRI images are intrinsically limited compared to other sources. This fact is enworsed by the
nature of internal brain structures of interest, consisting in mixtures of 3 pure anatomical tissues: Cerebro-Spinal
Fluid (CSF) - appearing black on MRIs, Grey Matter (GM) and White Matter (WM). Thus, the segmentation
(i.e. boundary determination) of most anatomical structures is a difficult and sometimes subjective process.

The intervention of human anatomical experts for performing segmentation is particularly delicate in the Brain
MRI context. First of all, the amount of data to process is high (about 124 slices per volume). Furthermore,
the inter and intra experts variability of the manual segmentation is a factor that will affect the consistency of
any statistical study based upon these results. Thus, The need for an automated segmentation method becomes
obvious to get stable results over large data sets.

The Brain MRI context is particularly challenging for classical image processing techniques, since most
contrast-based ones proved to be rather ineffective in most cases (snakes among others). Modeling and repro-
ducing some part of the anatomical expert “skills” becomes necessary to overcome limited boundary information.
In most cases, this a priori information is inferred from a training set of shape instances, whose variation defines
an allowable-shape space that can be used for determining conformity of any shape instance. Though, model
training remains a tedious and often manual task that, for a long time, limitated the extent of such methods in
dimension, considering that training 3D models demands far much work than for their 2D reductions.

Nevertheless, the recent advances achieved in the automatic learning of shape variation finally open new
opportunities for building statistical shape models in a rather automatic manner: we took advantage of this to



propose an - almost - automatic method for building a statistical 3D shape model using the very popular Point
Distribution Model (PDM) formalism.

A priori information about Brain MRI structures shape (geometry) and position is initially provided by an
expert-segmented anatomical atlas. Thus the first step of our method consists in building a training set of
shape instances by projecting the atlas over a large set of patient MRIs using warp registration. All anatomical
structures of interest are processed alltogether during this step, but afterwards each one will be considered as
an individual object. The second step consists in landmarking the previous training set instances, i.e. reducing
each object instance to a set of landmark points representing variation of studied shape, using the Minimum
Description Length (MDL) based method of Rhodri Davies [1]. The final step consists in building a PDM from
the previous landmark points, which will model the shape variation of studied object along our training set.

Deliberate efforts have been undertaken to design a scheme that should primarily apply to any kind of shape,
without focusing on a specific applicative domain. Besides bringing a welcome automation, the presented method
applies to a rather wide class of shapes that at least covers our structures of interest. As a consequence, we
now can build a 3D PDM for any brain structure provided we can add its 3D segmentation into the anatomical
atlas.

2. Choosing a 3D Point Distribution Model

2.1. Atlas-based segmentation using Fuzzy Fields shape model

As our target is to segment anatomical structures from brain MRI volumes, we first concentrated on improving
the method [2] that J.H. Xue developed in our lab. It primarily consists in segmenting structures of interest (for
now: ventricles, putamens, caudate nuclei, thalami, hippocampi) from skull-removed brain MRIs using a priori
information to overcome low contrast at edges.

This information is provided by an anatomical atlas Atlas, and its associated reference MRI volume Ref, (fig.1),
where Atlas, results from the segmentation of structures performed by an expert onto Ref,. Given that such
a task is really time-consuming, we only have a restricted number of such atlases (Cyceron, Harvard SPL, Ta-
lairach).
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Figure 1. Corresponding volume slices of Ref, and associated Atlas,.

In that method, selected Atlas, is first registered* into a given patient MRI Mri, to provide approximative
structures positions (seeds). Then, for each structure seed, a spatial 3D Fuzzy Field is generated in basically
computing an Fuclidean distance map whose values decrease significantly where we get closer to another struc-
ture. Thus these values can be interpreted as probabilities for a voxel to belong to related structure. To sum
it up, spatial fields represent a statistical shape model expressing a priori information extracted from Atlas,
concerning geometry, position and size of individual anatomical structures, and also spatial relationship between
these.

Concurrently, Fuzzy Markov Random Field oversegmentation is performed onto Mriy, resulting in delimita-
tion of homogeneous regions labeled with fuzzy values evaluating the mixture proportions of the 3 pure brain
tissues (CSF, GM, WM).

*registration infers a transformation from Ref, to Mri, which is then applied to Atlas,.




Finally, a segmentation result is inferred slice-by-slice through conjunction of fuzzy spatial and tissue infor-
mation sources. The method in [2] uses a rather stochastic approach employing a Genetic Algorithm (GA): this
implies the use of a simplified fitness function to limit computation overhead, since GAs propose many unlikely
configurations. In order to overcome this limitation, we rather adopted a sequence of morphologic filters, who
progressively converge to the final solution in providing intermediate results, thus authorizing more flexibility and
emphasizing deterministic behavior. The key steps of our method consist in determining safe cores for structures
via spatial fields thresholding and then to dilate the cores in examining whether candidate voxels satisfy both
tissue and spatial constraints.

2.2. Emerging need for an explicit shape model

Thanks to our collection of anatomical atlases, we managed to evaluate the relevance of our results, as far as
segmentation of MRI Re fy+, using Atlas, can be compared with expert segmentation Atlass, here considered as
ground truth. For both methods, results show good global positioning and coverage rate (> 80%). Nevertheless,
noticeable artifacts on low-contrasted structure edges still persist, except for ventricles whose segmentation
appears satisfactory due to their high contrast.

One reason for explaining this limitation is the difficulty to establish proper tissue values thresholds in former
step, though we project to improve them through establishing statistics on large MRI training sets. The key
reason comes from the spatial fuzzy fields formulation which only estimates the probability of individual voxels
to belong to structure: a segmented contour of unlikely distorted form cannot be discriminated provided that
its voxels lie within rather high probability zones. Fortunately for our method, this flaw can only occur at local
scale since we progress gradually from globally-registered seeds of correct shape, and can also count on tissue
information.

Thus, in order to improve our results, we should extract more explicit shape information from Atlas, and
enforce them along the segmentation process. Though other approaches have been examined, the Point Distri-
bution Model from Cootes & Taylor [3] seems to best suit our purpose. Let’s examine it in the most popular 2D
case.

A PDM model requires an input training set of n, segmented instances of studied object, each instance being
annotated by n landmarks. Some of these landmarks have been placed to loci best characterizing the object’s
shape (e.g points of high curvature) or of particular anatomical significance: they can be seen as shape invariants;
the other ones are then regularly placed along the contour between the previous “key” landmarks. Landmarks
are also labeled so as to designate for given label the very same locus along training set instances. Since the
PDM will show whether some selected points tend to move together (or not) over training set instances, key
landmarks must be placed with attention, even if correlation is mostly captured thanks to intermediate points.
If we take the hand example (cf e.g[4]), anatomical landmarks will be placed at fingertips but correlation will be
more obvious for intermediate finger points as the finger moves along the training set.

Since we focus our study on shape variation, we will consider our set of shapes as polygonal approximations
defined by landmark points: these polygons generally provide accurate representations provided that enough
landmarks were placed. Therefore our training set of shapes now becomes a set of shape vectors {s;}(ic[1,n.])
built in concatenating landmark points components (s; : {z1,¥1,..-Zn,Yn}), thus of dimension n, = 2n in our
present case.

Nevertheless, to objectively compare shapes, we first need to align the shape vectors polygons to same scale,
orientation and center to enable closest landmarks correspondence in a least-squares minimizing scheme. We
adopted the classical Procrustes Analysis, though Cootes et al. recommend a slightly different approach [3].
Principal Component Analysis (PCA) is then applied to the covariance matrix derived from aligned {s;}, resulting
in n,, sorted normalized eigenvalues with corresponding eigenvectors of dimension n,,. Then, the PDM formulation
allows to model our training set instances as:
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, where 5 is the training set mean shape, p™ the m—th eigenvector and b* its associated coefficient. Hence, the
PDM models linear variations from the mean shape whose modes are represented by orthogonal eigenvectors.
Also, noticing we just get the mean shape when b; coefficients are set to zero, we can consider these as identifiers
of s; in the current PDM model.

Admitting the eigenvalues \,,, can be considered as variances of corresponding modes p™, we also notice that the
amplitude of shape variation expressed by p™ depends on the value of A,,. This is of particular interest since it
appears that mode variances decrease dramatically fast: a subset of ¢ first eigenvectors can then be selected to
model approximate but proper shape variation.

So, any shape instance - belonging to the PDM training set or just unseen - can be characterized by its
unique set of b; coefficients. Since they are applied to corresponding eigenvectors, we can verify that each coef-
ficient stays within the bounds of eigenvectors-related eigenvalues - we generally allow +/ — 3\, variation - to
determine whether the variation from the mean shape induced by current instance is likely or not regarding to
current PDM. Thus, the PDM model defines an Allowable Shape Domain (ASD) under the form of a n, — D
ellipsoid, henceforth providing a criterion for discriminating likely and unlikely shapes.

Although this model can basically represent shape variations of objects of any dimension, its applications -
to brain MRI among others - are far more frequent in 2D than in 3D considering that building an annotated 3D
training set raises new problems we will now examine.

3. Towards Automatic 3D PDM Building

3.1. Automatic building of a 3D training set

In Brain MRI domain, proper 2D PDMs were achieved using a limited number of training shapes (~ 20, cf [5])
implying reasonable expert effort. But modeling 3D shape variations with an extra degree of freedom should
require more shape instances (e.g 82 in [1] for Hippocampus), which has dramatic consequences considering that
building only one 3D shape instance already requires expert segmentation on about 50 volume slices in average.
Therefore the need for an automatic training set building method becomes obvious.

In our previous method, we used AIR! package [6] to register Atlas, to new patient through looking for a warp
transformation associating Ref, to Mriy. This is first a global process involving the whole brain information,
and mostly driven by strongest intensity differences. With the white cerebral cortex surrounding our internal
structures and the black ventricles tightly linked to them, a good structure overall positioning might always be
obtained. The local warping aspect also contributes to the good fitting of cortex and ventricles, since translations,
rotations and scaling are not generally sufficient to have similar shapes overlap. Furthermore, it also enables less
contrasted structures to match.

The low contrast of our structures obviously introduces residual errors that make this registration not acceptable
as a segmentation result. Nevertheless, the global nature of the process showed to preserve global shape geometry
of registered atlas regarding to Atlas,. Also, both global and local fitting obviously adapted Atlas, to Mriy,
even in a coarse way. The idea to use registration of an anatomical atlas as an automatic mean for capturing
variability from a set of patient MRIs might thus emerge.

Such a choice really needs to be defended. A first argument can be that the observations we performed during
our first method showed surprisingly good correspondence except in special cases (~ 20%) whose elimination
still requires eye-examination. A second argument is that variations among generated shapes are obvious to the
eye (fig 2) even after rigid realignment, and that a PDM should manage to capture and model it properly. A
final argument is that the disputable quality of our training shapes should be compensated by their potentially
high number, since a PDM models shape variability.

tversion 5.05, http://bishopw.loni.ucla.edu/AIRS5/index.html



Figure 2. The original SPL atlas and 5 shape instances derived from warp registration.

Finally, we will assume we can use such shape instances as a training set for our PDM model in a Bootstraping
approach, considering that the segmentation results we could get using the generated PDM might be used to
refine the quality of the input set, until accordance to expert results converges to a satisfactory degree.

3.2. Automatic landmarking using the MDL principle

Shifting from 2D to 3D also complicates the landmarking process. 2D landmarking over limited training sets
remains affordable for experts or trained users, helped by the fact that locating invariants over the same 2D
shape is often rather intuitive. In 3D case, our first idea could be to iterate this process to each slice: this
completely failed in our case. Hill et al. [7] managed to get probing results in subdividing a U-tubular shape
into subshapes similar to cylinders, onto which manual landmarking was then performed at some evenly-spaced
slices. Though effective, this method requires noticeable human intervention for subdivision and landmarking,
and restricts the class of objects that can be modeled.

As variations of the 3D shape have an extra degree of freedom and visualizing instances is less straightforward,
3D annotation becomes completely unintuitive, thus raising the need for automatic methods. Some already exist
to locate geometrically noticeable points on a single mean volume associated to its training set (e.g based on
curvature, or resulting from mesh decimation strategies [8]). But in all cases, none of these methods ensures that
landmarks are chosen in order to best represent shape variation over the training set, the key criterion to design
a proper PDM.

Recent work of Rhodri Davies [1][9][10] formulated training set landmarking as a global optimization process.
Each shape is mapped onto a corresponding sphere where a given number of landmarks is first evenly disposed.
Then, their positions are blindly altered by continuous 3D reparameterization functions associated to each
sphere. Their evolution is regulated by an objective function evaluating the “quality” of the PDM inferred by
back-projection of displaced landmarks onto training set shapes. Thus, the whole process can converge to the
individual shape landmarking that will raise the “best possible” PDM for given training set.

The aforementioned objective function relies on the Minimum Description Length principle, which can be summed
up as follows. Considering PCA analysis projects shape points - actually deviations from mean shape - to the
space defined by computed orthogonal eigenvectors, we can assume the training set gets encoded by a centered
multivariate Gaussian model. The idea, taken from the communication field, consists in attempting to pack
together both model parameters and model-encoded values as a single message in the most compact form. Bal-
ancing model complexity and accuracy regarding to original data, DL is supposed to be minimal when the current
training set interpretation - i.e. landmarking - is most both generalizable and compact.

Due to the choice of the spherical mapping associated to each shape instance, the class of 3D objects (2D
objects are treated in [10]) is restricted to those topologically equivalent to a sphere: that limitation covers our
anatomical structures and is also imposed on other considered methods.

Results (e.g [1]) show that automatically inferred PDM are more efficient than the ones established through te-
dious manual landmarking, thus demonstrating the high potential of that method. One reason for this apparent
paradox is that landmarks are blindly chosen to optimize a PDM while manual landmarking tends to recover
points of anatomical significance introducing a part of human subjectivity. The other reason is the ability to



adapt landmarking to the given training set, as other methods treat all shapes in the same manner.
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Figure 3. Two shape instances of Left Thalamus and respective landmark grids.

4. Results and extensions

This method was applied to 35 Brain MRI volumes provided by Cyceron. 27 aligned volumes (including those
in fig2), featuring all of our structures of interest, were kept after the registration process. We plan to extend
the number of volumes in our study, though it is already of the same order of some other 3D training sets [11].

The shape instances of each structure have then been landmarked by the MDL-based method of Rhodri Davies
[1] previously described, and implemented by a program written by Allan Reinhold Kildeby [12]. The resulting
shape vectors have then been rigidly aligned using the Procrustes method before a PCA was finally performed,
raising variation modes partially illustrated in fig.4

Mode || Left Putamen | Left Thalamus
1 31.3109 33.2352
2 16.1430 20.0235
3 11.7009 7.2088
4 10.2925 6.9884
5 4.7667 3.2301
6 4.5503 3.1204
7 3.2502 2.5605

Figure 4. Percentages of variance of variation modes of Putamens and Thalami

Several distinct variation modes appear, which seem to indicate capture of proper shape variability. Thus, with
the number ¢ of significant modes set to 4 or 5 we can account for about 70% of total variation through a very
compact model.

We also successfully managed to generate valid shape instances in varying values of b parameters within
allowed bounds (cf fig 4 for a sample). This seems to show our PDM model is valid, though more exhaustive
checkings presented for instance in[1] are considered.

5. Conclusion

With this new 3D PDM ready to use, we now have to set up a segmentation method: many ways have to be
explored, though. The basic idea will probably be to project the mean shape onto MRI image and to deform
it progressively within statistical bounds to have it fit the image information optimally. This approach is not
original in itself as far as it describes the Active Shape Model (ASM) search procedure set up by Cootes and
Taylor [3] and further specialized to Brain MRI in [5].
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Figure 5. Generation of 4 unseen shape instances of Left Putamen in manipulating first (line 1) and second (line 2)
variation modes. Middle shape is the meanshape. Camera positions might differ slightly.

Also, more recent works concern Active Appearance Models (AAM)[13] that combine both shape and image
intensity constraints in a unified statistical model. The fact that our primary segmentation method managed
to retrieve good start positions can be appreciated since this is a critical factor for the success of ASM and
particularly AAM search. Furthermore, we should consider setting up a different search procedure to account
for the complementary data sources we have.
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