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A smooth patchy control Lyapunov function for a nonlinear system consists of an ordered family of smooth local control Lyapunov functions, whose open domains form a locally finite cover of the state space of the system, and which satisfy certain further increase or decrease conditions. We prove that such a control Lyapunov function exists for any asymptotically controllable nonlinear system. We also show a construction, based on such a control Lyapunov function, of a stabilizing hybrid feedback that is robust to measurement noise.

Introduction

When a nonlinear control system has a compact set that is robustly asymptotically stabilizable by locally bounded state feedback, the control system admits a smooth "control Lyapunov function" (CLF). See [START_REF] Clarke | Asymptotic stability and smooth Lyapunov functions[END_REF] or [START_REF] Ledyaev | A Lyapunov characterization of robust stabilization[END_REF]. Given a continuously differentiable CLF for a nonlinear control system that is affine in its controls, formulas exist for continuous (and thus robust) feedback stabilizers. See, e.g., [START_REF] Sontag | A "universal" construction of Artstein's theorem on nonlinear stabilization[END_REF]. Similar results are available for systems with restricted controls [START_REF] Lin | A universal formula for stabilization with bounded controls[END_REF], [START_REF] Lin | Control-Lyapunov universal formulas for restricted inputs[END_REF]. The first results on stabilization using a CLF, which involve relaxed controls for nonaffine systems, can be found in [START_REF] Artstein | Stabilization with relaxed controls[END_REF].

While every asymptotically controllable nonlinear control system admits a locally Lipschitz, semiconcave CLF [START_REF] Sontag | A Lyapunov-like characterization of asymptotic controllability[END_REF], [START_REF] Rifford | Semiconcave control-Lyapunov functions and stabilizing feedbacks[END_REF], not every such system admits a continuously differentiable CLF, even when the system is affine in the control variable. Systems that do not admit a continuously differentiable CLF include systems that fail Brockett's condition, see [START_REF] Ryan | On Brockett's condition for smooth stabilizability and its necessity in a context of nonsmooth feedback[END_REF].

In the absence of a continuously differentiable CLF, dis-continuous feedback stabilizers have been developed. For example, see [START_REF] Clarke | Asymptotic controllability implies feedback stabilization[END_REF] and [START_REF] Ancona | Patchy vector fields and asymptotic stabilization[END_REF]. Typically, these feedbacks produce asymptotic stability with some robustness to additive disturbances but no robustness to measurement noise. To guarantee the latter robustness, the feedback of [START_REF] Clarke | Asymptotic controllability implies feedback stabilization[END_REF] can be implemented using sample and hold, and then the robustness margins decrease to zero as the sampling period decreases to zero; see [START_REF] Sontag | Clocks and insensitivity to small measurement errors[END_REF], [START_REF] Clarke | Feedback stabilization and Lyapunov functions[END_REF]. As shown in [START_REF] Ancona | Flow stability of patchy vector fields and robust feedback stabilization[END_REF], the patchy feedbacks of [START_REF] Ancona | Patchy vector fields and asymptotic stabilization[END_REF] have some robustness, for the purposes of semiglobal practical stabilization, to measurement noise with small total variation, but not to just small, locally bounded noise.

Sample and hold implementation of state feedback is a special type of hybrid feedback: at certain time instants, components of the state (a timer and the control value) change discontinuously (jump). In [START_REF] Prieur | Perturbed hybrid systems, applications in control theory[END_REF], [START_REF] Prieur | Asymptotic controllability and robust asymptotic stabilizability[END_REF], and [START_REF] Prieur | Hybrid feedback control and robust stabilization of nonlinear systems[END_REF] a different line of "hybridization" was followed, with the goal of robustness to measurement noise and additive disturbances. The patchy feedbacks of [START_REF] Ancona | Patchy vector fields and asymptotic stabilization[END_REF] were implemented there using hysteresis, an alternative kind of hybrid feedback control, the power of which has been already recognized for example in [START_REF] Hespanha | Stabilization of nonholonomic integrators via logic-based swithcing[END_REF]. The closed-loop system resulting from the feedback of [START_REF] Prieur | Hybrid feedback control and robust stabilization of nonlinear systems[END_REF] essentially fits the form of the general class of hybrid systems studied in [START_REF] Goebel | Solutions to hybrid inclusions via set and graphical convergence with stability theory applications[END_REF]. For the latter, general converse Lyapunov results were obtained by [START_REF] Cai | Smooth Lyapunov functions for hybrid systems. Part I: existence is equivalent to robustness[END_REF], [START_REF] Cai | Smooth Lyapunov functions for hybrid systems. Part II: (Pre-)asymptotically stable compact sets[END_REF]. These converse results suggest that the closedloop system in [START_REF] Prieur | Hybrid feedback control and robust stabilization of nonlinear systems[END_REF] admits a smooth "patchy" Lyapunov function. This is the point of departure for the present paper which has a fourfold purpose:

(1) to introduce the notion of a smooth patchy control Lyapunov function ("smooth patchy CLF", "smooth PCLF", or just "PCLF" for short); (2) to show that every asymptotically controllable nonlinear control system admits a smooth PCLF;

(3) to show how, given a smooth PCLF, a stabilizing hybrid feedback can be constructed (that is patchwise continuous if the nonlinear system meets some mild assumptions on the admissible controls); (4) to highlight that the Artstein's circles and the Brockett's integrator examples admit a smooth patchy CLF with a finite number of patches, while they do not admit a smooth CLF.

We achieve (2) with the help of a stabilizing patchy feedback, a kind of discontinuous (and not robust to measurement noise) state feedback, guaranteed to exist for asymptotically controllable nonlinear control systems thanks to results of [START_REF] Ancona | Patchy vector fields and asymptotic stabilization[END_REF]. We add that our hybrid feedback mentioned in (3) is robust to measurement error, by the results in [START_REF] Prieur | Hybrid feedback control and robust stabilization of nonlinear systems[END_REF].

2 Key idea -an example

The main idea behind a patchy control Lyapunov function is to cover the state space of a nonlinear system by a family of "local" control Lyapunov functions.

Example 2.1 (Artstein's circles) Consider the nonlinear control system on R 2 , known as Artstein's cicles:

ẋ1 = (x 2 1 -x 2 2 )u, ẋ2 = 2x 1 x 2 u. (1) 
(See [START_REF] Artstein | Stabilization with relaxed controls[END_REF].) Depending on the initial point and the chosen control, solutions to (1) move along circles centered on the x 2 -axis and tangent to the x 1 -axis, or along the x 1 -axis, or stay at the origin. For initial points on the circles just mentioned that are above the x 1 -axis, choosing u > 0 results in counterclockwise motion, u < 0 results in clockwise motion. (The motion below the x 1axis is symmetric with respect to that axis.)

For (1), the origin cannot be stabilized by continuous feedback (see [START_REF] Artstein | Stabilization with relaxed controls[END_REF]) nor robustly stabilized by locally bounded feedback (see [START_REF] Ledyaev | A Lyapunov characterization of robust stabilization[END_REF]). In Example 4.7 we will show that it can be robustly stabilized via hybrid feedback (and will explicitly show such a feedback). Note that there is no smooth control Lyapunov function for (1). This is easy to see by noting that any smooth function, positive away from the origin and 0 there, has a maximum relative to each circle centered on the x 2 -axis and tangent to the x 1 -axis.

However, R 2 \ {0} can be covered by two open sets and on each of them, there exists a smooth (local) control Lyapunov function. This captures the key idea of the concept of a smooth PCLF. To see a particular example, consider the open set (written in polar coordinates):

O 1 = {x = (r, θ) : r > 0, -3π/4 < θ < 3π/4} and let V 1 : O 1 → (0, ∞) be such that V 1 (x)
is the distance from x to 0, measured along the part of circle centered on the x 2 -axis and tangent to the x 1 -axis that is contained in O 1 (for points on the x 1 -axis, this reduces to

V 1 (x) = |x 1 |). Such a function is a (smooth) control Lyapunov function on O 1 , this can be seen by choosing u = -1. Let O 2 = -O 1 , i.e., x ∈ O 2 if and only if -x ∈ O 1 , and V 2 : O 2 → (0, ∞) be given by V 2 (x) = V 1 (-x)/3. This V 2 is a (smooth) control Lya- punov function on O 2 , as verified by u = 1. Finally, for x ∈ O 1 ∩ O 2 , we have V 2 (x) < V 1 (x).
In the example above, it was possible to cover R 2 \ {0} with finitely many, in fact two, open sets (patches) and furthermore, to pick the local Lyapunov functions so that the resulting PCLF is strict:

V 2 (x) < V 1 (x) for all x ∈ O 1 ∩ O 2 .
We make the following observations:

• For a general asymptotically controllable nonlinear control system, the existence of a smooth PCLF can be shown only if an infinite number of patches is allowed. (See Section 5.1, in particular Theorem 5.2.) • For some asymptotically controllable nonlinear control systems, finding a PCLF with a finite number of patches may be far easier that finding such a PCLF that is also strict. This is the case, for example, for the Brockett integrator, see Section 6. • Strictness is not necessary in order to construct a robustly stabilizing hybrid feedback from a PCLF with a finite number of patches. (See Section 4.2 and, in particular, Theorem 4.4.) In the more technical case of a PCLF with infinitely many patches, strictness or some other condition on the allignment of patches and the corresponding local Lyapunov functions appears necessary to obtain a stabilizing hybrid feedback.

While Example 2.1 captures the main idea, several details will need to be included in the formal definition of a PCLF. First, we introduce some background material.

Preliminaries

Throughout the paper, O ⊂ R n is an open set and A ⊂ O is compact. We will be interested in hybrid feedback stabilization for the nonlinear system

ẋ(t) = f (x(t), u(t)), u(t) ∈ U, for all t ≥ 0, (2) 
where 

U ⊂ R k is a set and f : O × U → R n is
• for each q ∈ Q, • sets C q ⊂ O and D q ⊂ O, • a function k q : C q → U , • a set-valued mapping G q : D q ⇒ Q. 1
In closed loop with the nonlinear system (2), a hybrid feedback as in Definition 3.1 leads to a hybrid system

ẋ = f (x, k q (x)) x ∈ C q , q + ∈ G q (x)
x ∈ D q .

(3)

During flow, x evolves according to the differential equation ẋ = f (x, k q (x)), q remains constant, and the constraint x ∈ C q is satisfied. During jumps, q evolves according to the difference inclusion q + ∈ G q (x), x remains constant, and before a jump, the constraint x ∈ D q is satisfied. The state space for (3) will then be O × Q.

We now formally define solutions to (3), following [START_REF] Goebel | Solutions to hybrid inclusions via set and graphical convergence with stability theory applications[END_REF]. A subset S ⊂ R ≥0 × N is a hybrid time domain if S is a union of a finite or infinite sequence of intervals [t j , t j+1 ]×{j}, with the last interval, if it exists, possibly of the form [t j , T ) with T finite or T = +∞. A solution to the hybrid system (3) is a function x : S → O, where S is a nonempty hybrid time domain, with x(t, j) locally absolutely continuous in t for a fixed j and a function q : S → Q meeting the following conditions:

x(0, 0) ∈ C q(0,0) ∪ D q(0,0) and (S1) For all j ∈ N and almost all t such that (t, j) ∈ S, ẋ(t, j) = f (x(t, j), k q(t,j) (x(t, j)), x(t, j) ∈ C q(t,j) .

(S2) For all (t, j) ∈ S such that (t, j + 1) ∈ S, q(t, j + 1) ∈ G q(t,j) (x(t, j)), x(t, j) ∈ D q(t,j) .

Given a solution (x, q) to (3) we refer to its domain by dom(x, q). A solution (x, q) to ( 3) is maximal if it can not be extended, that is, if there does not exist another solution (x ′ , q ′ ) such that dom(x, q) dom(x ′ , q ′ ) and (x, q)(t, j) = (x ′ , q ′ )(t, j) for all (t, j) ∈ dom(x, q). In what follows, we will write sup t (S) for the supremum of all t such that (t, j) ∈ S for some j, and dist A (x) for the distance of the point x from the set A.

Definition 3.2

The set A is stable for the hybrid system (3) if for any ε > 0 there exists δ > 0 such that any solution (x, q) with dist A (x(0, 0)) ≤ δ satisfies dist A (x(t, j)) ≤ ε for all (t, j) ∈ dom(x, q). The set A is globally attractive for (3) if for any maximal solution (x, q) to (3) we have dist A (x(t, j)) → 0 as t → sup t (dom(x, q)). The set A is globally asymptotically stable for (3) if it is both stable and globally attractive.

This concept of asymptotic stability refers only to the behavior of the "continuous" part of solutions. We are allowing for solutions approaching A in finite (hybrid) time. Below, an admissible perturbation radius is a continuous function ρ : O → [0, ∞) such that ρ(x) = 0 if and only if x ∈ A and x + ρ(x)B ⊂ O for all x ∈ O.2 Definition 3.3 A hybrid feedback renders A asymptotically stable, robustly with respect to measurement noise and external disturbances, if there exists an admissible perturbation radius ρ such that the set A is asymptotically stable, with the basin of attraction equal to O, for the system H ρ :

ẋ ∈ F ρ q (x) x ∈ C ρ q , q + ∈ G ρ q (x) x ∈ D ρ q , (4) 
with the data

F ρ q (x) := con f (x, k q ((x + ρ(x)B) ∩ C q ) + ρ(x)B, G ρ q (x) := G q ((x + ρ(x)B) ∩ D q ), C ρ q := {x ∈ O | (x + ρ(x)B) ∩ C q = ∅}, D ρ q := {x ∈ O | (x + ρ(x)B) ∩ D q = ∅}.
(5)

In (5), con f (x, k q ((x + ρ(x)B) ∩ C q )) is the closed convex hull of the set ξ∈(x+ρ(x)B)∩Cq f (x, k q (ξ)). Solutions to (4) are understood similarly to those to (3).

4 Finite number of patches and a sufficient condition for robust feedback stabilization 2) with the attractor A consists of a set Q and a collection of functions V q and sets Ω q , Ω ′ q for each q ∈ Q, such that

(i) Q ⊂ Z is a finite set; (ii) {Ω q } q∈Q and {Ω ′ q } q∈Q are families of nonempty open subsets of O such that O ⊂ O ⊂ O, where O := q∈Q Ω q = q∈Q Ω ′ q ,
and for all q ∈ Q, the unit (outward) normal vector to ∂Ω q is continuous on ∂Ω q \ r>q Ω ′ r ∩ O, and

Ω ′ q ∩ O ⊂ Ω q ;
(iii) for each q, V q is a smooth function defined on a (relative to O) neighborhood of Ω q \ r>q Ω ′ r ;

and the following conditions are met: there exist a continuous function α : (0, ∞) → (0, ∞), class-K ∞ functions γ, γ, and a function ω which is a proper indicator of A with respect to O such that:

(iv) for all q ∈ Q, all x ∈ Ω q \ r>q Ω ′ r , γ(ω(x)) ≤ V q (x) ≤ γ(ω(x)) ; (v) for all q ∈ Q, all x ∈ Ω q \ r>q Ω ′ r , there exists u q,x ∈ U such that ∇V q (x) • f (x, u q,x ) ≤ -α(ω(x)); (vi) for all q ∈ Q, all x ∈ ∂Ω q \ r>q Ω ′ r ∩ O, the u q,x of (v) can be chosen such that n q (x) • f (x, u q,x ) ≤ -α(ω(x)),
where n q (x) is the unit (outward) normal vector to Ω q at x.

Next we add an extra condition to the definition of a smooth PCLF, arriving at "strict" and "almost strict" PCLFs. It is important to note that neither strict nor almost strict PCLFs will be needed or used to construct stabilizing feedbacks in the case of a finite number of patches. Their definitions are provided here for the purposes of comparison and because these concept will play a role later in the case of necessity of PCLFs and in the case of an infinite number of patches. Definition 4.2 A smooth patchy control Lyapunov function is almost strict if the following condition holds:

(vii) for all q, r ∈ Q, r > q, all x ∈ Ω q ∩∂Ω ′ r , V r (x) ≤ V q (x).
If this inequality is strict, the smooth patchy control Lyapunov function is strict.

Example 4.3 (Artstein's circles, revisited) We now return to the system (1) and display a strict smooth PCLF for it. Let O q , V q , q = 1, 2 be as in Example 2.1. Pick any two angles β ′ < β in (π/2, 3π/4) and let

Ω ′ 1 = {x = (r, θ) : r > 0, -β ′ < θ < β ′ } , Ω 1 = {x = (r, θ) : r > 0, -β < θ < β} , while Ω ′ 2 = -Ω ′ 1 , Ω 2 = -Ω 1 . The sets O 1 , Ω 1 and Ω ′ 1
are sketched in Figure 1. These sets and functions form

1 Ω 1 Ω ' 1 O 2 O 2 Ω 2 Ω ' β' 1 2 3π/4 β x x
Fig. 1. Sketch of the sets O1, Ω1, and

Ω ′ 1 a smooth PCLF. The set Q = {1, 2} is ordered by 2 > 1. The families {Ω 1 , Ω 2 }, {Ω ′ 1 , Ω ′ 2 } consist of

nonempty and open sets and form a locally finite cover of

O = Ω 1 ∪Ω 2 = Ω ′ 1 ∪ Ω ′ 2 = R 2 \ {0}. We have ∂Ω 1 \ r>1 Ω ′ r ∩ O = (∂Ω 1 \ Ω ′ 2 ) ∩ O = ∅. Furthermore, ∂Ω 2 \ r>2 Ω ′ r ∩ O = ∂Ω 2 ∩O
consists of two half lines that do not contain their endpoints, and the (outward) unit normal vector to ∂Ω 2 is constant (so continuous) relative to each of these lines. Obviously, Ω ′ q ∩ O ⊂ Ω q , q = 1, 2. Each V q is smooth on O q , a neighborhood of Ω q relative to O. Verifying (iv) of Definition 4.1 is possible via ω(x) = x (Euclidean norm) and noting that, for q = 1 and x ∈ O 1 and for q = 2 and

x ∈ O 2 x ≤ V q (x) ≤ 3π 2 √ 2 x . Setting u 1,x = -1, u 2,x = 1, one gets ∇V 1 (x) • f (x, u 1,x ) = -f (x, u 1,x ) = -x 2
and similarly, ∇V 2 (x) • f (x, u 2,x ) =x 2 /3. This verifies (v). Regarding (vi), there is nothing to check for q = 1. For q = 2, we have for each x ∈ ∂Ω 2 ∩ O that n q (x) and f (x, 1) have opposite directions, and

n 2 (x) • f (x, 1) = -f (x, 1) = -x 2 .
Finally, for x ∈ O 1 ∩ O 2 , and so for

x ∈ Ω 1 ∩ ∂Ω ′ 2 , V 2 (x) < V 1 (x). This verifies (vii). Note that if V 2 was defined in Example 2.1 by V 2 (x) = V 1 (-x
), the resulting object would be a smooth PCLF, but not a strict one.

Robust stabilizing feedback

With a patchy control Lyapunov function, and under a convexity assumption on the nonlinear system, we can design a hybrid feedback on O for (2) that renders A robustly globally asymptotically stable.

Theorem 4.4 Suppose that

• there exists a smooth patchy control Lyapunov function (with finitely many patches) for (2) with attractor A;

• for any v ∈ R n , c ∈ R, the set {u ∈ U | v • f (x, u) ≤ c} is convex.
Then, there exists a hybrid feedback on O for (2) such that, for each q ∈ Q, the mapping k q is continuous and C q ∪ D q = O, which renders A globally asymptotically stable, robustly with respect to measurement noise and external disturbances.

The convexity assumption is satisfied if the system (2) is affine with respect to the control variable and the set U is convex. It is included to ensure that, for each q ∈ Q, the local feedback k q , constructed from the local Lyapunov function V q on a particular subset of Ω q , is continuous. This continuity, and the property that C q ∪ D q = O implies in particular that for each initial point in O × Q there exists a nontrivial solution to (3) and furthermore, that each maximal solution is either complete or leaves any compact subset of O × Q in finite (hybrid) time; see Proposition 2.4 in [START_REF] Goebel | Solutions to hybrid inclusions via set and graphical convergence with stability theory applications[END_REF].

For systems failing the convexity assumption, the work in [START_REF] Ledyaev | A Lyapunov characterization of robust stabilization[END_REF] has established the existence of a robust, stabilizing, but possibly discontinuous feedback when a smooth, classical CLF exists. See also [START_REF] Artstein | Stabilization with relaxed controls[END_REF]. For PCLF-based feedback synthesis in the absence of the convexity assumption, the ideas in [START_REF] Ledyaev | A Lyapunov characterization of robust stabilization[END_REF] can be applied to each patch of a PCLF to construct a hybrid feedback with possibly discontinuous k q 's. We do not pursue this here.

The proof of Theorem 4.4 has three steps. First, for each q ∈ Q, we construct a "local" continuous feedback on each patch. (The proof of Lemma 4.5 is in the appendix.)

Lemma 4.5 Under the assumptions of Theorem 4.4, for each q ∈ Q there exists a continuous mapping

k q : Ω q \ r>q Ω ′ r ∩ O → U such that (a) for all x ∈ Ω q \ r>q Ω ′ r ∩ O, ∇V q (x) • f (x, k q (x)) ≤ -α(ω(x))/2; (b) for all x ∈ ∂Ω q \ r>q Ω ′ r ∩ O, n q (x) • f (x, k q (x)) ≤ -α(ω(x))/2.
Second, we explicitly define the remaining data that is needed to turn the collection of (continuous time) feedbacks k q into a hybrid feedback:

C q = Ω q \ r>q Ω ′ r ∩ O D q = r>q Ω ′ r ∩ O ∪ (O \ Ω q ) G q (x) =                  {r ∈ Q | x ∈ Ω ′ r ∩ O, r > q} if x ∈ r>q Ω ′ r ∩ Ω q {r ∈ Q | x ∈ Ω ′ r ∩ O} if x ∈ O \ Ω q (6)
The "switching logic" for the hybrid system described by such data and by the differential equations ẋ = f (x, k q (x)) is essentially as follows. When a solution (x, q) is flowing with x ∈ C q , a jump from q to r can only occur if r > q and x ∈ Ω ′ r ∩ O. Such jumps leads to V q (x) nonincreasing in the case of an almost strict PCLF, and decreasing in the strict case. A different kind of a jump, to any r with x ∈ Ω ′ r ∩ O, may also be needed before any flow occurs, in the case of initialization of the stabilization process with a "wrong" value of q, i.e., q such that x ∈ O \ Ω q . See also Example 4.7.

In the third step, we use the collection of local control Lyapunov functions V q to show that the constructed feedback is stabilizing. The key property behind stability is that the constructed feedback guarantees each solution experiences a finite number of jumps. This simplifies the analysis considerably compared to the case where an infinite number of jumps may occur. (Tools for stability analysis in this latter situation exist in the literature, even for the case where the variable q takes values in a compact, not necessarily finite, set. For example, see the work on "multiple Lyapunov functions" [START_REF] Branicky | Multiple Lyapunov functions and other analysis tools for switched hybrid systems[END_REF]; [START_REF] Decarlo | Prespectives and results on the stability and stabilizability of hybrid systems[END_REF].) For the case of a PCLF with an infinite number of patches, which is discussed later, solutions can experience an infinite number of jumps, although there is monotonicity in the evolution of the variable q. As Remark 4.6 will show, if the PCLF is strict, the functions V q are used much like what is done with a standard control Lyapunov function. Robustness of stability is finally deduced from a generic robustness result of [START_REF] Prieur | Hybrid feedback control and robust stabilization of nonlinear systems[END_REF]. The details are as follows.

Proof. (of Theorem 4.4) Given a PCLF, consider the hybrid feedback on O × Q given by ( 6), and let u q be any functions as in Lemma 4.5.

First, we note that the hybrid system (3) with the feedback (6) has favorable semicontinuity and closedness properties: for each q ∈ Q, sets C q , D q are relatively closed in O, the function x → f (x, u q (x)) is continuous (and hence it is outer semicontinuous, locally bounded, and has convex and nonempty values) on C q , while the set-valued mapping G q is outer semicontinuous, locally bounded, and has nonempty values that are subsets of Q; see (Prieur et al., 2007, Lemma 3.5). These properties guarantee that various results obtained in [START_REF] Goebel | Solutions to hybrid inclusions via set and graphical convergence with stability theory applications[END_REF] and [START_REF] Prieur | Hybrid feedback control and robust stabilization of nonlinear systems[END_REF] regarding sequential compactness of solutions to (3) and their "upper semicontinuous" dependence on initial conditions are applicable. We will rely on some of those below.

For a solution (x, q) to (3), let j 0 := max{j | (0, j) ∈ dom(x, q)}. (Such j 0 is finite by the definition of G q and local finiteness of the covering {Ω ′ q } q∈Q .) Then for all (t, j) ∈ dom(x, q) with j ≥ j 0 , the function V q(t,j) (x(t, j)) is well defined, as then x(t, j) ∈ Ω q(t,j) . Moreover, if (t, j), (t ′ , j) ∈ dom(x, q), j ≥ j 0 , t < t ′ , then q(t, j) = q(t ′ , j), x(t, j), x(t ′ , j) ∈ C q(t,j) and finally

V q(t ′ ,j) (x(t ′ , j)) < V q(t,j) (x(t, j)) (7) 
by (a) of Lemma 4.5. If (t, j + 1) ∈ dom(x, q) for some (t, j) ∈ dom(x, q) such that j ≥ j 0 , then x(t, j) ∈ C q(t,j) ∩ D q(t,j) (since "before (t, j), x(•, j) was flowing") and so, by (b) of Lemma 4.5,

x(t, j) ∈ r>q ∂Ω ′ r ∩ Ω q ⊂ r>q Ω ′ r ∩ Ω q .
Thus q(t, j + 1) > q(t, j), i.e., "q is increasing during jumps", by the definition of G q . By (iv) of Definition 4.1,

V q(t,j+1) (x(t, j)) ≤ (γ • γ -1 )(V q(t,j) (x(t, j))) (8) 
Thus, for all (t, j) ∈ dom(x, q), j ≥ j 0 , we have

V q(t,j) (x(t, j)) ≤ (γ • γ -1 ) j-j0 (V q(0,j0) (x(0, j 0 ))) . (9)
Let N be the number of elements in Q. Then V q(t,j) (x(t, j)) is bounded above by (γ • γ -1 ) N (V q(0,j0) (x(0, j 0 ))) for any solution (x, q) and any (t, j) ∈ dom(x, q). Hence

ω(x(t, j)) ≤ γ -1 (γ • γ -1 ) N γ(ω(x(0, 0)). ( 10 
)
Thus A is stable for (3) and ω(x(t, j)) is bounded above for all solutions (x, q), all (t, j) ∈ dom(x, q). Now suppose that (x, q) is a maximal solution to (3). As such, it is either complete, or eventually leaves any compact subset of O × Q. Either way, let J := max{j | (t, j) ∈ dom(x, q) for some t}. If (x, q) is complete, then sup t (dom(x, q)) = ∞ (no solution can jump infinitely many times) and then

∇V q(t,J) • f x(t, J), u q(t,J) (x(t, J)) ≤ -α(ω(x(t, J))) (11 
) for all t such that (t, J) ∈ dom(x, q). Standard arguments show that ω(x(t, J)) → 0 as t → ∞. If (x, q) is not complete, then x(t, J) must leave any compact subset of O as t → sup t (dom(x, q)), which by stability is only possible if ω(x(t, j)) → 0.

The two paragraphs above showed that for (3), the set A is asymptotically stable with the basin of attraction equal to O. According to (Prieur et al., 2007, Theorem 4.1), this asymptotic stability is robust, in the sense of Definition 3.3 with the change that F ρ q be defined by con

ξ∈(x+ρ(x)B)∩Cq f (ξ, k q (ξ)) + ρ(x)B.
It is straightforward, from continuity of f and k q 's (it is enough for the k q 's to be locally bounded) and from local finiteness of the covering of O by C q 's, that for each compact K ⊂ O, each ε > 0, there exists δ > 0 such that, for each

x ∈ K, each q ∈ Q, f (x, k q ((x + δB) ∩ C q )) ⊂ ξ∈(x+εB)∩Cq f (ξ, k q (ξ)) + εB.
This in turn can be used to conclude that robustness as in (Prieur et al., 2007, Theorem 4.1) implies the robustness in the sense of Definition 3.3. This finishes the proof.

Remark 4.6 The proof of Theorem 4.4 simplifies somewhat if the PCLF is almost strict. Indeed, the arguments can be repeated up to the estimate (8). That estimate, by (vii) of Definition 4.2, can be replaced by

V q(t,j+1) (x(t, j)) ≤ V q(t,j) (x(t, j)) (12) 
This shows that V q(t,j) (x(t, j)) is nondecreasing along dom(x, q), and consequently, V q(t,j) (x(t, j)) ≤ V q(0,j0) (x(0, j 0 )) for all (t, j) ∈ dom(x, q), j ≥ j 0 . Since x(0, 0) = x(0, j 0 ), item (iv) of Definition 4.1 yields that γ(ω(x(t, j))) ≤ γ(ω(x(0, 0))) for all (t, j) ∈ dom(x, q). This shows stability of A for (3). The remaining arguments can be repeated without change.

Example 4.7 (Artstein's circles, re-revisited) For the system (1), Example 4.3 exhibited a smooth PCLF. Theorem 4.4 implies the existence of a robust stabilizing hybrid feedback for (1), and recovers the result of [START_REF] Prieur | A robust globally asymptotically stabilizing feedback: the example of the Artstein's circles[END_REF] from a more general context. (Note that (1) is affine, in fact linear, in u.) An example of such a hybrid feedback is as follows. The formula (6) leads to

C 1 = {x = (r, θ) : r > 0, -δ ′ ≤ θ ≤ δ ′ } , D 1 = {x = (r, θ) : r > 0, δ ′ ≤ θ ≤ 2π -δ ′ } , C 2 = {x = (r, θ) : r > 0, δ ≤ θ ≤ 2π -δ} , D 2 = {x = (r, θ) : r > 0, -δ ≤ θ ≤ δ} , G 1 (x) = {2} , ∀x ∈ D 1 , G 2 (x) = {1} , ∀x ∈ D 2 ,
where δ ′ = πβ ′ , δ = πβ (so that δ < δ ′ , and δ, δ ′ ∈ (π/4, π/2)). We can set k 1 (x) = -1 for all x ∈ C 1 , k 2 (x) = 1 for all x ∈ C 2 . The behavior of the resulting closed loop hybrid system is as follows. Given an initial condition q = 1, x ∈ C 1 , the continuous variable may flow clockwise (has to flow if

x ∈ C 1 ∩ D 1 ) to 0. If q = 1, x ∈ D 1 \ C 1 , the discrete variable switches to q = 2.
After a switch from q = 1 to q = 2, only flow of the continuous variable is possible, counterclockwise, to 0. Behavior from initial conditions with q = 2 is similar, and in general, only one switch is possible. From this, one can deduce asymptotic stability. Regarding robustness, we only note that the presence of the discrete variable makes chattering impossible: small measurement noise does not affect q being either 1 or 2, and hence, it does not lead to repeated fast switching between control values.

We add that considering β = β ′ , and so Ω

′ 1 = Ω 1 , Ω ′ 2 = Ω 2 , leads to C 1 = D 2 , C 2 = D 1 ,
and the resulting hybrid feedback does not render 0 attractive. Indeed, in such a case, given any x 0 ∈ C 1 ∩ D 1 = D 1 ∩ D 2 and any q 0 ∈ {1, 2}, there exists a solution (x, q) with dom(x, q) = {0} × N3 such that x(0, j) = x 0 for all j ∈ N while q(0, j) = q 0 for even j and q(0, j) = 3q 0 for odd j. Such a solution is maximal and x does not approach 0.

5 Infinite number of patches and a necessary and sufficient condition

Necessity

We will say that a family {Ω q } q∈Q is locally finite on O if for any compact K ⊂ O, there are finitely many q's such that K ∩ Ω q = ∅.

Definition 5.1 An almost strict patchy control Lyapunov function for (2) with the attractor A consists of a set Q and a collection of functions V q and sets Ω q , Ω ′ q for each q ∈ Q, such that Q ⊂ Z, conditions (ii)-(vii) of Definitions 4.1, 4.2 hold, and the family {Ω q } q∈Q is locally finite on O. A strict patchy control Lyapunov function is strict if the inequality in condition (vii) is strict.

We now show that a smooth patchy Lyapunov function exists for most asymptotically controllable to a compact set nonlinear systems. For completeness, we first recall that (2) is asymptotically controllable on O to A if:

• for each x 0 ∈ O there exists a measurable u x 0 :

[0, ∞) → U such that the maximal trajectory x to (2) with u replaced by u x 0 is complete and such that lim t→∞ dist A (x(t)) = 0; • for any ε > 0 there exists δ > 0 such that for any x 0 ∈ O with dist A (x) < δ one can find u x 0 as in (a) so that the resulting trajectory x is such that dist A (x(t)) < ε for all t ≥ 0.

Theorem 5.2 Suppose f is smooth, U is compact, and

(2) is asymptotically controllable on O to A. Then there exists a strict patchy control Lyapunov function for (2).

The proof will be based on the existence, for asymptotically controllable systems, of a stabilizing patchy feedback, as shown by [START_REF] Ancona | Patchy vector fields and asymptotic stabilization[END_REF].

Definition 5.3 [START_REF] Ancona | Patchy vector fields and asymptotic stabilization[END_REF]) A mapping µ : O → U is a patchy feedback for (2) on O if there exist a set Q, and for each q ∈ Q, a set Ω q ⊂ O and a control value u q ∈ U such that (a) for each q ∈ Q, the pair Ω q , f (•, u q ) forms a patch, that is: (a1) Ω q is open, Ω q ⊂ O, and the boundary of Ω q is smooth; (a2) f (•, u q ) is smooth on some neighborhood of Ω q ; (a3) for any point x ∈ ∂Ω q

n q (x) • f (x, u q ) < 0, ( 13 
)
where n q (x) is the unit (outward) normal vector to Ω q at x; (b) Q is a totally ordered set; (c) the sets {Ω q } q∈Q form a locally finite covering of O; and µ can be written as µ(x) = u q if x ∈ Ω q \ r>q Ω r , where > is the ordering of Q.

A patchy feedback, in closed loop with (2), leads to a discontinuous vector field. Solutions to it are understood in the Caratheodory sense, and they have several desirable properties; see [START_REF] Ancona | Patchy vector fields and asymptotic stabilization[END_REF]. The following result can be immediately deduced from [START_REF] Ancona | Patchy vector fields and asymptotic stabilization[END_REF], Theorem 1) and its proof.

Theorem 5.4 Suppose that f is smooth, U is compact, and ( 2) is asymptotically controllable on O to A. Then there exists a patchy feedback on O such that:

(i) Q ⊂ Z is ordered by the standard inequality; (ii) each Ω q is bounded; (iii) for each q, each complete solution x(•), x(0) ∈ Ω q , to ẋ(t) = f (x(t), u q ) (14) satisfies x(t) ∈ r>q Ω r for some t ≥ 0;

(iv) for any proper indicator ω of A with respect to O and δ > 0 there exist q δ , q δ ∈ Q such that q > q δ implies sup ω(Ω q ) ≤ δ and q δ > q implies inf ω(Ω q ) ≥ δ.

We need to comment that the patchy feedbacks of Ancona and Bressan (1999) had the index set as a subset of Z × N, ordered by the lexicographical ordering, and such that for each z ∈ Z, {n ∈ N | (z, n) ∈ Q} was nonempty and finite. Any such set can be identified with a subset of integers, with the lexicographical order in the former corresponding to the standard order in the latter. We add that the last property above essentially means that patches close to A have large indices while patches away from A have small ones. Finally, in [START_REF] Ancona | Patchy vector fields and asymptotic stabilization[END_REF], the attractor A was the origin, and O = R n . The extension to the more general setting we have here is immediate, as one just relies on a proper indicator of A with respect to O rather than on the norm.

The four properties of the patchy feedback listed in Theorem 5.4 are enough to show that, in an appropriate sense, A is asymptotically stable on O for the closed-loop system. We will not need that here, and rather, after using the patchy feedback to build a hybrid feedback, we will show the stabilization property of the latter directly.

Lemma 5.5 Under the assumptions of Theorem 5.4, for each q ∈ Q there exists a compact set K q ⊂ Ω q ∩ r>q Ω r and a nonnegative function W q that is smooth on a neighborhood of Ω q and such that

∇W q (x) • f (x, u q ) < 0 for all x ∈ Ω q \ K q , ( 15 
)
and in particular, for all x ∈ Ω q \ r>q Ω q .

The proof of this lemma is in the Appendix.

Proof.(of Theorem 5.2) Let K q be as in Lemma 5.5.

For each q ∈ Q, one can find an open set Ω ′ q such that Ω

′ q ⊂ Ω q , K q ⊂ Ω ′ q , K p ⊂ Ω ′ q if p ∈ Q is such that K p ⊂ Ω q , {Ω ′
q } q∈Q is a covering of O (necessarily locally finite), and finally such that

∇W q (x) • f (x, u q ) < 0 for all x ∈ Ω q \ r>q Ω ′ q . ( 16 
)
For each q ∈ Q, pick any c q > sup x∈Ωq W q (x) so that W q (x) ∈ [0, c q ] when x ∈ Ω q , and for each q ∈ Q let b q = 2 -q and a q = 2 -q /c q . Then the functions V q (x) := a q W q (x) + b q are positive and such that inf x∈Ωq V q (x) > sup x∈Ωr V r (x) whenever r > q, this verifies condition (vii) of Definition 4.2.

We now check the remaining conditions to show that V q 's above yield a strict PCLF as in Definition 5.1. By (i) in Theorem 5.4, Q is totally ordered. For each q ∈ Q, Ω ′ q ⊂ Ω q by construction, while Ω q 's form a locally finite covering of O by condition (c) in Definition 5.3. Also, for each q ∈ Q, V q is smooth on a neighborhood of Ω q by Lemma 5.5. Let ω be any proper indicator of A on O. For (iv) of Definition 4.1, we can consider

β(r) = inf{V q (x) | ω(x) ≥ r, x ∈ Ω q }, β(r) = sup{V q (x) | ω(x) ≤ r, x ∈ Ω q }, so that β(ω(x)) ≤ V q (x) ≤ β(ω(x)) if x ∈ Ω q .
By the very definitions, both functions are nondecreasing, and by local finiteness of {Ω q } q∈Q , positive (and finite) for r > 0. (They need not be continuous though.) By (i) and (iv) of Theorem 5.4, and by the choice of a q , b q 's above, both functions tend to 0 as r → 0 and to ∞ if r → ∞. Finally, one can pick K ∞ functions γ ≤ β and γ ≥ γ; these satisfy (iv) of Definition 4.1.

For conditions (v) and (vi) of Definition 4.1, we have

∇V q (x) • f (x, u q ) < 0 for all x ∈ Ω q \ r>q Ω ′ r (17)
by Lemma 5.5 and since a q > 0. Continuity of ∇V q and x → f (x, u q ) on Ω q , implies that there exists a constant α q 1 > 0 such that

∇V q (x) • f (x, u q ) < -α q 1 for all x ∈ Ω q \ r>q Ω ′ r . (18) 
Similarly, for each q ∈ Q we have, by (a3) of Definition 5.3, continuity of n q (•) and f (•, u q ), and compactness of ∂Ω q , that there exists a constant α q 2 > 0 so that

n q (x) • f (x, u q ) ≤ -α q 2 for all x ∈ ∂Ω q . (19) 
Now, by local finiteness of the covering of O by Ω q 's, we can find a continuous function α : (0, ∞) → (0, ∞) such that α(ω(x)) ≤ min{α q 1 , α q 2 } if x ∈ Ω q . This verifies (v) and (vi) of Definition 4.1.

We note that Theorem 5.2 was proved directly, by taking a stabilizing patchy feedback as a starting point, but it did involve one use of a converse Lyapunov result of [START_REF] Cai | Smooth Lyapunov functions for hybrid systems. Part I: existence is equivalent to robustness[END_REF] (used to construct W q , a smooth Lyapunov function for a differential equation where all solutions reach a certain set in finite time, but then possibly leave it). An alternative approach to Theorem 5.2 is to apply the converse Lyapunov theorems in [START_REF] Cai | Smooth Lyapunov functions for hybrid systems. Part I: existence is equivalent to robustness[END_REF] to the hybrid closed-loop system developed in [START_REF] Prieur | Hybrid feedback control and robust stabilization of nonlinear systems[END_REF] (again, based on a patchy feedback of [START_REF] Ancona | Patchy vector fields and asymptotic stabilization[END_REF]) with a scaling, like that used in [START_REF] Artstein | Stabilization with relaxed controls[END_REF], to guarantee forward completeness.

Sufficiency

We now state the most general definition of a patchy control Lyapunov function. It allows for infinite number of patches and does not insist on strictness or almost strictness, i.e., it allows for V q (x) to increase at jumps. Briefly, the meaning behind PCLF according to the definition below is that it is a collection of patches and functions that leads to asymptotic stability of (3), subject to picking control functions k q in the hybrid feedback (6) to satisfy Lemma 4.5. For this to hold, some conditions on the arrangement of patches need to be met; we give an example of such conditions in Proposition 5.7 below.

Definition 5.6 A patchy control Lyapunov function for (2) with the attractor A consists of a set Q and a collection of functions V q and sets Ω q , Ω ′ q for each q ∈ Q, such that Q ⊂ Z, conditions (ii)-(vi) of Definition 4.1 hold, and the hybrid feedback given by ( 6) and by any functions k q satisfying the conditions of Lemma 4.5 renders A asymptotically stable.

Note that the definition does not require the k q 's to be constructed as in the proof of Lemma 4.5; they can be any functions having the right properties.

Theorem 4.4 and its proof showed that a PCLF with finitely many patches is a patchy control Lyapunov function (as in Definition 5.6) subject to a convexity assumption. Below, we state that an almost strict smooth PCLF is indeed a PCLF in the sense of the definition above. The proof is postponed until the Appendix.

Proposition 5.7 Suppose that a set Q and a collection of functions V q and sets Ω q , Ω ′ q for each q ∈ Q is such that Q ⊂ Z, conditions (ii)-(vi) of Definition 4.1 hold and, for each N ∈ N ∪ {∞}, (pa 1 ) for each ε > 0 there exists δ > 0 such that, for any increasing sequence {q n } 0≤n≤N in Q, and for any sequence

{x n } 0≤n≤N in O satisfying x 0 ∈ Ω q0 , V q0 (x 0 ) ≤ δ and, for all 0 ≤ n ≤ N , x n+1 ∈ Ω qn ∩ ∂Ω ′ qn+1 , V qn (x n+1 ) ≤ V qn (x n ) ,
we have V qn (x n ) ≤ ε, for all 0 ≤ n ≤ N ; (pa 2 ) for any increasing sequence {q n } 0≤n≤N in Q, and for any sequence

{x n } 0≤n≤N in O satisfying x 0 ∈ Ω q0
and, for all 0 ≤ n ≤ N ,

x n+1 ∈ Ω qn ∩ ∂Ω ′ qn+1 , V qn (x n+1 ) ≤ V qn (x n ) , there exists M > 0 such that V qn (x n ) ≤ M , for all 0 ≤ n ≤ N .
Then this collection is a PCLF for (2).

Corollary 5.8 An almost strict smooth patchy control Lyapunov function for (2) in the sense of Definition 5.1 is a smooth patchy control Lyapunov function for (2) in the sense of Definition 5.6.

Proof. If Q is finite there is nothing to show. In the opposite case, we will show that (pa 1 ) and (pa 2 ) of Proposition 5.7 are met. Let ε > 0, N ∈ N ∪ {∞}, {q n } 0≤n≤N be an increasing sequence in Q and {x n } 0≤n≤N be a sequence in O satisfying x 0 ∈ Ω q0 , V q0 (x 0 ) ≤ ε, and, for all 0 ≤ n ≤ N , x n+1 ∈ Ω qn ∩ Ω qn+1 and

V qn (x n+1 ) ≤ V qn (x n ) With V qn+1 (x n+1 ) < V qn (x n+1 ), we get V qn (x n ) ≤ ε, for all 0 ≤ n ≤ N . Let {q n } 0≤n≤N
be an increasing sequence in Q, and {x n } 0≤n≤N a sequence in O satisfying x 0 ∈ Ω q0 , and, for all 0 ≤ n ≤ N ,

x n+1 ∈ Ω qn ∩ Ω qn+1 and V qn (x n+1 ) ≤ V qn (x n ). With V qn+1 (x n+1 ) < V qn (x n+1 ), by denoting M = V q0 (x 0 ), we have V qn (x n ) ≤ M , for all 0 ≤ n ≤ N .

Illustration

Throughout the paper, we used Artstein's circles to illustrate the definitions and the results. Here we consider another classical example, the Brockett integrator:

ẋ1 = u 1 , ẋ2 = u 2 , ẋ3 = x 1 u 2 -x 2 u 1 . (20) 
The necessary condition [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF]) for the stabilization, of the origin, by means of a continuous feedback or robust stabilization by locally bounded feedback [START_REF] Ryan | On Brockett's condition for smooth stabilizability and its necessity in a context of nonsmooth feedback[END_REF]) fail for this system. We will show the existence of a hybrid stabilizing feedback by applying Theorem 4.4. (This partially recovers the result of [START_REF] Prieur | Robust optimal stabilization of the Brockett integrator via a hybrid feedback[END_REF], see also [START_REF] Prieur | Quasi-optimal robust stabilization of control systems[END_REF], where an optimization criterion was also considered.) To do that, we will display a PCLF with two patches, based on a simplified version of the hybrid controller of [START_REF] Hespanha | Stabilization of nonholonomic integrators via logic-based swithcing[END_REF] (see also [START_REF] Goebel | Hybrid systems: generalized solutions and robust stability[END_REF]).

Let f (x, u) be the right-hand side of the system (20), where x = (x 1 , x 2 , x 3 ) and u = (u 1 , u 2 ). Set r = x 2 1 + x 2 2 , and pick ρ > 1 and 0 < ε < 1 such that

√ ρρ + ε √ ρ < 2. With O = R 3 and A being the origin, let Q = {1, 2} (so (i) of Definition 4.1 is verified); let Ω ′ 1 = Ω 1 = R 3 and V 1 : R 3 → R be given by V 1 (x) = (ρ + ε) |x 3 | -x 1 ; also, let Ω ′ 2 = x = 0 : r 2 > ρ|x 3 | , Ω 2 = x = 0 : r 2 > |x 3 | ,
and V 2 : R 3 → R be given by

V 2 (x) = 1 2 x 2 1 + x 2 2 + x 2 3 = 1 2 r 2 + x 2 3 .
The families {Ω 1 , Ω 2 }, {Ω ′ 1 , Ω ′ 2 } consist of nonempty and open sets, they cover O = R 3 \ {0}, and the remaining conditions of (ii) of Definition 4.1 are easy to check. The function V 1 is smooth on a (relative to R 3 \ {0}) neighborhood of Ω 1 \ Ω ′ 2 , and so (iii) of Definition 4.1 is verified. For all x ∈ Ω 1 \ Ω ′ 2 , we have

ε |x 3 | 2 + εr 2 √ ρ ≤ V 1 (x) ≤ ( √ ρ + ε) |x 3 | + r .
This verifies (iv) of Definition 4.1. Now take u 1,x = (1, 0) for all x ∈ R 3 . Observe that 4 , for all

x ∈ Ω 1 \ Ω ′ 2 , ∇V 1 (x) • f (x, u 1,x ) ≤ √ ρρ + ε √ ρ 2 -1 .
The choice of ρ and ε verifies (v) of Definition 4.1 for q = 1. Take u 2,x = -x 1 + 4

x 2 x 3 r 2 , -x 2 -4 x 1 x 3 r 2 , for all x ∈ Ω 2 . Then, for all x ∈ Ω 2 , ∇V 2 (x) • f (x, u 2,x ) = -r 2 -4x 2
3 , what verifies (v) of Definition 4.1 for q = 2. As ∂Ω 1 \ Ω ′ 2 is empty, (vi) of Definition 4.1 is verified for q = 1. The unit normal vector n

2 (x) to Ω 2 \ {0} at x ∈ ∂Ω 2 ∩ O is n 2 (x) = 1 √ 4r 2 + 1 (-2x 1 , -2x 2 , sgn(x 3 )).
As

|x 3 | = r 2 and |x| 2 = |x 3 | + |x 3 | 2 for all x ∈ ∂Ω 2 , n 2 (x) • f (x, u 2,x ) = 2r 2 -4|x 3 | √ 4r 2 + 1 ≤ 1 -1 + 4|x| 2 .
This verifies (vi) of Definition 4.1 for q = 2.

Thus, the set Q, the open sets {Ω q } q∈Q and {Ω ′ q } q∈Q , and the family of functions {V q } q∈Q constitutes a PCLF, with finite number of patches, for (20). Since ( 20) is affine with respect to u, the convexity assumption in Theorem 4.4 holds. Thus, with u q : C q → R 2 given by u q (x) = u q,x for all x ∈ C q , the hybrid controller (6) renders A = {0} asymptotically stable on R 3 \ A.

It is also possible to scale V 1 to obtain a strict PCLF. Indeed, finding a continuously differentiable class-K ∞ function γ with γ ′ (s) > 0 for s > 0 such that, for all

x ∈ Ω 1 \ ∂Ω ′ 2 , V 1 (x) ≥ γ |x| 2 2
, and replacing V 1 by 4 Here and in what follows, sgn(x3) is the sign of x3 = 0.

W 1 (x) = γ -1 (V 1 (x)) leads to a strict PCLF. This highly technical step is not necessary to guarantee the existence of a robustly stabilizing hybrid feedback.

Conclusion

This work introduces and studies the concept of a smooth patchy control Lyapunov function (PCLF). The first main result states that, under a mild convexity assumption, the existence of such PCLF implies the existence of a stabilizing hybrid feedback. Moreover, via [START_REF] Prieur | Hybrid feedback control and robust stabilization of nonlinear systems[END_REF], this hybrid controller is robust with respect to measurement noise and external disturbances. The second main result states that a smooth PCLF exists for any asymptotically controllable system. This result relies on the existence, for such system, of a stabilizing patchy feedback, as shown in [START_REF] Ancona | Patchy vector fields and asymptotic stabilization[END_REF]. This second result is also related to the converse Lyapunov theorems of [START_REF] Cai | Smooth Lyapunov functions for hybrid systems. Part I: existence is equivalent to robustness[END_REF][START_REF] Cai | Smooth Lyapunov functions for hybrid systems. Part II: (Pre-)asymptotically stable compact sets[END_REF].

Appendix

Proof.(of Lemma 4.5) Fix q ∈ Q. Let S be the set ∂Ω q \ r>q Ω ′ r ∩ O. Note that S is relatively closed in O, and let N : O → R n be a continuous extension of n q from S (so N is continuous and N (x) = n q (x) for x ∈ S).

For each x ∈ S we have n q (x) • f (x, u q,x ) ≤ -α(ω(x)), and by continuity of N , f , α, and ω, there exists an open neighborhood O x ⊂ O such that

N (x) • f (x, u q,x ) ≤ -α(ω(x))/2 (21) for all x ∈ O x. Let O S = x∈S O x.
Let P S = O \ O S , note that P S is closed. By Urysohn's Lemma, there exists a continuous φ

: O → [0, 1] such that φ(x) = 1 if x ∈ S, φ(x) = 0 if x ∈ P S . Consider the function Φ : O × U → R given by Φ(x, u) = φ(x)N (x) • f (x, u) + φ(x) -1.
Note that Φ is continuous, and for

x ∈ S, Φ(x, u) = n q (x) • f (x, u). For all x ∈ O there exists u ∈ U so that Φ(x, u) ≤ -φ(x)α(ω(x))/2. ( 22 
)
Indeed, if x ∈ O S , and hence x ∈ O x for some x ∈ S, then u can be chosen as u q,x thanks to (21) and the fact that φ(x) ∈ [0, 1]. If x ∈ O S , that is x ∈ P S , then φ(x) = 0 and thus Φ(x, u) = -1 while -φ(x)α(ω(x))/2 = 0, and any choice of u ∈ U satisfies (22). Also note that by assumption, the set of all u ∈ U for which (22) holds is convex for all x ∈ O.

Now consider the inequality

∇V q (x) • f (x, u) ≤ -α(ω(x))/2. ( 23 
)
By assumption, and by continuity of ∇V q , f , α, and ω, for each x ∈ Ω q \ r>q Ω ′ r ∩ O there exists u ∈ U such that (23) holds. Also by assumption, the set of all u ∈ U for which (23) holds is convex. Consider a setvalued mapping Ψ defined on Ω q \ r>q Ω ′ r ∩ O to U with values in U given by Ψ(x) = {u ∈ U | (22), (23) hold}.

(24)

For each x ∈ Ω q \ r>q Ω ′ r ∩ O, Ψ(x) is nonempty and convex. Furthermore, Ψ is continuous (see Example 5.10 in Rockafellar and Wets (1998)), and, in particular, closed-valued. Thus, there exists a continuous selection u q : Ω q \ r>q Ω ′ r ∩ O → U from Ψ (that is, a continuous function with u q (x) ∈ Ψ(x)); see Theorem 5.58 in [START_REF] Rockafellar | Variational Analysis[END_REF]. Such a selection can be realized by choosing u ∈ Ψ(x) of minimal norm; see Example 5.57 in [START_REF] Rockafellar | Variational Analysis[END_REF] or Theorem 3.11 in [START_REF] Freeman | Robust Nonlinear Control Design[END_REF]. This selection meets the requested conditions.

Proof.(of Lemma 5.5) Fix q ∈ Q. By (iii) of Theorem 5.4, any maximal solution x(•) to ( 14) with x(0) ∈ Ω q is such that for some t ≥ 0, x(t) ∈ r>q Ω r . In fact, there exists a compact set K q ⊂ Ω q ∩ r>q Ω r , a time T q > 0 such that any maximal solution x(•) to ( 14) with x(0) ∈ Ω q is such that for some t ∈ [0, T q ], x(t) ∈ K q . Otherwise, there is an increasing sequence of compact sets K n q ⊂ K n+1 q ⊂ Ω q ∩ r>q Ω r so that ∞ n=1 K n+1 = Ω q ∩ r>q Ω r , an increasing sequence of times T n q > T n+1 q + and a sequence of maximal solutions x n (•) to ( 14) with x n (0) ∈ Ω q such that x n (t) ∈ K n q for all t ∈ [0, T n q ]. There exists a subsequence of x n (•)'s that converges uniformly on compact intervals to a solution, say x(•), of ( 14), that is complete, x(0) ∈ Ω q , and x(t) ∈ Ω q ∩ r>q Ω r for all t ∈ [0, ∞). This contradicts (iii).

Let O q be any neighborhood of Ω q on which f (•, u q ) is smooth with the property that any maximal solution x(•) to ( 14) with x(0) ∈ O q is such that x(t) ∈ Ω q for t > 1. (Such O q exists by compactness of Ω q and the inward pointing condition (13).) In the terminology of [START_REF] Cai | Smooth Lyapunov functions for hybrid systems. Part II: (Pre-)asymptotically stable compact sets[END_REF], the set K q is pre-asymptotically stable for the "hybrid" system with state z, state space O q , continuous dynamics ż(t, j) = f (z(t, j), u q ) if z(t, j) ∈ O q \ r>q Ω r and no discrete dynamics. Hence (Cai et al., 2008, Corollary 3.4, Theorem 3.14) yield the existence of a smooth Lyapunov function verifying the pre-asymptotic stability of K q . In particular, such Lyapunov function has the properties requested of W q in the lemma.

Proof.(of Proposition 5.7) Given a PCLF, consider the hybrid feedback (6). Let u q be any functions as in Lemma 4.5. As in the proof of Theorem 4.4, one can argue that the hybrid system (3) with the feedback given by ( 6) has the desired semicontinuity and closedness properties. Also, the arguments leading to (7) and ( 9) are still valid.

We now show stability. If Q is finite, and N is the number of its elements, (10) yields stability. Suppose Q is infinite, and pick ε > 0. Let δ be as in assumption (pa 1 ). Let (x 0 , q 0 ) in R n × Q be such that ω(x 0 ) ≤ γ -1 (δ) and let (x, q) be a solution to (3) with the initial condition (x 0 , q 0 ). From (iv) of Definition 4.1, we have V q(0,j0) (x(0, j 0 )) ≤ δ. Let j 0 = max{j | (0, j) ∈ dom(x, q)}, and let {t n } be the (finite or infinite) nondecreasing sequence of jump times after the j 0 -th one, i.e., let t n be such that (t n , j 0 + n) ∈ dom(x, q) as well as (t n , j 0 + n + 1) ∈ dom(x, q). The sequence {q n } defined by q ′ n = q(t n , j 0 + n) is increasing, while the sequence {x n } defined by x n = x(t n , j 0 + n) satisfies x 0 ∈ Ω q0 , V q0 (x 0 ) ≤ δ, x n+1 ∈ Ω qn ∩ ∂Ω ′ qn+1 , and V qn (x n+1 ) ≤ V qn (x n ). This and Assumption (pa 1 ) implies that V qn (x n ) ≤ ε for all n, and thus, with (7), we get V q(t,j) (x(t, j)) ≤ ε, for all (t, j) ∈ dom(x, q). Now suppose that (x, q) is a maximal solution to (3). As such, it is either complete, or eventually leaves any compact subset of O × Q. If the solution jumps finitely many times, i.e. J := max{j | (t, j) ∈ dom(x, q) for some t} is finite, and is not complete, then x(t, J) must leave any compact subset of O as t → sup{t | (t, j) ∈ dom(x, q)for some j}. Thus ω(x(t, j)) → 0. If J is finite and the solution is complete, then (11) and standard arguments show that ω(x(t, J)) → 0 as t → ∞. Finally, if (x, q) jumps infinitely many times (which implies completeness), then by local finiteness of {Ω ′ q } q∈Q , and the fact that q(t, j) is increasing after the first jump (and so x(t, j) does not return to a set Ω ′ q after leaving it), we must have x(t, j) eventually leaving any compact subset of O. By assumption (pa 2 ), V q(tn,j0+n) (x(t n , j 0 + n)) are bounded (with the sequence of t n 's as in the previous paragraph and by taking x n in (pa 2 ) to be x(t n , j 0 + n)). Thus ω(x(t, j)) remains bounded over (t, j) ∈ dom(x, q) and thus it must be the case that ω(x(t, j)) → 0. Thus, for (3), the set A is (globally) asymptotically stable. Robustness of the said asymptotic stability follows from (Prieur et al., 2007, Theorem 4.3), thanks to the already mentioned closedness and semicontinuity properties of the data, the local finiteness of {C q } q∈Q , the local boundedness of mappings G q in x that is uniform in q, and finally, the fact that C q ∪ D q = O for all q ∈ Q.
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  of the hybrid feedback will not necessarily cover O, but will be an open set O such that O ⊂ O ⊂ O, where O = O \ A.

	Definition 3.1 A hybrid feedback consists of
	• a totally ordered countable set Q

a (nonlinear in general) continuous mapping. The state space for the continuous variable

The double arrow notation is used to distinguish a setvalued mapping from a function.

Here and in what follows, B is the closed unit ball in R n .

Such solutions to hybrid systems are sometimes called instantaneously Zeno.
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