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Stability Analysis and Stabilization of Systems with Input

Backlash
S. Tarbouriech, I. Queinnec, C. Prieur

Abstract—This paper deals with the stability analysis and stabiliza-

tion of linear systems with backlash in the input. Uniform ultimate

boundedness stability and stabilization problems are tackled allowing

to characterize suitable regions of the state space in which the closed-

loop trajectories can be captured. In the state feedback control design,

computational oriented solutions are derived to solve suboptimal convex

optimization problems able to give a constructive solution.

Index Terms—Stability analysis, stabilization, backlash, uniform ulti-

mate boundedness stability.

I. INTRODUCTION

Backlash operators are nonlinear elements with memory. They

are usual phenomena in many physical systems, such as electrical

inductors, piezo-actuators, gear trains and mechanical friction sys-

tems (see e.g. the survey [18] on such memory elements and also

on other operators as Krasnolsel’skii-Pokrovskii hysteresis). Other

closely related infinite dimensional operators are also considered in

the literature such as the Preisach models [3], the Coleman-Hodgdon

operator [7] and the counterclockwise input-output dynamics [1].

For many applications, such nonlinear operators affect the inputs

of control systems (see e.g. [17], [19]). The negligence of such

nonlinearities during the control design or the stability analysis can

lead to an important degradation of the closed-loop performance or

even to the loss of stability (see, in particular, [19]).

Here we focus on the stability analysis and the control design

for a linear system with a backlash operator in the input. This

induces to study an infinite dimensional system, since the backlash

operator is a memory-based relation. Several approaches have been

developed in the context of this type of non-smooth nonlinearity:

see, for example [8] and references therein. Moreover, some solutions

consisting in applying inverse nonlinearity have been proposed [25],

[26]. However, although there is a large literature dealing with the

stability analysis and the estimation of input/output properties (see

e.g. [12], [20] for recent results), there are not many papers suggesting

design methods for nonlinear systems with memory operators, except

[13] where a dissipativity property is used, and [23] where the

dynamics of the differential equation modeling a one-dimensional

hysteresis is controlled.

In the present paper, sufficient conditions are provided to charac-

terize a compact set for the nonlinear system as a finite-time attractor

for all admissible initial conditions. In this set, the system trajectories

are uniformly ultimately bounded. The method developed does not

impose any assumption on the system matrix at s = 0, where s
is the Laplace variable, as required in [21] and [22]. Furthermore,

the approach pursued does not need to consider that the static

gain of the system has to be either null or nonsingular contrary to

[10] and [11]. More precisely, generalized sector conditions using

properties of the backlash operator and Lyapunov arguments allow

us to analyze the stability, i.e., we exhibit, in our first main result
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(see Theorem 2 below), some conditions to prove that a compact

set is a finite-time attractor, for all admissible initial conditions.

These conditions are given in terms of Linear Matrix Inequalities

(LMI), which can be solved using standard numerical algorithms,

within a time of computation which is polynomial with respect

to the dimension of the data. Even if the spirit of the approach

proposed is quite similar to the SISO statement in Corollary 16 in

[12], it allows to deal with MIMO systems. Moreover, while both

[12] and our paper address the characterization of the finite-time

attractor, our approach, differently from [12], uses the knowledge of

the Lyapunov function. In this sense, our approach can be considered

as complementary with the method proposed in [12]. Furthermore,

at the opposite of conditions developed in [24], we do not need to

use the time-derivative version of the system. An implicit objective

in the characterization of the finite-time attractor is to make it as

small as possible. Then, the second contribution of the paper (see

Theorem 3) resides in proposing a technique to design both the state

feedback gain not only stabilizing the linear part of the system but

also allowing to address the minimization of the associated finite-time

attractor. In this sense, the conditions obtained are complementary to

those resulting for the stability analysis. This design result is again

based on Lyapunov techniques. The computational issues and several

examples illustrating the interests and the drawbacks of the conditions

are also presented.

Notation. For two vectors x, y of ℜn, the notation x � y means that

x(i)−y(i) ≥ 0, ∀i = 1, . . . , n. 1 and 0 denote the identity matrix and the

null matrix of appropriate dimensions, respectively. x ∈ ℜn
+ means that

x � 0. The Euclidian norm is denoted ‖ · ‖. A′ and trace(A) denote the

transpose and the trace of A, respectively. He{A} = A+A′. diag(A;B)

denotes the diagonal matrix which diagonal blocks are formed by squared

matrices A and B. For two symmetric matrices, A and B, A > B means

that A − B is positive definite. In partitioned symmetric matrices, the

symbol ⋆ stands for symmetric blocks. λmax(A) (respectively, λmin(A))

denotes the maximal (respectively, minimal) eigenvalue of the matrix A.

II. PROBLEM FORMULATION

The class of systems under consideration is described by:

ẋ = Ax+BΦ[w]
w = Kx

(1)

where x ∈ ℜn is the state and w ∈ ℜm is the input of the

nonlinearity Φ. A, B and K are matrices of appropriate dimensions.

The pair (A,B) is supposed to be controllable. K is the state

feedback control gain to be designed or supposed known. Φ is

a componentwise backlash operator (see, for example, [18], [21],

[25], [3]). We denote the set of continuous, piecewise differentiable

functions f : [0,+∞) → ℜm by C1
pw([0,+∞);ℜm), that is the set of

continuous functions w being, for some unbounded sequence (tj)
∞

j=0

in [0,+∞) with t0 = 0, continuously differentiable on (tj−1, tj)
for all j ∈ N. Given the vector ρ in ℜm

+ and L = diag(ℓ(i)),
with positive values ℓ(i), i = 1, . . . ,m, the operator Φ is defined

as follows, for all f ∈ C1
pw([0,+∞);ℜm), for all j ∈ N, for all

t ∈ (tj−1, tj) and for all i ∈ {1, . . . ,m}:
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(
˙︷︸︸︷

Φ[f ](t))(i) =







ℓ(i)ḟ(i)(t) if ḟ(i)(t) ≥ 0
and (Φ[f ](t))(i) = ℓ(i)(f(i)(t)− ρ(i))

ℓ(i)ḟ(i)(t) if ḟ(i)(t) ≤ 0
and (Φ[f ](t))(i) = ℓ(i)(f(i)(t) + ρ(i))

0 otherwise

(2)

where 0 = t0 < t1 < . . . is a partition of [0,+∞) such that f is

continuously differentiable on each of the intervals (tj−1, tj), j ∈ N.

Thus, Φ is a time-invariant nonlinearity with slope restriction, as

in [22]. Note however that it is a memory-based operator, since to

compute it, we need to have information about the past values of w
(this is not the case in [22]). Such an operator can be depicted in

Figure 1.

f

!

Fig. 1. An illustration of a backlash operator.

Since it is possible to stack several backlash operators into one

backlash operator (with the dimension equal to the sum of all

dimensions), without loss of generality, it is suitable to assume that

only one backlash is present in (1).

Throughout the paper, we define the set of admissible initial

conditions (w(t = 0)), from which we want to guarantee the stability,

as follows

L(w(0) + ρ) � Φ[w](0) � L(w(0)− ρ) (3)

According to [19], [8], that means that the nonlinearity Φ is active.

Then, with (2), one gets

L(w(t) + ρ) � Φ[w](t) � L(w(t)− ρ), ∀t ≥ 0 (4)

In a neighborhood of the origin, system (1) operates in open

loop and the presence of the backlash Φ[w](t) may induce the

existence of multiple equilibrium points or a limit cycle. Thus, one

aims at characterizing compact sets S0 that are globally attractive

in finite-time, or equivalently, such that, for any initial condition

x(0) belonging to ℜn\S0, the resulting trajectory of the closed-loop

system (1) is uniformly ultimately bounded in the set S0 (see [15,

Section 4.8]). This is stated in the following problem:

Problem 1 (Stability analysis): Given a gain K such that A +
BLK is Hurwitz, characterize the region of the state space in which

the solutions of system (1) are uniformly ultimately bounded when

initialized as in (3).

Imposing A + BLK Hurwitz is classical since it corresponds to

system (1) when Φ[w] is neglected and replaced by Lw. Let us

emphasize that, unlike what is generally considered in the literature,

in the current paper, the Hurwitz assumption on matrix A has been

relaxed, i.e. the matrix A can be exponentially unstable.

The second problem we intend to solve is complementary to

Problem 1. Actually, we want to make the domain S0 as small

as possible, through the design of the state feedback gain K, as

explicated below.

Problem 2 (Synthesis problem): Determine the gain K such that

A+BLK is Hurwitz and which minimizes the size of the associated

region of the state space in which the solutions of the system (1) are

uniformly ultimately bounded when initialized as in (3).

III. MAIN RESULTS

A. Preliminary results

For conciseness, throughout the paper, we denote Φ̇ instead of
˙︷ ︸︸ ︷

Φ[w], and Φ instead of Φ[w]. Recall that the nonlinear operator Φ
verifies the properties stated in Lemma 3.1 in [24]. Let us define the

nonlinearity Ψ

Ψ = Φ− Lw = Φ− LKx (5)

Hence, from Lemma 3.1 in [24] and (4), we can formulate the

following properties with respect to Ψ.

Lemma 1: For any diagonal positive definite matrices N1, N2, N3

in ℜm×m, with N3 ≥ 1, we have, for all w ∈ C1
pw([0,+∞);ℜm),

for all t ∈ (ti−1, ti)

(Ψ̇ + Lẇ)′N1Ψ ≤ 0, (6)

(Ψ̇ + Lẇ)′N2(Ψ̇ + (1−N3)Lẇ) ≤ 0, (7)

−Lρ � Ψ � Lρ (8)

where 0 = t0 < t1 < . . . is a partition of [0,+∞) such that w is

continuously differentiable on each of the intervals (tj−1, tj), j ∈ N.

Remark 1: Property (6) can be seen as a property of passivity

with respect to the output Φ̇ and input N1Lw, and with the storage

function 1
2
Φ′N1Φ [15].

B. Stability analysis

The following result relative to Problem 1 can be stated.

Theorem 2: Given K such that A0 = A + BLK is Hurwitz. A

positive scalar τ1 being given, if there exist a symmetric positive

definite matrix P ∈ ℜn×n, three diagonal positive definite matrices

N1 ∈ ℜm×m, N2 ∈ ℜm×m and T3 ∈ ℜm×m satisfying the

following LMI conditions




He{A′

0P}+ τ1P ⋆ ⋆
B′P −N1LKA0 −T3 −He{N1LKB} ⋆

−N2LKA0 −N1 −N2LKB −2N2



 < 0 (9)

ρ′LT3Lρ− τ1 ≤ 0 (10)

then, for any initial admissible conditions (x(0),Ψ(0)), the resulting

trajectories of the closed-loop system (1) are uniformly ultimately

bounded in the set S0(P ) defined as follows:

S0(P ) = {x ∈ ℜn;x′Px ≤ 1} (11)

Proof. Consider a quadratic Lyapunov function candidate V defined

by V (x) = x′Px, P = P ′ > 0, for all x in ℜn. We want to verify

that there exists a class K function α such that V̇ (x) ≤ −α(V (x)),
for all x such that x′Px ≥ 1 (i.e. for any x ∈ ℜn\S0), and for all

nonlinearities Ψ satisfying Lemma 1 (i.e. satisfying relations (6), (7),

(8)). By using the S-procedure, it corresponds to verify that L < 0,

where

L = V̇ (x)− τ1(1− x′Px)−

m∑

i=1

τ3i(Ψ
′

(i)Ψ(i) − ρ2(i)ℓ
2
(i))

−2(Ψ̇ + Lẇ)′N1Ψ− 2(Ψ̇ + Lẇ)′N2(Ψ̇ + (1−N3)Lẇ)

(12)

with τ1 a positive scalar and T3 = diag(τ3i) a positive diagonal

matrix. Choosing N3 = 1 and noting that ẇ = KA0x + KBΨ
and V̇ (x) = x′(A′P + PA)x+ 2x′PBΦ, or equivalently, from the
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definition of Ψ in (5), V̇ (x) = x′(A′

0P + PA0)x + 2x′PBΨ, it

follows that L = L0 + ρ′LT3Lρ− τ1 with

L0 =





x
Ψ

Ψ̇





′

M0





x
Ψ

Ψ̇





where M0 is the left-hand-side matrix in (9). The satisfaction of

relations (9) and (10) implies both L0 < 0 and ρ′LT3Lρ− τ1 ≤ 0,

and then L < 0. Therefore, there exists ε > 0, such that L ≤
−ε‖(x′ Ψ′ Ψ̇′)′‖2 ≤ −εx′x. Hence, since by definition one gets

V̇ (x) ≤ V̇ (x) − τ1(1 − x′Px) ≤ L one can also verify V̇ (x) −
τ1(1− x′Px) ≤ −εx′x, for any x ∈ ℜn\S0, or equivalently,

V̇ (x) ≤ −εx′x , ∀x such that x′Px ≥ 1 . (13)

Consider now a solution of (1) starting from an admissible initial

condition at t0 = 0 such that x(t0)
′Px(t0) ≥ 1. According to (13),

there exists a time T ≥ t0 + (x(t0)
′Px(t0) − 1)λmax(P )/ǫ such

that x(t) ∈ S0(P ), ∀t ≥ T . Furthermore, S0(P ) is an invariant set

for system (1). Hence, in accordance with [15], it follows that the

trajectories are uniformly ultimately bounded in S0(P ) for any x(0).
That concludes the proof of Theorem 2.

Theorem 2 ensures the finite-time convergence of the solutions of

system (1) inside S0(P ) for any initial admissible condition. Hence,

the set S0(P ) contains the possible equilibrium points or limit cycles

potentially induced by the backlash operator. The equilibrium points

of system (1), when they exist, satisfy: ẋe = 0 = (A+BLK)xe +
BΨe, or equivalently, since A0 is Hurwitz, xe = −A−1

0 BΨe,

x′ePxe ≤ 1 and Lρ � Ψe � −Lρ.

C. Control design

To address Problem 2 and to remove the products between A0

and K appearing in condition (9), the control design conditions are

developed by using the Finsler lemma [2]. Such an approach is stated

in the following result.

Theorem 3: A positive scalar τ1 being given, if there exist a sym-

metric positive definite matrix P ∈ ℜn×n, five matrices Q1 ∈ ℜn×n,

Q2 ∈ ℜn×n, F3 ∈ ℜm×n, F4 ∈ ℜm×n and K ∈ ℜm×n, three

diagonal positive definite matrices N1 ∈ ℜm×m, N2 ∈ ℜm×m and

T3 ∈ ℜm×m satisfying the matrix condition (14) (see top of the next

page) and:

ρ′LT3Lρ− τ1 ≤ 0 (15)

then the state feedback gain K is such that A + BLK is Hurwitz

and, for any initial admissible conditions (x(0),Ψ(0)), the resulting

trajectories of the closed-loop system (1) are uniformly ultimately

bounded in the set S0(P ) as defined in (11).

Proof. Consider the quadratic Lyapunov function defined by V (x) =
x′Px, P = P ′ > 0, for all x in ℜn. The time-derivative of V (x)
along the trajectories of system (1) reads V̇ (x) = ẋ′Px + x′P ẋ.

Moreover, by noting ξ =
(
x′ ẋ′ Ψ′ Ψ̇′

)′
, system (1) can be

also written as follows:

(
A+BLK −1 B 0

)
ξ = 0 (16)

We then want to verify that there exists a K function α such that

V̇ (x) ≤ −α(V (x)), for all x such that x′Px ≥ 1, for all nonlinearity

Ψ satisfying Lemma 1 and for x, Ψ satisfying (16). In other words,

by using the S-procedure, we can express L defined in (12) as L =

ξ′L0ξ − τ1 + ρ′LT3Lρ, i.e., we want to verify:

ξ′L0ξ = ξ′







τ1P P 0 0

P 0 −K′LN1 −K′LN2

0 −N1LK −T3 −N1

0 −N2LK −N1 −2N2






ξ < 0

and − τ1 + ρ′LT3Lρ ≤ 0

for ξ such that
(
A+BLK −1 B 0

)
ξ = 0

(17)

with τ1 a positive scalar and T3 a positive diagonal matrix. By using

the Finsler lemma, the satisfaction of (17) consists of finding some

multipliers F1 ∈ ℜn×n, F2 ∈ ℜn×n, F3 ∈ ℜm×n, F4 ∈ ℜm×n

such that L0 + He{F
(
A+BLK −1 B 0

)
} < 0, with

F =
(
F ′

1 F ′

2 F ′

3 F ′

4

)
′

, which reads:







He{F1A+ F1BLK}+ τ1P ⋆
P + F2A+ F2BLK − F ′

1 −F2 − F ′

2

F3A+ F3BLK +B′F ′

1 −N1LK +B′F ′

2 − F3

F4A+ F4BLK −F4 −N2LK
⋆ ⋆
⋆ ⋆

He{F3B} − T3 ⋆
−N1 + F4B −2N2






< 0

A necessary condition for this inequality to be strict is the non-

singularity of matrix F2. Hence, by considering that F1 is also

nonsingular and by multiplying the previous inequality at left by

diag(Q1;Q2;1;1) and at right by diag(Q′

1;Q
′

2;1;1) with Q1 =
F−1
1 and Q2 = F−1

2 , one obtains relation (14). The satisfaction

of relations (14) and (15) implies the satisfaction of condition (17).

Furthermore, due to the block (1, 1) of the matrix in relation (14),

the satisfaction of relation (14) means that the gain K is such that

A + BLK is Hurwitz. Similarly to the proof of Theorem 2, by

definition, S0(P ) is an invariant set for the trajectories of system

(1). Hence, in accordance with [15], it follows that the trajectories are

uniformly ultimately bounded in S0(P ) for any x(0). That concludes

the proof.

D. Discussion on systems with backlash in the output

The solution to the analysis problem (Theorem 2) may be directly

extended to the case of backlash in the output, considering the

following system:
{
ẋ = Ax+B1u
y = Cx+DΦ[w]

with

{
w = Ex
u = Ky

(18)

which can also be written as:

ẋ = (A+B1K(C +DLE))x+B1KDψ (19)

with ψ = Φ − Lw defined as in equation (5). The static output

feedback gain K is supposed chosen such that (A+B1K(C+DLE))
is Hurwitz. Then, by denoting A0 = (A + B1K(C + DLE)) and

B = B1KD, Theorem 2 directly applies. It also applies to the case

of a dynamic output feedback with backlash in the measured output.

On the other hand, the extension of Theorem 3 to the design problem

with backlash in the sensor is not direct.

IV. NUMERICAL IMPLEMENTATION

A. Computational issues

As far as τ1 is fixed, conditions stated in Theorem 2 are linear

in the decision variables. The problem may then be solved as an

optimization problem to evaluate the smallest set S0(P ), typically

described by its volume, proportional to
√

det(P−1) [2], in which

the trajectories of the closed-loop system are uniformly ultimately
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





He{AQ′

1 +BLKQ′

1}+ τ1Q1PQ
′

1 ⋆ ⋆ ⋆
Q2PQ

′

1 +AQ′

1 +BLKQ′

1 −Q2 −Q2 −Q′

2 ⋆ ⋆
F3AQ

′

1 + F3BLKQ
′

1 +B′ −N1LKQ
′

2 +B′ − F3Q
′

2 F3B +B′F3 − T3 ⋆
F4AQ

′

1 + F4BLKQ
′

1 −F4Q
′

2 −N2LKQ
′

2 −N1 + F4B −2N2






< 0 (14)

bounded. In the numerical examples which follow, thanks to the use

of Yalmip [16] to build the LMI optimization problem, we use the

convex minimization problem to solve Problem 1:

min − geomean(P )
under conditions (9), (10)

(20)

where geomean(P ) is the geometric mean of the eigenvalues of the

matrix P .

To solve the design problem expressed through Theorem 3, we

exploit the fact that matrices Q1, Q2, F3 and F4 are Finsler

multipliers which may be considered as degrees of freedom in the

design conditions. Actually, one selects Q2 = Q1, F3 = 0, F4 = 0,

and introduces the variables Y = KQ′

1, R = Q1PQ
′

1, S1 = N−1
1

and S2 = N−1
2 . With this change of variables and by pre- and

post-mulitplying the matrix in condition (14) by diag(1;1;S1;S2),
condition (14) is then updated as follows:







He{AQ′

1 +BLY }+ τ1R ⋆ ⋆ ⋆
R+AQ′

1 +BLY −Q1 −Q1 −Q′

1 ⋆ ⋆
B′ LY + S1B

′ −S1T3S1 ⋆
0 −LY −S2 −2S2






<0

(21)

Then the control design Problem 2 is solved as the optimization

problem:

min
R,Y,Q1,T3,S2

α

under conditions (15), (21),

(
R Q1

Q′

1 αP−1
g

)

> 0

(22)

where

• Pg is selected as the solution to the analysis problem (20)

or as directions of interest for the minimization of the set

S0(P ) ⊆ {x ∈ ℜn, x′Pgx ≤ α}, with P = (Q1)
−1R(Q′

1)
−1,

in which the trajectories of the closed-loop system are uniformly

ultimately bounded;

• τ1 is selected, for example on a grid;

• S1 is selected as the inverse of the solution N1 to the analysis

problem. A grid search may alternatively be performed to select

S1.

Additional constraints may be added to set the performance of

the closed-loop system, such as a limit on the size of the gain, or

a pole-placement requirement [6]. This can be done by prescribing

additionally the following LMI condition with extra variable Rpp,

issued from the use of Finsler Lemma, which allows to place the

poles of (A+BLK) in the disk centered in σ with radius r:

(

−Rpp Q1
(A′

−σ1)
r

+ Y ′ L′B′

r
(A−σ1)

r
Q′

1 +
BL
r
Y Rpp −Q1 −Q′

1

)

> 0 (23)

B. Illustrative Examples

1) Example 1: The first example is of academic nature and

illustrates the conservatism of the approach. Consider the unstable

system (1) defined by the following data:

A =

(
0 1
0 0

)

; B =

(
0
1

)

;
K = Kan =

(
−2 −3

)

L = 1 ; ρ = 0.5

Considering τ1 = 0.9 and applying Theorem 2, the optimization

problem (20) gives the solution to the stability analysis problem

Pan =

(
15.9510 6.8038
6.8038 15.1183

)

;
N1an = 5.3033 10−5

N2an = 1.3525 10−4

for which the indicator of the volume is v(Pan) =
√

det(P−1
an ) =

0.0716. The influence of the parameter τ1 on the size of S0(P ) is

illustrated in Figure 2 (the problem becomes unfeasible for τ1 ≥ 2 =
2|λmax(A0)|). An iterative search on τ1 allows to quickly select a

convenient value for this parameter.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

τ

√

de
t(

P
−
1

an
)

Fig. 2. Example 1 - Analysis problem. Influence of the parameter τ1 on the
size of S0(P ).

For the synthesis problem, let us consider the optimization problem

(22). τ1 is selected unchanged (equal to 0.9), Pg = Pan, S1 = N−1
1an.

An additional pole-placement requirement (23) is used with σ = −6,

r = 5. A solution to the optimization problem (22) is given by

Ksyn =
(

−10.3327 −11.2293
)

It is recommended to proceed to the analysis of this new control gain

Ksyn, which results, for τ1 unchanged, to the solution v(Psynan) =√

det(P−1
synan) = 0.0057, with

Psynan =

(
422.7379 33.4682
33.4682 74.3510

)

The phase portraits of some trajectories of the system in closed

loop with the control gain Kan (solid line) or Ksyn (dashed

line), issued from the initial states x(0), equal to
(

0 1
)
′

and
(

1 1
)
′

, are plotted in Figure 3 (Φ[w](0) = LKx(0) which

satisfies (3)). They show that the trajectories of the closed-loop

system with Kan converge to a limit cycle included in the ellipsoid

S0(Pan). The trajectories of the closed-loop system with Ksyn are

uniformly ultimately bounded in the set S0(Psynan) included in

the set S0(Pan). They may converge either to a limit cycle or to

some equilibrium point (trajectory issued from
(

1 1
)
′

), which

are included in S0(Psynan).

To evaluate the influence of the choice of S1 on the solution

to the design problem, a grid search in the sets defined by S1 =
{
103, 104, 105, 106, 107

}
, τ1 = {0.1, 0.2, · · · , 1.8, 1.9} has been

performed. It gives as the best solution, after an additional analysis

step v(Pbest) =
√

det(P−1
best) = 0.0033 (to be compared to the value

0.0057 obtained with a priori given values for τ1 and S1 = N−1
an

solutions to the analysis problem).
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Fig. 3. Example 1. Ellipsoidal sets S0(Pan) and S0(Psynan). Trajectories
issued from (0 1)′ and (1 1)′ for the system closed with control gains Kan

(solid line) and Ksyn (dashed line).

2) Example 2: As a second example, we consider an unstable F-8

aircraft MIMO example borrowed from [4], given by:

Ap=







−0.8 −0.006 −12 0
0 −0.014 −16.64 −32.2
1 −0.0001 −1.5 0
1 0 0 0






;Bpu=







−19 −3
−0.66 −0.5
−0.16 −0.5

0 0







A backlash element interconnects the system with a state-feedback

control, which values are given by

L =

(
1 0
0 1

)

, ρ =

(
0.5
0.5

)

K = Kan =

(
0.2672 0.0059 −0.8323 0.8089
0.5950 −0.1534 2.1168 0.0525

)

Considering τ1 = 1.5 selected from an iterative procedure, the opti-

mization problem (20) gives the solution v(Pan) =
√

det(P−1
an ) =

17.7848, with

Pan =







0.1381 0.0035 −0.2112 0.2818
0.0035 0.0266 −0.6522 0.4999
−0.2112 −0.6522 16.7322 −13.0185
0.2818 0.4999 −13.0185 11.5846







For the synthesis case, one considers Pg = Pan and a pole-

placement requirement with σ = −10, r = 8.5. A grid search

in the sets defined by S1 =
{
1021, 1031, 1041, 1051, 1061

}
,

τ1 = {1.1, 1.2, · · · , 2.1, 2.2}, followed by an additional analysis

step, allows to determine the control gain

Ksyn =

(
0.9533 0.2757 −6.6111 7.9905
0.1246 −2.0493 37.6241 −24.2286

)

with associated set defined from Psynan with indication of the

volume v(Psynan) =
√

det(P−1
synan) = 0.0831. The time-evolution

of the state x is plotted in Figure 4, issued from the initial state

x(0) =
(

1 1 1 1
)
′

and initial nonlinearity Φ[w](0) =
LKx(0). It brings out the reduction of the size of the limit cycle

with the gain Ksyn (plots in dashed line) in accordance with the

objective which was actually to reduce the set S0(P ). Note however

that this induces larger amplitude of the system input Φ[w], as it may

also be seen on the form of the backlash operator characteristic in

Figure 5.
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Fig. 4. Example 2 - Time-evolution of the state x. System in closed loop with
Kan (solid line) or Ksyn (dashed line) + zoom of the steady-state behavior
of x1 between t = 20 and t = 50.
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Fig. 5. Example 2 - Backlash characteristic Φ[w]. System in closed loop
with Kan (solid line) or Ksyn (dashed line).

To evaluate the degree of conservatism of the sets S0(Pan)
and S0(Psynan) in which the trajectories are uniformly ultimately

bounded, the time-evolution of x′Panx (solid line, associated to the

control gain Kan) and x′Psynanx (dashed line, associated to the

control gain Ksyn) are plotted in Figure 6. They show that, once the

trajectory enters the ellipsoidal set S0(P ), i.e. x′Px ≤ 1, P = Pan

or P = Psynan, it evolves over the time and comes more or less

close to the boundary but never exits.

3) Example 3: A third example is proposed to illustrate how the

analysis conditions stated in Theorem 2 may be used in the case of a

feedback between the system output and the backlash input involving

a dynamic system. This is typically the case when considering a

dynamic feedback controller or an actuator device system such as

proposed in [9], defined by:

{
ẋ1 = x2
ẋ2 = c1x1 + c2x2 +Φ[w]

with

{
ẋA = c3xA + v
w = xA

and a backlash operator with L = 1, ρ = 1.5. For numerical

evaluation, values slightly different from [9] are used to manipulate

an unstable open-loop system. We consider the coefficients c1 = 1,

c2 = −1, c3 = −5 and a state feedback control v = −9x1 − 3x2.
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Fig. 6. Example 2 - Time-evolution of x′Panx (solid line) associated to the
control gain Kan and of x′Psynanx (dashed line) associated to the control
gain Ksyn.

The structure of system (1) is retrieved with

A =





0 1 0
1 −1 0
−9 −3 −5



 ; B =





0
1
0



 ; K =
(

0 0 1
)

Using the optimization procedure (20) and an iterative search of τ1,

one obtains, for τ1 = 0.65,

Pan =





150.9329 19.7677 82.7974
19.7677 2.9032 10.7988
82.7974 10.7988 45.4846





The phase portrait and backlash characteristic of the trajectory issued

from
(

5 5 5
)
′

are depicted in Figures 7-a and 7-b, respectively.
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Fig. 7. Example 3 - a. Ellipsoidal set S0(Pan) and trajectory issued from
(5 5 5)′ - b. Backlash characteristic Φ[w].

V. CONCLUDING REMARKS

This paper considered systems with backlash operator in the input,

aiming at analyzing the stability of such control systems. Uniform

ultimate boundedness stability and stabilization problems were tack-

led allowing to characterize suitable regions of the state space in

which the closed-loop trajectories can be captured. Future research

directions are open. One idea would be to extend the technique to

more general models of nonlinearities as studied, for example, in

[5], [14]. Furthermore, as recalled in [12, Page 38], any Prandtl

operator may be derived from an infinite weighted sum of backlash

operators. It may be fruitful to adapt the present Lyapunov technic

to such nonlinear systems. It may also be interesting to consider

set-valued nonlinear operators encompassing Prandtl operators (as in

[12, Page 37]). Finally, the case of a feedback between the system

output and the backlash input involving an actuator device system

subject to other nonlinearities (like, for example, saturation) should

be considered.
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