S Tarbouriech 
  
I Queinnec 
  
C Prieur 
  
Stability Analysis and Stabilization of Systems with Input Backlash

Keywords: Stability analysis, stabilization, backlash, uniform ultimate boundedness stability

This paper deals with the stability analysis and stabilization of linear systems with backlash in the input. Uniform ultimate boundedness stability and stabilization problems are tackled allowing to characterize suitable regions of the state space in which the closedloop trajectories can be captured. In the state feedback control design, computational oriented solutions are derived to solve suboptimal convex optimization problems able to give a constructive solution.

I. INTRODUCTION

Backlash operators are nonlinear elements with memory. They are usual phenomena in many physical systems, such as electrical inductors, piezo-actuators, gear trains and mechanical friction systems (see e.g. the survey [START_REF] Macki | Mathematical models for hysteresis[END_REF] on such memory elements and also on other operators as Krasnolsel'skii-Pokrovskii hysteresis). Other closely related infinite dimensional operators are also considered in the literature such as the Preisach models [START_REF] Brokate | Hysteresis and phase transitions[END_REF], the Coleman-Hodgdon operator [START_REF] Coleman | A constitutive relation for rateindependent hysteresis in ferromagnetically soft materials[END_REF] and the counterclockwise input-output dynamics [START_REF] Angeli | Systems with counterclockwise input-output dynamics[END_REF]. For many applications, such nonlinear operators affect the inputs of control systems (see e.g. [START_REF] Logemann | Discrete-time and sampled-data lowgain control of infinite-dimensional linear systems in the presence of input hysteresis[END_REF], [START_REF] Nordin | Controlling mechanical systems with backlash: a survey[END_REF]). The negligence of such nonlinearities during the control design or the stability analysis can lead to an important degradation of the closed-loop performance or even to the loss of stability (see, in particular, [START_REF] Nordin | Controlling mechanical systems with backlash: a survey[END_REF]).

Here we focus on the stability analysis and the control design for a linear system with a backlash operator in the input. This induces to study an infinite dimensional system, since the backlash operator is a memory-based relation. Several approaches have been developed in the context of this type of non-smooth nonlinearity: see, for example [START_REF] Corradini | Robust stabilization of nonlinear uncertain plants with backlash or dead zone in the actuator[END_REF] and references therein. Moreover, some solutions consisting in applying inverse nonlinearity have been proposed [START_REF] Taware | Control of sandwich nonlinear systems[END_REF], [START_REF] Taware | Design and analysis of a hybrid control scheme for sandwich nonsmooth nonlinear systems[END_REF]. However, although there is a large literature dealing with the stability analysis and the estimation of input/output properties (see e.g. [START_REF] Jayawardhana | The circle criterion and input-to-state stability[END_REF], [START_REF] Ouyang | Stability analysis and controller design for a system with hysteresis[END_REF] for recent results), there are not many papers suggesting design methods for nonlinear systems with memory operators, except [START_REF] Jayawardhana | Stability of systems with Duhem hysteresis operator: Dissipativity approach[END_REF] where a dissipativity property is used, and [START_REF] Su | Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis[END_REF] where the dynamics of the differential equation modeling a one-dimensional hysteresis is controlled.

In the present paper, sufficient conditions are provided to characterize a compact set for the nonlinear system as a finite-time attractor for all admissible initial conditions. In this set, the system trajectories are uniformly ultimately bounded. The method developed does not impose any assumption on the system matrix at s = 0, where s is the Laplace variable, as required in [START_REF] Paré | A KYP lemma and invariance principle for systems with multiple hysteresis non-linearities[END_REF] and [START_REF] Park | The asymptotic stability of nonlinear (Lur'e) systems with multiple slope restrictions[END_REF]. Furthermore, the approach pursued does not need to consider that the static gain of the system has to be either null or nonsingular contrary to [START_REF] Haddad | Linear controller analysis and design for systems with input hystereses nonlinearities[END_REF] and [START_REF] Haddad | Absolute stability criteria for multiple slope-restricted monotonic nonlinearities[END_REF]. More precisely, generalized sector conditions using properties of the backlash operator and Lyapunov arguments allow us to analyze the stability, i.e., we exhibit, in our first main result S. Tarbouriech and I. Queinnec are with CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France and Univ de Toulouse, LAAS, F-31400 Toulouse, France. tarbour@laas.fr, queinnec@laas.fr C. Prieur is with Gipsa-lab, Department of Automatic Control, Grenoble Campus, 11 rue des Mathématiques, BP 46, 38402 Saint Martin d'Hères, France christophe.prieur@gipsa-lab.fr (see Theorem 2 below), some conditions to prove that a compact set is a finite-time attractor, for all admissible initial conditions. These conditions are given in terms of Linear Matrix Inequalities (LMI), which can be solved using standard numerical algorithms, within a time of computation which is polynomial with respect to the dimension of the data. Even if the spirit of the approach proposed is quite similar to the SISO statement in Corollary 16 in [START_REF] Jayawardhana | The circle criterion and input-to-state stability[END_REF], it allows to deal with MIMO systems. Moreover, while both [START_REF] Jayawardhana | The circle criterion and input-to-state stability[END_REF] and our paper address the characterization of the finite-time attractor, our approach, differently from [START_REF] Jayawardhana | The circle criterion and input-to-state stability[END_REF], uses the knowledge of the Lyapunov function. In this sense, our approach can be considered as complementary with the method proposed in [START_REF] Jayawardhana | The circle criterion and input-to-state stability[END_REF]. Furthermore, at the opposite of conditions developed in [START_REF] Tarbouriech | Stability analysis for linear systems with input backlash through sufficient LMI conditions[END_REF], we do not need to use the time-derivative version of the system. An implicit objective in the characterization of the finite-time attractor is to make it as small as possible. Then, the second contribution of the paper (see Theorem 3) resides in proposing a technique to design both the state feedback gain not only stabilizing the linear part of the system but also allowing to address the minimization of the associated finite-time attractor. In this sense, the conditions obtained are complementary to those resulting for the stability analysis. This design result is again based on Lyapunov techniques. The computational issues and several examples illustrating the interests and the drawbacks of the conditions are also presented.

Notation. For two vectors x, y of ℜ n , the notation x y means that x (i) -y (i) ≥ 0, ∀i = 1, . . . , n. 1 and 0 denote the identity matrix and the null matrix of appropriate dimensions, respectively. x ∈ ℜ n + means that x 0. The Euclidian norm is denoted • . A ′ and trace(A) denote the transpose and the trace of A, respectively. He{A} = A + A ′ . diag(A; B) denotes the diagonal matrix which diagonal blocks are formed by squared matrices A and B. For two symmetric matrices, A and B, A > B means that A -B is positive definite. In partitioned symmetric matrices, the symbol ⋆ stands for symmetric blocks. λmax(A) (respectively, λ min (A)) denotes the maximal (respectively, minimal) eigenvalue of the matrix A.

II. PROBLEM FORMULATION

The class of systems under consideration is described by:

ẋ = Ax + BΦ[w] w = Kx (1) 
where x ∈ ℜ n is the state and w ∈ ℜ m is the input of the nonlinearity Φ. A, B and K are matrices of appropriate dimensions. The pair (A, B) is supposed to be controllable. K is the state feedback control gain to be designed or supposed known. Φ is a componentwise backlash operator (see, for example, [START_REF] Macki | Mathematical models for hysteresis[END_REF], [START_REF] Paré | A KYP lemma and invariance principle for systems with multiple hysteresis non-linearities[END_REF], [START_REF] Taware | Control of sandwich nonlinear systems[END_REF], [START_REF] Brokate | Hysteresis and phase transitions[END_REF]). We denote the set of continuous, piecewise differentiable functions f : [0, +∞) → ℜ m by C 1 pw ([0, +∞); ℜ m ), that is the set of continuous functions w being, for some unbounded sequence (tj) ∞ j=0 in [0, +∞) with t0 = 0, continuously differentiable on (tj-1, tj) for all j ∈ N. Given the vector ρ in ℜ m + and L = diag(ℓ (i) ), with positive values ℓ (i) , i = 1, . . . , m, the operator Φ is defined as follows, for all f ∈ C 1 pw ([0, +∞); ℜ m ), for all j ∈ N, for all t ∈ (tj-1, tj) and for all i ∈ {1, . . . , m}:

( ˙ Φ[f ](t)) (i) =            ℓ (i) ḟ(i) (t) if ḟ(i) (t) ≥ 0 and (Φ[f ](t)) (i) = ℓ (i) (f (i) (t) -ρ (i) ) ℓ (i) ḟ(i) (t) if ḟ(i) (t) ≤ 0 and (Φ[f ](t)) (i) = ℓ (i) (f (i) (t) + ρ (i) ) 0 otherwise (2)
where 0 = t0 < t1 < . . . is a partition of [0, +∞) such that f is continuously differentiable on each of the intervals (tj-1, tj), j ∈ N. Thus, Φ is a time-invariant nonlinearity with slope restriction, as in [START_REF] Park | The asymptotic stability of nonlinear (Lur'e) systems with multiple slope restrictions[END_REF]. Note however that it is a memory-based operator, since to compute it, we need to have information about the past values of w (this is not the case in [START_REF] Park | The asymptotic stability of nonlinear (Lur'e) systems with multiple slope restrictions[END_REF]). Such an operator can be depicted in Figure 1. Since it is possible to stack several backlash operators into one backlash operator (with the dimension equal to the sum of all dimensions), without loss of generality, it is suitable to assume that only one backlash is present in [START_REF] Angeli | Systems with counterclockwise input-output dynamics[END_REF].

Throughout the paper, we define the set of admissible initial conditions (w(t = 0)), from which we want to guarantee the stability, as follows

L(w(0) + ρ) Φ[w](0) L(w(0) -ρ) (3) 
According to [START_REF] Nordin | Controlling mechanical systems with backlash: a survey[END_REF], [START_REF] Corradini | Robust stabilization of nonlinear uncertain plants with backlash or dead zone in the actuator[END_REF], that means that the nonlinearity Φ is active. Then, with (2), one gets

L(w(t) + ρ) Φ[w](t) L(w(t) -ρ), ∀t ≥ 0 (4) 
In a neighborhood of the origin, system [START_REF] Angeli | Systems with counterclockwise input-output dynamics[END_REF] operates in open loop and the presence of the backlash Φ[w](t) may induce the existence of multiple equilibrium points or a limit cycle. Thus, one aims at characterizing compact sets S0 that are globally attractive in finite-time, or equivalently, such that, for any initial condition x(0) belonging to ℜ n \S0, the resulting trajectory of the closed-loop system (1) is uniformly ultimately bounded in the set S0 (see [START_REF] Khalil | Nonlinear Systems[END_REF]Section 4.8]). This is stated in the following problem:

Problem 1 (Stability analysis): Given a gain K such that A + BLK is Hurwitz, characterize the region of the state space in which the solutions of system (1) are uniformly ultimately bounded when initialized as in [START_REF] Brokate | Hysteresis and phase transitions[END_REF].

Imposing A + BLK Hurwitz is classical since it corresponds to system (1) when Φ[w] is neglected and replaced by Lw. Let us emphasize that, unlike what is generally considered in the literature, in the current paper, the Hurwitz assumption on matrix A has been relaxed, i.e. the matrix A can be exponentially unstable.

The second problem we intend to solve is complementary to Problem 1. Actually, we want to make the domain S0 as small as possible, through the design of the state feedback gain K, as explicated below.

Problem 2 (Synthesis problem): Determine the gain K such that A +BLK is Hurwitz and which minimizes the size of the associated region of the state space in which the solutions of the system (1) are uniformly ultimately bounded when initialized as in (3).

III. MAIN RESULTS

A. Preliminary results

For conciseness, throughout the paper, we denote Φ instead of ˙ Φ[w], and Φ instead of Φ[w]. Recall that the nonlinear operator Φ verifies the properties stated in Lemma 3.1 in [START_REF] Tarbouriech | Stability analysis for linear systems with input backlash through sufficient LMI conditions[END_REF]. Let us define the nonlinearity

Ψ Ψ = Φ -Lw = Φ -LKx (5) 
Hence, from Lemma 3.1 in [START_REF] Tarbouriech | Stability analysis for linear systems with input backlash through sufficient LMI conditions[END_REF] and (4), we can formulate the following properties with respect to Ψ. Lemma 1: For any diagonal positive definite matrices N1, N2, N3 in ℜ m×m , with N3 ≥ 1, we have, for all w ∈ C 1 pw ([0, +∞); ℜ m ), for all t ∈ (ti-1, ti)

( Ψ + L ẇ) ′ N1Ψ ≤ 0, (6) 
( Ψ + L ẇ) ′ N2( Ψ + (1 -N3)L ẇ) ≤ 0, (7) -Lρ Ψ Lρ (8) 
where 0 = t0 < t1 < . . . is a partition of [0, +∞) such that w is continuously differentiable on each of the intervals (tj-1, tj), j ∈ N.

Remark 1: Property ( 6) can be seen as a property of passivity with respect to the output Φ and input N1Lw, and with the storage function 1 2 Φ ′ N1Φ [START_REF] Khalil | Nonlinear Systems[END_REF].

B. Stability analysis

The following result relative to Problem 1 can be stated. Theorem 2: Given K such that A0 = A + BLK is Hurwitz. A positive scalar τ1 being given, if there exist a symmetric positive definite matrix P ∈ ℜ n×n , three diagonal positive definite matrices N1 ∈ ℜ m×m , N2 ∈ ℜ m×m and T3 ∈ ℜ m×m satisfying the following LMI conditions  

He{A ′ 0 P } + τ1P ⋆ ⋆ B ′ P -N1LKA0 -T3 -He{N1LKB} ⋆ -N2LKA0 -N1 -N2LKB -2N2   < 0 (9) ρ ′ LT3Lρ -τ1 ≤ 0 (10) 
then, for any initial admissible conditions (x(0), Ψ(0)), the resulting trajectories of the closed-loop system (1) are uniformly ultimately bounded in the set S0(P ) defined as follows:

S0(P ) = {x ∈ ℜ n ; x ′ P x ≤ 1} (11) 
Proof. Consider a quadratic Lyapunov function candidate V defined by V (x) = x ′ P x, P = P ′ > 0, for all x in ℜ n . We want to verify that there exists a class K function α such that V (x) ≤ -α(V (x)), for all x such that x ′ P x ≥ 1 (i.e. for any x ∈ ℜ n \S0), and for all nonlinearities Ψ satisfying Lemma 1 (i.e. satisfying relations ( 6), ( 7), ( 8)). By using the S-procedure, it corresponds to verify that L < 0, where

L = V (x) -τ1(1 -x ′ P x) - m i=1 τ3i(Ψ ′ (i) Ψ (i) -ρ 2 (i) ℓ 2 (i) ) -2( Ψ + L ẇ) ′ N1Ψ -2( Ψ + L ẇ) ′ N2( Ψ + (1 -N3)L ẇ) (12) 
with τ1 a positive scalar and T3 = diag(τ3i) a positive diagonal matrix. Choosing N3 = 1 and noting that ẇ = KA0x + KBΨ and V (x) = x ′ (A ′ P + P A)x + 2x ′ P BΦ, or equivalently, from the

definition of Ψ in (5), V (x) = x ′ (A ′ 0 P + P A0)x + 2x ′ P BΨ, it follows that L = L0 + ρ ′ LT3Lρ -τ1 with L0 =   x Ψ Ψ   ′ M0   x Ψ Ψ  
where M0 is the left-hand-side matrix in [START_REF] Corradini | Variable structure control of systems with sandwiched backlash[END_REF]. The satisfaction of relations ( 9) and ( 10) implies both L0 < 0 and ρ ′ LT3Lρ -τ1 ≤ 0, and then L < 0. Therefore, there exists ε > 0, such that L ≤ -ε (x ′ Ψ ′ Ψ′ ) ′ 2 ≤ -εx ′ x. Hence, since by definition one gets V (x) ≤ V (x) -τ1(1 -x ′ P x) ≤ L one can also verify V (x) -τ1(1 -x ′ P x) ≤ -εx ′ x, for any x ∈ ℜ n \S0, or equivalently,

V (x) ≤ -εx ′ x , ∀x such that x ′ P x ≥ 1 . ( 13 
)
Consider now a solution of (1) starting from an admissible initial condition at t0 = 0 such that x(t0) ′ P x(t0) ≥ 1. According to [START_REF] Jayawardhana | Stability of systems with Duhem hysteresis operator: Dissipativity approach[END_REF], there exists a time T ≥ t0 + (x(t0) ′ P x(t0) -1)λmax(P )/ǫ such that x(t) ∈ S0(P ), ∀t ≥ T . Furthermore, S0(P ) is an invariant set for system [START_REF] Angeli | Systems with counterclockwise input-output dynamics[END_REF]. Hence, in accordance with [START_REF] Khalil | Nonlinear Systems[END_REF], it follows that the trajectories are uniformly ultimately bounded in S0(P ) for any x(0). That concludes the proof of Theorem 2. Theorem 2 ensures the finite-time convergence of the solutions of system (1) inside S0(P ) for any initial admissible condition. Hence, the set S0(P ) contains the possible equilibrium points or limit cycles potentially induced by the backlash operator. The equilibrium points of system (1), when they exist, satisfy: ẋe = 0 = (A + BLK)xe + BΨe, or equivalently, since A0 is Hurwitz, xe = -A -1 0 BΨe, x ′ e P xe ≤ 1 and Lρ Ψe -Lρ.

C. Control design

To address Problem 2 and to remove the products between A0 and K appearing in condition [START_REF] Corradini | Variable structure control of systems with sandwiched backlash[END_REF], the control design conditions are developed by using the Finsler lemma [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. Such an approach is stated in the following result.

Theorem 3: A positive scalar τ1 being given, if there exist a symmetric positive definite matrix P ∈ ℜ n×n , five matrices Q1 ∈ ℜ n×n , Q2 ∈ ℜ n×n , F3 ∈ ℜ m×n , F4 ∈ ℜ m×n and K ∈ ℜ m×n , three diagonal positive definite matrices N1 ∈ ℜ m×m , N2 ∈ ℜ m×m and T3 ∈ ℜ m×m satisfying the matrix condition [START_REF] Jayawarshana | Sufficient conditions for dissipativity on Duhem hysteresis model[END_REF] (see top of the next page) and:

ρ ′ LT3Lρ -τ1 ≤ 0 ( 15 
)
then the state feedback gain K is such that A + BLK is Hurwitz and, for any initial admissible conditions (x(0), Ψ(0)), the resulting trajectories of the closed-loop system (1) are uniformly ultimately bounded in the set S0(P ) as defined in [START_REF] Haddad | Absolute stability criteria for multiple slope-restricted monotonic nonlinearities[END_REF].

Proof. Consider the quadratic Lyapunov function defined by V (x) = x ′ P x, P = P ′ > 0, for all x in ℜ n . The time-derivative of V (x) along the trajectories of system (1) reads V (x) = ẋ′ P x + x ′ P ẋ. Moreover, by noting ξ = x ′ ẋ′ Ψ ′ Ψ′ ′ , system (1) can be also written as follows:

A + BLK -1 B 0 ξ = 0 (16) 
We then want to verify that there exists a K function α such that V (x) ≤ -α(V (x)), for all x such that x ′ P x ≥ 1, for all nonlinearity Ψ satisfying Lemma 1 and for x, Ψ satisfying [START_REF] Löfberg | Yalmip: A toolbox for modeling and optimization in matlab[END_REF]. In other words, by using the S-procedure, we can express L defined in [START_REF] Jayawardhana | The circle criterion and input-to-state stability[END_REF] as L = ξ ′ L0ξ -τ1 + ρ ′ LT3Lρ, i.e., we want to verify:

ξ ′ L0ξ = ξ ′     τ1P P 0 0 P 0 -K ′ LN1 -K ′ LN2 0 -N1LK -T3 -N1 0 -N2LK -N1 -2N2     ξ < 0 and -τ1 + ρ ′ LT3Lρ ≤ 0 for ξ such that A + BLK -1 B 0 ξ = 0 (17) 
with τ1 a positive scalar and T3 a positive diagonal matrix. By using the Finsler lemma, the satisfaction of ( 17) consists of finding some multipliers

F1 ∈ ℜ n×n , F2 ∈ ℜ n×n , F3 ∈ ℜ m×n , F4 ∈ ℜ m×n such that L0 + He{F A + BLK -1 B 0 } < 0, with F = F ′ 1 F ′ 2 F ′ 3 F ′ 4 ′ , which reads:     He{F1A + F1BLK} + τ1P ⋆ P + F2A + F2BLK -F ′ 1 -F2 -F ′ 2 F3A + F3BLK + B ′ F ′ 1 -N1LK + B ′ F ′ 2 -F3 F4A + F4BLK -F4 -N2LK ⋆ ⋆ ⋆ ⋆ He{F3B} -T3 ⋆ -N1 + F4B -2N2     < 0
A necessary condition for this inequality to be strict is the nonsingularity of matrix F2. Hence, by considering that F1 is also nonsingular and by multiplying the previous inequality at left by diag(Q1; Q2; 1; 1) and at right by

diag(Q ′ 1 ; Q ′ 2 ; 1; 1) with Q1 = F -1 1 and Q2 = F -1
2 , one obtains relation [START_REF] Jayawarshana | Sufficient conditions for dissipativity on Duhem hysteresis model[END_REF]. The satisfaction of relations ( 14) and ( 15) implies the satisfaction of condition [START_REF] Logemann | Discrete-time and sampled-data lowgain control of infinite-dimensional linear systems in the presence of input hysteresis[END_REF]. Furthermore, due to the block (1, 1) of the matrix in relation ( 14), the satisfaction of relation ( 14) means that the gain K is such that A + BLK is Hurwitz. Similarly to the proof of Theorem 2, by definition, S0(P ) is an invariant set for the trajectories of system (1). Hence, in accordance with [START_REF] Khalil | Nonlinear Systems[END_REF], it follows that the trajectories are uniformly ultimately bounded in S0(P ) for any x(0). That concludes the proof.

D. Discussion on systems with backlash in the output

The solution to the analysis problem (Theorem 2) may be directly extended to the case of backlash in the output, considering the following system:

ẋ = Ax + B1u y = Cx + DΦ[w] with w = Ex u = Ky (18) 
which can also be written as:

ẋ = (A + B1K(C + DLE))x + B1KDψ (19) 
with ψ = Φ -Lw defined as in equation ( 5). The static output feedback gain K is supposed chosen such that (A+B1K(C+DLE)) is Hurwitz. Then, by denoting A0 = (A + B1K(C + DLE)) and B = B1KD, Theorem 2 directly applies. It also applies to the case of a dynamic output feedback with backlash in the measured output.

On the other hand, the extension of Theorem 3 to the design problem with backlash in the sensor is not direct.

IV. NUMERICAL IMPLEMENTATION

A. Computational issues

As far as τ1 is fixed, conditions stated in Theorem 2 are linear in the decision variables. The problem may then be solved as an optimization problem to evaluate the smallest set S0(P ), typically described by its volume, proportional to det(P -1 ) [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], in which the trajectories of the closed-loop system are uniformly ultimately

    He{AQ ′ 1 + BLKQ ′ 1 } + τ1Q1P Q ′ 1 ⋆ ⋆ ⋆ Q2P Q ′ 1 + AQ ′ 1 + BLKQ ′ 1 -Q2 -Q2 -Q ′ 2 ⋆ ⋆ F3AQ ′ 1 + F3BLKQ ′ 1 + B ′ -N1LKQ ′ 2 + B ′ -F3Q ′ 2 F3B + B ′ F3 -T3 ⋆ F4AQ ′ 1 + F4BLKQ ′ 1 -F4Q ′ 2 -N2LKQ ′ 2 -N1 + F4B -2N2     < 0 (14)
bounded. In the numerical examples which follow, thanks to the use of Yalmip [START_REF] Löfberg | Yalmip: A toolbox for modeling and optimization in matlab[END_REF] to build the LMI optimization problem, we use the convex minimization problem to solve Problem 1:

min -geomean(P ) under conditions ( 9), ( 10) [START_REF] Ouyang | Stability analysis and controller design for a system with hysteresis[END_REF] where geomean(P ) is the geometric mean of the eigenvalues of the matrix P .

To solve the design problem expressed through Theorem 3, we exploit the fact that matrices Q1, Q2, F3 and F4 are Finsler multipliers which may be considered as degrees of freedom in the design conditions. Actually, one selects Q2 = Q1, F3 = 0, F4 = 0, and introduces the variables

Y = KQ ′ 1 , R = Q1P Q ′ 1 , S1 = N -1 1 and S2 = N -1 2 .
With this change of variables and by pre-and post-mulitplying the matrix in condition ( 14) by diag(1; 1; S1; S2), condition ( 14) is then updated as follows: 

    He{AQ ′ 1 + BLY } + τ1R ⋆ ⋆ ⋆ R + AQ ′ 1 + BLY -Q1 -Q1 -Q ′ 1 ⋆ ⋆ B ′ LY + S1B ′ -S1T3S1 ⋆ 0 -LY -S2 -2S2     < 0 ( 
R Q1 Q ′ 1 αP -1 g > 0 ( 22 
)
where

• Pg is selected as the solution to the analysis problem [START_REF] Ouyang | Stability analysis and controller design for a system with hysteresis[END_REF] or as directions of interest for the minimization of the set

S0(P ) ⊆ {x ∈ ℜ n , x ′ Pgx ≤ α}, with P = (Q1) -1 R(Q ′ 1 ) -1
, in which the trajectories of the closed-loop system are uniformly ultimately bounded;

• τ1 is selected, for example on a grid; • S1 is selected as the inverse of the solution N1 to the analysis problem. A grid search may alternatively be performed to select S1.

Additional constraints may be added to set the performance of the closed-loop system, such as a limit on the size of the gain, or a pole-placement requirement [START_REF] Chilali | H∞ design with pole placement constraints: an LMI approach[END_REF]. This can be done by prescribing additionally the following LMI condition with extra variable Rpp, issued from the use of Finsler Lemma, which allows to place the poles of (A + BLK) in the disk centered in σ with radius r:

-Rpp Q1 (A ′ -σ1) r + Y ′ L ′ B ′ r (A-σ1) r Q ′ 1 + BL r Y Rpp -Q1 -Q ′ 1 > 0 (23) 

B. Illustrative Examples 1) Example 1:

The first example is of academic nature and illustrates the conservatism of the approach. Consider the unstable system (1) defined by the following data:

A = 0 1 0 0 ; B = 0 1 ; K = Kan = -2 -3 L = 1 ; ρ = 0.5
Considering τ1 = 0.9 and applying Theorem 2, the optimization problem [START_REF] Ouyang | Stability analysis and controller design for a system with hysteresis[END_REF] gives the solution to the stability analysis problem for which the indicator of the volume is v(Pan) = det(P -1 an ) = 0.0716. The influence of the parameter τ1 on the size of S0(P ) is illustrated in Figure 2 (the problem becomes unfeasible for τ1 ≥ 2 = 2|λmax(A0)|). An iterative search on τ1 allows to quickly select a convenient value for this parameter. For the synthesis problem, let us consider the optimization problem [START_REF] Park | The asymptotic stability of nonlinear (Lur'e) systems with multiple slope restrictions[END_REF]. τ1 is selected unchanged (equal to 0.9), Pg = Pan, S1 = N -1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0 
1an . An additional pole-placement requirement ( 23) is used with σ = -6, r = 5. A solution to the optimization problem [START_REF] Park | The asymptotic stability of nonlinear (Lur'e) systems with multiple slope restrictions[END_REF] is given by Ksyn = -10.3327 -11.2293

It is recommended to proceed to the analysis of this new control gain Ksyn, which results, for τ1 unchanged, to the solution v(Psynan) = det(P -1 synan) = 0.0057, with Psynan = 422.7379 33.4682 33.4682 74.3510

The phase portraits of some trajectories of the system in closed loop with the control gain Kan (solid line) or Ksyn (dashed line), issued from the initial states x(0), equal to 0 1 ′ and 1 1 ′ , are plotted in Figure 3 (Φ[w](0) = LKx(0) which satisfies (3)). They show that the trajectories of the closed-loop system with Kan converge to a limit cycle included in the ellipsoid S0(Pan). The trajectories of the closed-loop system with Ksyn are uniformly ultimately bounded in the set S0(Psynan) included in the set S0(Pan). They may converge either to a limit cycle or to some equilibrium point (trajectory issued from 1 1 ′ ), which are included in S0(Psynan).

To evaluate the influence of the choice of S1 on the solution to the design problem, a grid search in the sets defined by S1 = 10 3 , 10 4 , 10 5 , 10 6 , 10 7 , τ1 = {0.1, 0.2, • • • , 1.8, 1.9} has been performed. It gives as the best solution, after an additional analysis step v(P best ) = det(P -1 best ) = 0.0033 (to be compared to the value 0.0057 obtained with a priori given values for τ1 and S1 = N -1 an solutions to the analysis problem). 2) Example 2: As a second example, we consider an unstable F-8 aircraft MIMO example borrowed from [START_REF] Castelan | L 2 -stabilization of continuous-time systems with saturating actuators[END_REF], given by: 4, issued from the initial state x(0) = 1 1 1 1 ′ and initial nonlinearity Φ[w](0) = LKx(0). It brings out the reduction of the size of the limit cycle with the gain Ksyn (plots in dashed line) in accordance with the objective which was actually to reduce the set S0(P ). Note however that this induces larger amplitude of the system input Φ[w], as it may also be seen on the form of the backlash operator characteristic in Figure 5. To evaluate the degree of conservatism of the sets S0(Pan) and S0(Psynan) in which the trajectories are uniformly ultimately bounded, the time-evolution of x ′ Panx (solid line, associated to the control gain Kan) and x ′ Psynanx (dashed line, associated to the control gain Ksyn) are plotted in Figure 6. They show that, once the trajectory enters the ellipsoidal set S0(P ), i.e. x ′ P x ≤ 1, P = Pan or P = Psynan, it evolves over the time and comes more or less close to the boundary but never exits.

Ap =     -0.
3) Example 3: A third example is proposed to illustrate how the analysis conditions stated in Theorem 2 may be used in the case of a feedback between the system output and the backlash input involving a dynamic system. This is typically the case when considering a dynamic feedback controller or an actuator device system such as proposed in [START_REF] Corradini | Variable structure control of systems with sandwiched backlash[END_REF], defined by:

ẋ1 = x2 ẋ2 = c1x1 + c2x2 + Φ[w] with ẋA = c3xA + v w = xA
and a backlash operator with L = 1, ρ = 1.5. For numerical evaluation, values slightly different from [START_REF] Corradini | Variable structure control of systems with sandwiched backlash[END_REF] are used to manipulate an unstable open-loop system. We consider the coefficients c1 = 1, c2 = -1, c3 = -5 and a state feedback control v = -9x1 -3x2. 

V. CONCLUDING REMARKS

This paper considered systems with backlash operator in the input, aiming at analyzing the stability of such control systems. Uniform ultimate boundedness stability and stabilization problems were tackled allowing to characterize suitable regions of the state space in which the closed-loop trajectories can be captured. Future research directions are open. One idea would be to extend the technique to more general models of nonlinearities as studied, for example, in [START_REF] Cerone | Bounding the parameters of linear systems with input backlash[END_REF], [START_REF] Jayawarshana | Sufficient conditions for dissipativity on Duhem hysteresis model[END_REF]. Furthermore, as recalled in [START_REF] Jayawardhana | The circle criterion and input-to-state stability[END_REF]Page 38], any Prandtl operator may be derived from an infinite weighted sum of backlash operators. It may be fruitful to adapt the present Lyapunov technic to such nonlinear systems. It may also be interesting to consider set-valued nonlinear operators encompassing Prandtl operators (as in [START_REF] Jayawardhana | The circle criterion and input-to-state stability[END_REF]Page 37]). Finally, the case of a feedback between the system output and the backlash input involving an actuator device system subject to other nonlinearities (like, for example, saturation) should be considered.
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 1 Fig. 1. An illustration of a backlash operator.
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 212 Then the control design Problem 2 is solved as the optimization problem: min R,Y,Q 1 ,T 3 ,S under conditions (15), (21),
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 2 Fig. 2. Example 1 -Analysis problem. Influence of the parameter τ 1 on the size of S 0 (P ).
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 3 Fig. 3. Example 1. Ellipsoidal sets S 0 (Pan) and S 0 (Psynan). Trajectories issued from (0 1) ′ and (1 1) ′ for the system closed with control gains Kan (solid line) and Ksyn (dashed line).

  interconnects the system with a state-feedback control, which values are given by Considering τ1 = 1.5 selected from an iterative procedure, the optimization problem[START_REF] Ouyang | Stability analysis and controller design for a system with hysteresis[END_REF] gives the solution v(Pan) = det(P -1 an )
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 425 Fig. 4. Example 2 -Time-evolution of the state x. System in closed loop with Kan (solid line) or Ksyn (dashed line) + zoom of the steady-state behavior of x 1 between t = 20 and t = 50.
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 6 Fig. 6. Example 2 -Time-evolution of x ′ Panx (solid line) associated to the control gain Kan and of x ′ Psynanx (dashed line) associated to the control gain Ksyn.

Fig. 7 .

 7 Fig. 7. Example 3 -a. Ellipsoidal set S 0 (Pan) and trajectory issued from (5 5 5) ′ -b. Backlash characteristic Φ[w].

  For the synthesis case, one considers Pg = Pan and a poleplacement requirement with σ = -10, r = 8.5. A grid search in the sets defined by S1 = 10 2 1, 10 3 1, 10 4 1, 10 5 1, 10 6 1 ,
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