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Abstract

This paper provides finite dimensional convex conditions to construct homogeneous

polynomially parameter-dependent Lur’e functions which ensure the stability of nonlin-

ear systems with state-dependent nonlinearities lying in general sectors and which are af-

fected by uncertain parameters belonging to the unit simplex. The proposed conditions are

written as linear matrix inequalities parametrized in terms of the degree g of the parameter-

dependent solution and in terms of the relaxation level d of the inequality constraints, based

on algebraic properties of positive matrix polynomials with parameters in the unit simplex.

As g and d increase, progressively less conservative solutions are obtained. The results in

the paper include as special cases existing conditions for robust stability and for absolute

stability analysis. A convex solution suitable for the design of robust nonlinear state feed-

back stabilizing controllers is also provided. Numerical examples illustrate the efficiency

of the proposed conditions.

∗Corresponding author.
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1 Introduction

The stability of dynamic systems affected by sector nonlinearities is an important issue in sys-

tem theory, with application in several problems as in the study of neural networks, ecosystems,

saturated nonlinear systems, systems with delays, among others [1, 5, 16–18]. The approach

based on Lyapunov functions can be used to investigate the stability of this class of systems,

providing tests in the form of linear matrix inequalities (LMIs) that are attractive due to the fact

that the problem can be solved by means of polynomial time algorithms with global convergence

[8, 12, 29]. For instance, the stability of nonlinear systems with state dependent nonlinearities

belonging to infinite sectors can be investigated using an integral Lyapunov function (called

Persidskii function [23]), implying that the existence of a diagonal positive definite matrix solv-

ing the Lyapunov inequality is sufficient to ensure stability for all nonlinear functions in the

sector. For this class of nonlinear systems, the S-procedure and quadratic Lyapunov functions

can be used to verify the absolute stability, leading to the well known circle condition [8]. Lya-

punov functions that are quadratic on the state and integral on the nonlinearities (called Lur’e

functions) lead to the Popov criterion, with a frequency domain interpretation related to the

strict positive realness of a transfer function [8, 24, 30]. In the context of control synthesis, the

circle and the Popov criteria have been recently investigated in [2, 3] to derive conditions for

nonlinear feedback design based on LMIs.

However, when dealing with sector nonlinearities, most of approaches do not take into ac-

count that all the system matrices can be affected by uncertain parameters. In this case, ap-

proaches based on a parameter-independent matrix in the Lyapunov function can lead to con-

servative results. It is known in the context of robust stability of linear systems affected by

uncertainties that the conservatism of the results based on Lyapunov functions reduces when

one uses affine parameter-dependent Lyapunov functions [11, 13, 22, 25] when compared to

parameter-independent Lyapunov functions [4, 8]. More recently, it has been shown that if there

exists a solution for a parameter-dependent LMI with parameters in a compact set then, without

loss of generality, there exists a polynomially parameter-dependent solution [6]. Conditions to

construct such solutions have been given in [9, 15, 21, 28]. In this context, the study of absolute

stability of uncertain systems based on polynomially parameter-dependent Lyapunov functions

is a matter that deserves deeper investigation.

The main objective of this paper is the analysis of stability of systems for which all ma-

trices depend on uncertain time-invariant parameters lying in the unit simplex and that are

affected by state-dependent nonlinearities belonging to a general class of sectors. The pro-

posed conditions rely on the feasibility of parameter-dependent LMIs whose solution provides

a parameter-dependent Lur’e function which ensures stability for the entire domain of uncer-

tainties and for all nonlinearities belonging to the sector. It is shown that, without loss of

generality, the solution of such parameter-dependent LMIs is given by homogeneous polyno-
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mially parameter-dependent (HPPD) matrices. Then, necessary and sufficient LMI conditions

to construct these HPPD matrices with arbitrary degree are given, using progressively less con-

servative LMI relaxations provided by an extension of Pólya’s Theorem [14] to the case of

matrix-valued polynomials [20, 26, 27]. The proposed conditions include as special cases the

results in [10], concerned with absolute stability of precisely known systems, and the results in

[21], for robust stability of uncertain polytopic systems. A convex condition for synthesis of

robust stabilizing controllers based on the feedback of linear and nonlinear functions of the state

is also provided, being the results in this case also valid for arbitrary time-varying parameters.

Numerical examples illustrate the efficiency of the conditions given in the paper.

2 Problem formulation

Consider the system

ẋ = A(α)x+ Ã(α) f (x)+B(α)u (1)

where x ∈ IRn is the state, u ∈ IRm is the control input, matrices A(α)∈ IRn×n, Ã(α)∈ IRn×n and

B(α) ∈ IRn×m lie inside the polytope

P =
{

(A, Ã,B)(α) : (A, Ã,B)(α) =
N

∑
i=1

αi(A, Ã,B)i, α ∈ U

}

(2)

with given vertices Ai, Ãi, Bi, i = 1, . . . ,N, where α ∈ IRN is the vector of uncertain time-

invariant parameters belonging to the unit simplex

U =
{

α ∈ IRN :
N

∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . ,N
}

(3)

Vector f (x) is a vector of nonlinear functions of the state, which are radially unbounded, fulfill-

ing the general class of sector functions given by [8, 10]

F (γ,δ ) =
{

x → f (x) = [ f1(x1) . . . fn(xn)]
′ :

γiτ
2 ≤ fi(τ)τ ≤ δiτ

2 , 0 < γi ≤ 1 ≤ δi , fi(0) = 0 , i = 1, . . . ,n
}

(4)

Notice that F (γ,δ ) can cover an infinite sector by choosing γi = β , δi = 1/β and limβ → 0+.

The objective of this paper is to address the following problems.

Problem 1 Determine if the nonlinear system (1), with u = 0, is globally asymptotically stable

(GAS) to x = 0, ∀ f ∈ F (γ,δ ), ∀α ∈ U . In other words, determine if the autonomous system is

robustly (with respect to α) absolutely (with respect to f (x)) GAS to x = 0.

Problem 2 Assume that x and f (x) are available for feedback through the control law

u = Kx+ K̃ f (x) (5)

3



Determine K ∈ IRm×n and K̃ ∈ IRm×n such that the closed-loop system

ẋ = Acl(α)x+ Ãcl(α) f (x) , Acl(α) = A(α)+B(α)K , Ãcl(α) = Ã(α)+B(α)K̃ (6)

is GAS to x = 0, ∀ f ∈ F (γ,δ ), ∀α ∈ U .

3 Preliminary results

Theorem 1 Consider a parameter-dependent LMI generally written as

G(ξ ,α) = G0(α)+ξ1G1(α)+ . . .+ξMGM(α) > 0 (7)

where α ∈ U . Assume that Gi(α), i = 0, . . . ,M are continuous functions. If ∀α ∈ U there

exists a parameter-dependent solution ξ (α) ∈ IRM such that G(ξ (α),α) > 0, then there exists

an HPPD solution ξ ∗(α) : U → IRM such that, ∀α ∈ U , G(ξ ∗(α),α) > 0.

Proof: In [6], it has been shown that, with the assumptions of Theorem 1, if there exists a

solution ξ (α) ∈ IRM for the parameter-dependent LMI (7), then there exists, with no loss of

generality, a polynomial solution ξ ∗∗(α) such that, ∀α ∈U , G(ξ ∗∗(α),α) > 0. Assuming that

g is the largest degree present in the monomials of ξ ∗∗(α), one can write

ξ ∗∗(α) = ∑
0≤β1+···+βN≤g, βi≥0

cβ1,...,βN
α

β1

1 . . .α
βN

N

Consider now the following homogeneous polynomial ξ ∗(α) of degree g:

ξ ∗(α) = ∑
0≤β1+···+βN≤g, βi≥0

cβ1,...,βN
α

β1

1 . . .α
βN

N (
N

∑
i=1

αi)
g−∑i βi

Clearly, ξ ∗(α) coincides with ξ ∗∗(α) in U . Thus, the homogeneous polynomial ξ ∗(α) is a

solution for the parameter-dependent LMI (7) for any value of α ∈ U . �

More details on the result presented in Theorem 1 can be seen in [7].

By combining Theorem 1 and the results in [10], a sufficient condition to solve Problem 1

is expressed in the next theorem.

Theorem 2 For given diagonal matrices Γ = diag{γi}, ∆ = diag{δi}, with 0 < γi ≤ 1 ≤ δi,

i = 1, . . . ,n, if ∀α ∈ U , there exist diagonal positive definite HPPD matrices Pg(α) ∈ IRn×n,

Qg(α) ∈ IRn×n and a symmetric HPPD matrix Wg(α) ∈ IRn×n such that (the symbol ⋆ denotes

symmetric blocks in the LMIs)

Wg(α)+Pg(α)Γ > 0 (8)
[

T11(α) T12(α)
⋆ T22(α)

]

< 0 (9)
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with

T11(α) , Ã(α)′Pg(α)+Pg(α)Ã(α)−Qg(α)

T12(α) , Ã(α)′Wg(α)+Pg(α)A(α)+
1

2
(Γ+∆)Qg(α)

T22(α) , A(α)′Wg(α)+Wg(α)A(α)−Γ∆Qg(α)

then system (1), with u = 0, is GAS to x = 0, ∀ f ∈ F (γ,δ ), ∀α ∈ U .

Proof: Consider the parameter-dependent Lur’e function

v(x) = x′W (α)x+2
n

∑
i=1

pii(α)
∫ xi

0
fi(τ)dτ (10)

as a Lyapunov candidate function. From (4), one has that
∫ xi

0 γiτdτ ≤
∫ xi

0 fi(τ)dτ , implying that

the existence of a symmetric matrix W (α) and a diagonal positive definite P(α) such that

W (α)+P(α)Γ > 0 , ∀α ∈ U (11)

with Γ = diag{γi}, is sufficient to ensure v(x) > 0, ∀α ∈U , ∀x 6= 0. The time-derivative of (10)

along the trajectories of system (1) with u = 0 results in

v̇(x) = η ′

[
S11(α) S12(α)

⋆ S22(α)

]

η

with η ′ =
[

f (x)′ x′
]

and

S11(α) , Ã(α)′P(α)+P(α)Ã(α)

S12(α) , Ã(α)′W (α)+P(α)A(α)

S22(α) , A(α)′W (α)+W (α)A(α)

For all f (x) ∈ F (γ,δ ), one has that

n

∑
i=1

(
fi(xi)− γixi

)
qii(α)

(
fi(xi)−δixi

)
≤ 0

is valid ∀qii(α) > 0, ∀α ∈ U . Thus,

Θ , η ′

[
Q(α) −1

2
(Γ+∆)Q(α)

⋆ Γ∆Q(α)

]

η ≤ 0

for any Q(α) = diag{qii(α)}, for Γ = diag{γi} and ∆ = diag{δi}, with 0 < γi ≤ 1 ≤ δi. Since

v̇(x) ≤ v̇(x)−Θ < 0, one has that, ∀η 6= 0, the existence of W (α) symmetric, and P(α) and

Q(α) diagonal positive definite such that

[
S11(α)−Q(α) S12(α)+ 1

2
(Γ+∆)Q(α)

⋆ S22(α)−Γ∆Q(α)

]

< 0 (12)
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∀α ∈ U ensures that v̇(x) < 0 ∀α ∈ U , ∀ f ∈ F (γ,δ ). Thus, if the parameter-dependent LMIs

(11) and (12) have a solution given by P(α), Q(α) and W (α), then v(x) in (10) is a Lur’e

function ensuring robust absolute stability for the system. Finally, from Theorem 1, it follows

that this conclusion holds for HPPD matrices Pg(α), Qg(α) and Wg(α), which allows to state

Theorem 2 in terms of the search of HPPD matrices, with no loss of generality. �

In the sequel, some notation and definitions are introduced in order to construct HPPD

matrices of arbitrary degree that solve Theorem 2.

Notation and definitions

A homogeneous matrix-polynomial Pg(α) of degree g can be generally written as

Pg(α) = ∑
k∈K (g)

αk1

1 αk2

2 · · ·αkN

N Pk , k = k1k2 · · ·kN (13)

where αk1

1 αk2

2 · · ·αkN

N , α ∈ U , ki ∈ Z+ (nonnegative integers), i = 1, . . . ,N are the monomials,

and Pk ∈ IRn×n, ∀k ∈ K (g) are matrix-valued coefficients. Here, by definition, K (g) is the set

of N-tuples obtained as all possible combinations of nonnegative integers ki, i = 1, . . . ,N, such

that k1 + k2 + . . .+ kN = g. Since the number of vertices in the polytope P is equal to N, the

number of elements in K (g) is given by1

J(g) =
(N +g−1)!

g!(N −1)!

To give an example, for homogeneous polynomials of degree g = 3 with N = 2 variables, the

possible values of the partial degrees are K (3) = {03,12,21,30} (so J(3) = 4), correspond-

ing to the generic form P3(α) = α3
2 P03 + α1α2

2 P12 + α2
1 α2P21 + α3

1 P30. Constant (zero-degree)

matrices are obtained from (13) for g = 0.

By definition, for N-tuples k,k′ one writes k � k′ if ki ≥ k′i, i = 1, . . . ,N. Usual operations of

summation k+k′ and subtraction k−k′ (whenever k � k′) are defined componentwise. Consider

also the following definitions for the N-tuple ei and the coefficient π(k)

ei = 0 · · ·0 1
︸︷︷︸

i−th

0 · · ·0, π(k) , (k1!)(k2!) · · ·(kN!)

4 Main results

Next theorem provides a necessary and sufficient finite dimensional convex condition to solve

Theorem 2.

Theorem 3 Given diagonal matrices Γ = diag{γi}, ∆ = diag{δi}, with 0 < γi ≤ 1 ≤ δi, i =

1, . . . ,n, there exist HPPD matrices of arbitrary degree g solving Theorem 2 if, and only if, there

1The symbol (!) denotes factorial.
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exist diagonal matrices Pk ∈ IRn×n, Qk ∈ IRn×n, symmetric matrices Wk ∈ IRn×n, k ∈K (g), and

a sufficiently large d ∈ Z+ such that the following LMIs hold

N1k
, ∑

k′ ∈ K (d)
k � k′

d!

π(k′)

(

Pk−k′

)

> 0, ∀k ∈ K (g+d) (14)

N2k
, ∑

k′ ∈ K (d)
k � k′

d!

π(k′)

(

Qk−k′

)

> 0, ∀k ∈ K (g+d) (15)

M1k
, ∑

k′ ∈ K (d)
k � k′

∑
i ∈ {1, . . . ,N}

ki > k′i

d!

π(k′)

(
Wk−k′−ei

+ ΓPk−k′−ei

)
> 0, ∀k ∈ K (g + d + 1) (16)

M2k
, ∑

k′ ∈ K (d)
k � k′

∑
i ∈ {1, . . . ,N}

ki > k′i

d!

π(k′)

[
X11 X12

⋆ X22

]

< 0, ∀k ∈ K (g + d + 1) (17)

with

X11 , Ã′
iPk−k′−ei

+Pk−k′−ei
Ãi −Qk−k′−ei

, X12 , Ã′
iWk−k′−ei

+Pk−k′−ei
Ai +

1

2
(Γ+∆)Qk−k′−ei

X22 , A′
iWk−k′−ei

+Wk−k′−ei
Ai −Γ∆Qk−k′−ei

Proof: If there exists, for a given degree g, a symmetric HPPD matrix Pg(α) > 0 for all α ∈U ,

then for any d ∈ Z+

( N

∑
i=1

αi

)d
Pg(α) = ∑

k∈K (g+d)

αk1

1 αk2

2 . . .αkN

N N1k
, k = k1k2 . . .kN (18)

with N1k
given by (14) is an HPPD matrix of degree g + d that is positive definite. Using an

extension of Pólya’s Theorem to the case of matrix valued polynomials [20, 26, 27], there exists

a sufficiently large d ∈ Z+ such that (18) has all the terms N1k
> 0, k ∈ K (g+d). Conversely,

it is clear that if N1k
> 0, then Pg(α) > 0 ∀α ∈ U . The same is applicable to demonstrate that

(15), (16) and (17) are sufficient and necessary (for sufficiently large d ∈ Z+) to ensure that

Qg(α) > 0, and that (8) and (9) are feasible ∀α ∈ U . �

As a first remark on Theorem 3, one has that the increase on d allows to reduce the conser-

vatism of the results due to relaxations of the LMIs (with no increase in the number of decision

variables for a given degree g). Moreover, if the LMIs of Theorem 3 are feasible for d̂ ∈ Z+,

then these LMIs are feasible for any d > d̂ since the LMIs for d̂ + 1 can be written as positive

combinations of the LMIs for d̂. The use of higher g for the matrix variables of Theorem 3 intro-

duce more scalar variables in the problem, which can also reduce the conservatism of the results
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(see [19]). The number of scalar variables to solve Theorem 3 is V = (2n + n(n + 1)/2)J(g)

and the number of LMI rows is R = 2nJ(g+d)+3nJ(g+d +1). Using interior point based al-

gorithms as the LMI Control Toolbox of Matlab [12], this problem can be solved in polynomial

time (proportional to V 3R).

The conditions of Theorem 3 can be specialized to robust stability analysis of linear systems

by setting Ãi and the matrix coefficients Pk to zero. In this case, condition (16) ensures that

Wg(α) > 0 and condition (17), with the choice Γ = ∆ = I, becomes necessary and sufficient

to solve A(α)′Wg(α) +Wg(α)A(α) < 0 ∀α ∈ U , recovering the results from [19] for robust

stability analysis.

Theorem 3 can be used to evaluate robust absolute stability of system (1) with A(α) = 0

and u = 0. Setting matrices Ai to zero and Ãi = A in Theorem 3, and choosing g = 0 (i.e. fixed

matrix variables), the conditions of Theorem 3 reduce to the conditions from [10]. However,

the use of parameter-independent matrices in Theorem 3 to cope with the stability analysis for

uncertain matrices Ã(α) can lead to conservative results. On the other hand, progressively less

conservative results can be obtained by increasing g and d, thanks to the general formulation of

the conditions of Theorem 3.

Suppose (14)-(17) are feasible for Ai = 0, providing as a solution matrices to construct

Pg(α), Qg(α) and Wg(α). The frequency domain interpretation given in [10] for the case of the

system with precisely known matrices is directly applicable to the case of matrices affected by

uncertainties studied here. For instance, the feasibility of Theorem 3 is equivalent to the fact

that the transfer function

M(s,α) =
(1

2
Qg(α)(Γ−∆)−Pg(α)Ã(α)Γ

)(
sI− Ã(α)

)−1
Ã(α)+

(1

2
Qg(α)−Pg(α)Ã(α)

)

is strictly positive real (see [10, Theorem 3]). Moreover, following [10, Lemma 9], if the circle

or the Popov criteria are satisfied, then Theorem 3 will be feasible.

It is also interesting to mention that the evaluation of Theorem 3 with Ai = 0 and the matrix

coefficients Wk = 0 leads to the analysis of stability of the autonomous uncertain nonlinear sys-

tem (1) by means of a parameter-dependent Lur’e function, which is in this case a purely integral

function (also called Persidskii function). Hence, Theorem 3 reduces to a test of robust diagonal

stability of Ã(α). Additionally, using Theorem 3 with matrix coefficients Pk = 0, that is, with

the Lur’e function reduced to a purely quadratic function, one has, from [10, Lemma 11], that

the feasibility of (15)-(17) is equivalent to the fact that the H∞ norm of the transfer function

M(s,α) =
1

2
Qg(α)1/2(Γ−∆)

(

sI−
1

2
Ã(α)(Γ+∆)

)−1

Ã(α)Qg(α)−1/2

is less than one, ∀α ∈ U .

As a final remark, consider the case where the parameters of the sector F (γ,δ ) are not

known. In this case, the conditions of Theorem 3 can also be used to optimize the sector
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parameters, which allows, for instance, to estimate the domain of stability of systems subject

to saturation nonlinearities. Notice that amplitude saturating state variables can be represented

by choosing ∆ = I and Γ = γI in (4). Then, the solution of the optimization problem minγ

subject to (14)-(17) allows to obtain the best estimate of the domain of stability using sector

(4) to represent the saturation and the conditions of Theorem 3 for stability. Other strategies to

optimize the sector parameters can be found on [10, Section 6].

A convex solution to Problem 2 is given in the next theorem.

Theorem 4 Given diagonal matrices Γ = diag{γi}, ∆ = diag{δi}, with 0 < γi ≤ 1 ≤ δi, i =

1, . . . ,n, if there exist diagonal positive definite matrices S ∈ IRn×n, Ri ∈ IRn×n, i = 1, . . . ,N,

matrices Z ∈ IRm×n and Z̃ ∈ IRm×n such that

Mi ,

[
V11 V12

⋆ V22

]

< 0 , i = 1, . . . ,N (19)

V11 , SÃ′
i + Z̃′B′

i + ÃiS +BiZ̃ −Ri

V12 , SÃ′
i + Z̃′B′

i +AiS +BiZ +
1

2
(Γ+∆)Ri

V22 , SA′
i +Z′B′

i +AiS +BiZ −Γ∆Ri

then the control gains

K = ZS−1 , K̃ = Z̃S−1 (20)

ensure that the closed-loop system (6) is GAS to x = 0, ∀α ∈ U , ∀ f ∈ F (γ,δ ).

Proof: If Theorem 4 is feasible, one has that M (α) = ∑
N
i=1 αiMi < 0, ∀α ∈ U , with

M (α) =

[
V11(α) V12(α)

⋆ V22(α)

]

V11(α) = SÃcl(α)′ + Ãcl(α)S−R(α)

V12(α) = SÃcl(α)′ +Acl(α)S +
1

2
(Γ+∆)R(α)

V22(α) = SAcl(α)′ +Acl(α)S−Γ∆R(α)

with Acl(α) and Ãcl(α) given by (6). Pre and post-multiplying M (α) by diag{S−1 , S−1} and

using the variable transformation S−1 = P, one gets (9), with A(α) = Acl(α) and Ã(α) = Ãcl(α)

and with Pg(α) = P, Wg(α) = P and Qg(α) = S−1R(α)S−1. Thus, the feasibility of Theorem 4

ensures the existence of a Lur’e function

v(x) = x′Px+2
n

∑
i=1

pii

∫ xi

0
fi(τ)dτ (21)

which certifies the robust absolute stability of the closed-loop system. �

It is worth of mention that the conditions of Theorem 4 are also valid for the case of time-

varying uncertain parameters with unknown (even unbounded) rates of variation, lying in the
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unit simplex, since these conditions are based on a Lur’e function with a fixed matrix P. Observe

also that decentralized control design can be directly addressed through Theorem 4 by using

block-diagonal structure in matrices Z and Z̃. As a final remark, notice that the results from

Theorem 4 can also be applied to the case of purely linear state feedback stabilization (i.e. u =

Kx), by setting to zero matrix Z̃, or to the case of purely nonlinear state feedback stabilization

(i.e. u = K̃ f (x)), by zeroing matrix Z.

5 Examples

Example 1 Consider system (1) with A(α) = 0, u = 0 and with vertices

Ã1 =







−1.94 0.25 0.63 0.38

0.81 −1.57 0.77 0.80

0.60 0.33 −1.49 0.69

0.24 0.33 0.76 −1.46







(22)

Ã2 =







−1.59 0.24 0.44 0.86

0.22 −1.27 0.76 0.59

0.80 0.57 −1.84 0.39

0.42 0.52 0.96 −2.16







(23)

Ã3 =







−2.03 0.85 0.19 0.72

0.87 −2.10 0.87 0.80

0.23 0.79 −1.94 0.95

0.98 0.44 0.39 −1.96







(24)

The objective of this example is to estimate the domain of robust stability when the system is

subject to saturating state variables given by

f(i)(xi) = sat(xi) =







ρ if xi > ρ
xi if −ρ ≤ xi ≤ ρ
−ρ if xi < −ρ

(25)

with i = 1, . . . ,4 and ρ = 1. The sector (4) can be used to (locally) represent the saturation (25),

by choosing the sector parameters as ∆ = I and Γ = γI. Then, to get estimates of the domain of

robust stability for this nonlinear system, the problem γ∗ , minγ subject to (14)-(17) is solved

for given g and d. Notice that the estimate of the domain of robust stability using this approach

is given by

S = {x ∈ IR4 : |xi| ≤
1

γ∗
, i = 1, . . . ,4}

Table 1 summarizes the results. From Table 1, it is possible to observe that Theorem 3 solved

using parameter-independent matrices (i.e. g = 0) cannot provide any information on the es-

timate of the domain of robust stability for this system, even with the increase of d. On the

other hand, the conditions of Theorem 3 with HPPD matrices yield estimates of the domain of

robust stability that are progressively less conservative as one increases g and d. Notice that for
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Table 1: Estimates of the domain of robust stability of system of Example 1, given by region

S , with γ∗ , minγ s.t. (14)-(17) ∆ = I, Γ = γI, Ai = 0, i = 1, . . . ,3, and Ãi given by (22)-(24).

g γ∗

d = 0 d = 1 d = 2

0 unfeasible

1 0.72 0.62 0.57

2 0.29 0.24 0.20

3 0.20 0.16 0.14

4 0.14 0.11 0.08

5 0.09 0.07 0.06

a given g, the conservatism of the results are reduced by increasing d, which is based on the

relaxation of the LMI constraints of the problem. Notice also that for a given d, the increase on

g allows to get better results due to the use of more scalar variables in the problem. Note the

great improvement in terms of γ∗, reduced from 0.72 to 0.06, with the increase of g and d.

Example 2 As an example dealing with control design, consider system (1) with vertices given

by

A1 =

[
0.30 0.19

0.19 0.68

]

, A2 =

[
0.50 0.82

0.90 0.64

]

Ã1 =

[
0.30 0.15

0.54 0.70

]

, Ã2 =

[
0.82 0.34

0.66 0.29

]

B1 =

[
0.38 0.85

0.86 0.59

]

, B2 =

[
0.34 0.73

0.53 0.31

]

The sector is defined as Γ = 10−η1I and ∆ = 10η2I, where η1 and η2 can assume values on

the natural numbers. The objective here is to stabilize this system for the maximum value of

η1 + η2, for all α ∈ U . As a first evaluation, one has that for the purely linear state feedback

control law u = Kx, Theorem 4 can ensure stability for Γ = 10−12I and ∆ = 103I, that is,

for η1 + η2 = 15. In the case of the purely nonlinear state feedback control law u = K̃ f (x),

Theorem 4 ensures stability for Γ = 10−3I and ∆ = 1012I, resulting in η1 + η2 = 15. When

both linear state vector and nonlinear state vector are used in the control law u = Kx + K̃ f (x),

Theorem 4 ensures closed-loop stability for Γ = 10−12I, ∆ = 1012I, yielding η1 +η2 = 24, thus

illustrating that the simultaneous use of linear and nonlinear feedback can enlarge the domains

of stability of the closed-loop system. For Γ = 10−12I and ∆ = 1012I, the stabilizing gains

provided by Theorem 4 are given by

K =

[
8.86 0.74

−6.05 −5.11

]

, K̃ =

[
8.41 1.58

−5.68 −5.31

]

and matrix S is given by

S =

[
17846.43 0.00

0.00 22091.81

]
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being P = S−1 the matrix of the Lur’e function (21) that ensures closed-loop robust absolute

stability for any arbitrary value of time-derivative of the uncertain parameters α .

6 Conclusion

This paper provides LMI conditions whose solution allows to construct homogeneous polyno-

mially parameter-dependent Lur’e functions of general degree in the parameters. The existence

of such functions ensures the robust absolute stability of polytopic systems perturbed by state-

dependent sector nonlinearities which lie in a general class of sectors. Given a degree for the

Lur’e candidate function, progressively less conservative LMI relaxations that assess the robust

absolute stability of the system are provided. Previous conditions in the literature for robust

stability of linear systems and for absolute stability of precisely known nonlinear systems are

recovered from the proposed conditions as special cases. An extension for robust control de-

sign applied to the class of nonlinear systems under investigation is also proposed, proving to

be a useful convex tool to compute a stabilizing controller using only linear or nonlinear state

feedback or using both linear and nonlinear state feedback terms in the control law.
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