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RIESZ TRANSFORM ON MANIFOLDS WITH QUADRATIC

CURVATURE DECAY

GILLES CARRON

ABSTRACT. We investigate the Lp-boundedness of the Riesz transform

on Riemannian manifolds whose Ricci curvature has quadratic decay.

Two criterions for the Lp-unboundedness of the Riesz transform are

given. We recover known results about manifolds that are Euclidean

or conical at infinity.

RÉSUMÉ: On étudie la continuité de la transformée de Riesz sur les

espaces Lp pour des variétés dont la courbure de Ricci décroit quadra-

tiquement. Nous donnons aussi deux critères géométriques impliquant

la non continuité de la transformée de Riesz. Notre méthode nous per-

met de retrouver les résultats connus pour les variétés euclidiennes ou

coniques à l’infini.

1. INTRODUCTION

Let (Mn, g) be a complete Riemannian manifold with infinite volume

and let ∆ be its associated Laplacian. The Green formula:

∀f ∈ C∞
0 (M) ,

∫

M

|df |2g dvolg = 〈∆f, f〉L2 =

∫

M

∣

∣

∣
∆

1
2 f
∣

∣

∣

2

dvolg ,

implies that the Riesz transform

R := d∆− 1
2 : L2(M) → L2(T ∗M)

is a bounded operator. It is well known [46] that on an Euclidean space,

the Riesz transform has a bounded extension R : Lp(Rn) → Lp(T ∗
R

n) for

every p ∈ (1,+∞). In general, it is of interest to figure out the range of p
for which the Riesz transform extends to a bounded operator R : Lp(M) →
Lp(T ∗M) ([47]). A first remarkable result was obtained by D. Bakry:

Theorem 1.1. ([4]) On a manifold with non negative Ricci curvature, the

Riesz transform is bounded on Lp, for all p ∈ (1,∞).
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2 GILLES CARRON

Recall that if (M, g) is a complete Riemannian manifold, its heat kernel

{ht(x, y)} is the Schwartz kernel of the heat operator e−t∆:

e−t∆f(x) =

∫

M

ht(x, y)f(y)dy.

According to a well known result of P. Li and S-T. Yau ([36]), the non

negativity of the Ricci curvature implies that the heat kernel satisfies the

upper bound:

(DUE) for all t > 0, x, y ∈M : ht(x, y) ≤
C

volB(x,
√
t)
,

and moreover the Bishop-Gromov inequality implies that the manifold is

doubling: there is a constant ϑ such that for any x ∈M and radius R > 0:

(D) volB(x, 2R) ≤ ϑ volB(x,R) .

Another important result is due to T. Coulhon and X-T. Duong:

Theorem 1.2. ([14]) The conditions (DUE) and (D) imply that the Riesz

transform is bounded on Lp for any p ∈ (1, 2].

Manifolds with conical ends satisfy the above conditions (D) and (DUE)

and according to the work of H-Q. Li and C. Guillarmou and A. Hassell, we

have a complete understanding of the boundedness of the Riesz transform

for these Riemannian manifolds.

Theorem 1.3 ([35, 27, 28]). Assume that (Mn, g) has conical ends: there

is a compact set K ⊂ M such that (M \ K, g) is isometric to a truncated

cone:

CR(Σ) :=
(

(R,∞)× Σ, (dr)2 + r2h
)

where (Σ, h) is a compact Riemannian manifold.

• If Σ is not connected, then the Riesz transform is bounded on Lp if

and only if p ∈ (1, n) ∪ {2}.
• If Σ is connected, let β(β + n− 1) with β > 0 be the first non zero

eigenvalue of the Laplacian on (Σ, h) and α = min{β, 1} then the

Riesz transform is bounded on Lp if and only if p(1− α) < n.

In this paper, we study the boundedness of the Riesz transform on Rie-

mannian manifold whose Ricci curvature satisfies a quadratic decay lower

bound, that is to say:

(QD) Ricci ≥ − κ2

r2(x)
g ,

where o ∈ M is a fixed point and r(x) := d(o, x).
Manifolds with conical ends satisfy this condition and our results could

be applied to prove the above Theorem 1.3 (see subsection 7.1). Moreover
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we will also be able to study more general model manifolds (see subsection

7.2):

Theorem 1.4. Let (Mn, g) be a Riemannian manifold and assume that out-

side a compact set (M, g) is isometric to the warped product

([1,∞)× Σ, (dr)2 + r2γh) ,

where (Σ, h) is a compact manifold with non negative Ricci curvature and

γ ∈ (0, 1).

• If Σ is connected then the Riesz transform is bounded on Lp for

every p ∈ (1,+∞).
• If Σ is not connected then the Riesz transform is bounded on Lp if

and only if 1 < p ≤ 2 or 1 < p < (n− 1)γ + 1.

Our analysis relies on recent results of A. Grigor’yan and L. Saloff-Coste

[26] and V. Minerbe [40] and we will also use some ideas of P. Auscher, T.

Coulhon, X-T. Duong and S. Hofmann [3, 2].

We introduce now two conditions:

• the (VC) (volume comparison) condition: for some constant C and

for any R ≥ 1 and any x ∈ ∂B(o, R):

(VC) volB(o, R) ≤ C volB (x,R/2) ,

• the (RCE) (Relatively Connected to an End) condition: there is a

constant θ ∈ (0, 1) such that for any R ≥ 1, any x ∈ ∂B(o, R)
there is a continuous path c : [0, 1] → B(o, R) \ B(o, θR) and a

geodesic ray γ : [0,+∞) → M \B(o, R) satisfying:

(1) c(0) = x, c(1) = γ(0),
(2) the length of c is not too long: L(c) ≤ θ−1R ,

The (RCE) condition is an adaption for manifold with several ends

of the Relatively Connected Annuli (RCA) condition introduced by

A. Grigor’yan and L. Saloff-Coste in [26].

According to [26, 40], under the conditions (QD), (VC) and (RCE), we have

a good understanding of the behavior of the heat kernel {ht(x, y)} indeed

in this case (M, g) satisfies the doubling condition (D) and the (DUE) esti-

mates (see the discussion in subsection 2.5). Our first result is the following

Theorem A. Assume that (Mn, g) is a complete Riemannian manifold sat-

isfying the conditions (QD), (VC) and (RCE). If for some positive constants

c and ν > 2, balls anchored at o satisfy the reverse doubling hypothesis:

(RDν) ∀R ≥ r ≥ 1 : c
( r

R

)ν

volB(o, r) ≤ volB(o, R) ,

then the Riesz transform is bounded on Lp for any p ∈ (1, ν).
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According to a beautiful recent result of B. Devyver ([21, Theorem 5.6])

our hypothesis on the reverse doubling is equivalent to an isoperimetric

inequality for the capacity of anchored balls. Recall that if O ⊂ M is

a bounded open subset of a complete Riemannian manifold, then its p0-
capacity is defined by:

capp0 O := inf

{
∫

M

|dϕ|p0 dvolg , ϕ ∈ C∞
0 (M) and ϕ ≥ 1 on O

}

.

And (M, g) is said to be p0-hyperbolic if the p0-capacity of some/any bounded

open subsets is positive. A non-p0-hyperbolic manifold is called p0-parabolic.

In fact a Riemannian manifold (M, g) is p0-parabolic if and only if we can

find a sequence of smooth functions with compact support (χk) such that:






0 ≤ χk ≤ 1 ,
limk→∞ ‖dχk‖Lp0 = 0 and
χk → 1, uniformly on compact set.

When p0 = 2, a 2-hyperbolic manifold is also said to be non-parabolic;

moreover a 2-hyperbolic manifold is a manifold carrying a positive Green

kernel. A corollary of Theorem A and of B. Devyver’s result is the follow-

ing:

Corollary B. Assume that (Mn, g) is a complete Riemannian manifold sat-

isfying the conditions (QD), (VC) and (RCE). If (M, g) is p0-hyperbolic and

if the p0-capacity of anchored balls satisfy:

volB(o, R)

Rp0
≤ C capp0(B(o, R)) ,

then the Riesz transform is bounded on Lp for any p ∈ (1, p0).

The proof of Theorem A is based on estimates of the Schwartz kernel of

the Riesz transform. Outside the diagonal of M ×M , this kernel is smooth

and given by:

R(x, y) =

∫ ∞

0

∇xht(x, y)
dt√
π t

.

Following the theory of pseudo-differential operators on open manifolds

([39]), which we already used in [8], we separate our analysis in two parts:

the part closer to the diagonal {(d(x, y) ≤ κr(x)} where we can use the

result of [3] and the off diagonal part, where we get the estimate:

|R(x, y)| ≤ d(x, y)

r(x)

C

volB(o, d(x, y))
.

When (M, g) is a manifold with Euclidean ends, theses estimates are sharp

when one compares to the results of [8].
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We will improve an earlier result of [8] and show that if M has two ends

then there are very general restrictions on the range of p where the Riesz

transform is Lp bounded.

Theorem C. Let p > 2 and let (M, g) be a p-parabolic manifold that is

2-hyperbolic. If the Riesz transform is bounded on Lp and on L
p

p−1 then M
has only one end.

Remark that in this Theorem C, no assumptions on the curvature or on

the heat kernel is done.

For q ∈ (1, 2], the Theorem 1.2 provides very general conditions for the

Lq boundedness of the Riesz transform hence, the above criterion is mainly

a criterion for the unboundedness of the Riesz transform on Lp when p >
2. Moreover, this criterion implies that the gluing result of B. Devyver is

optimal ([20]): Assume M1,M2 are two Riemannian manifolds that satisfy

a Sobolev inequality and a lower bound on the Ricci curvature. If on both

M1 and M2, the Riesz transform is bounded on Lp and if the connected

sum M1#M2 is p-hyperbolic then the Riesz transform is Lp-bounded on

M1#M2.

We recall now several classical notations:

• if B ⊂M is a ball we note r(B) its radius and for θ > 0, θB is the

ball with the same center and radius θr(B).
• If O ⊂M and f ∈ L1(O) we note fO the mean of f on O:

fO =
1

volO

∫

O

f.

We recall the following condition about the oscillation of harmonic func-

tions:

Definition 1.5. Let α ∈ (0, 1]. A complete Riemannian manifold (Mn, g) is

said to satisfy the scale invariant α-Hölder Elliptic (HEα) estimates if there

is a constant C such that for any ball B ⊂M and any harmonic function h
defined on 3B, we have for all x, y ∈ B:

|h(x)− h(y)| ≤ C

(

d(x, y)

r(B)

)α

sup
z∈2B

|h(z)| .

The next result improves Theorem A in the case where the manifold M
has only one end:

Theorem D. Let (Mn, g) be a complete Riemannian manifold with only

one end and assume (Mn, g) satisfies the conditions (QD), (VC) and (RCE)

and the reverse doubling hypothesis (RDν) for some exponent ν > 0.
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If (M, g) satisfies the scale invariantα-Hölder Elliptic estimates, then the

Riesz transform is bounded on Lp for any p such that p > 1 and (1−α)p <
ν.

Let’s explain why this result improves the Theorem A when M has only

one end. In the setting of the Theorem D, the manifold (M, g) satisfies

the (RCA) condition introduced by A. Grigor’yan and L. Saloff-Coste and

we get a scale invariant Poincaré inequality: for any ball B ⊂ M and any

function f ∈ C∞(2B) we have

‖f − fB‖L2(B) ≤ Cr(B)‖df‖L2(2B).

As (M, g) satisfies the scale invariant Poincaré inequalities and the dou-

bling condition (D), the parabolic/elliptic Harnack inequalities hold ([23,

42]),in particular there is some ε ∈ (0, 1] such that the property (HEε) holds.

Hence Theorem D yields that the Riesz transform is bounded on Lp as soon

as (1− ε)p < ν.
Our proof is based on a result of P. Auscher and T. Coulhon: assume that

(M, g) is a Riemannian manifold satisfying the doubling condition and the

scale invariant L1-Poincaré inequality. If there is some r > p such that a

Lr-reverse Hölder inequality holds for the gradient of harmonic functions,

then the Riesz transform is bounded on Lp ([2], see also [44]). Although

it was not noticed by the authors, this result and the Cheng-Yau’s gradient

estimate ([11]) provided another proof of the Theorem 1.1 of D. Bakry. It

should be noted (see lemma 6.8) that if a manifold (M, g) carries a non

constant sublinear harmonic function h with

h(x) = O
(

rβ(x)
)

,

and if α > β then (M, g) can not satisfy the α-Hölder Elliptic estimates.

We will show that the existence of such a sublinear harmonic function

yields some restrictions on the range of p where the Riesz transform is Lp-

bounded:

Proposition E. Let (Mn, g) be a complete Riemannian manifold satisfy-

ing the conditions (QD), (VC), (RCE) and the reverse doubling hypothesis

(RDν) for some exponent ν > 0. Assume moreover that there are some pos-

itive constants C and µ, such that the volume of anchored geodesic balls

satisfy:

∀R ≥ 1 : volB(o, R) ≤ CRµ .

If (M, g) carries a non constant sublinear harmonic function h:

h(x) = O
(

rβ(x)
)

,

then for p ≥ µ/(1−β) and p > max
{

ν
ν−1

, 2
}

, the Riesz transform can not

be bounded on Lp.
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In [7], we have obtained as a corollary of Theorem D:

Corollary F. Let (Mn, g) be a complete Riemannian manifold that satisfies

the curvature quadratic decay (QD) condition. If the diameter of geodesic

sphere grows slowly

diam ∂B(o, R) = sup
x,y∈∂B(o,R)

d(x, y) = o(R)

then the Riesz transform is bounded on Lp for every p ∈ (1,+∞).

In the next section, the condition (RCE) will be introduced and compared

to the (RCA) condition of [26], we will also explain how the analysis of

[26, 40] yields the heat kernel estimate (DUE). In the third section, we

will explain how the Li and Yau’s gradient estimates for solution of the

heat equation imply good estimates for the Schwartz kernel of the Riesz

transform. The fourth section is devoted to the proof of Theorem A and

the fifth section to the proof of Theorem D. Negative results about the

boundedness of the Riesz transform (Theorem C and Proposition E) are

proved in section 6. The theorems 1.3 and 1.4 will be proved in section

7, we also include examples of manifolds with infinite topological type.

Eventually we finish by some perspectives.

Acknowledgements. It is a pleasure to thank F. Bernicot, T. Coulhon, B.

Devyver, H-J. Hein and E-M. Ouhabaz for useful discussions about my

project. I also thank the referees whose valuable suggestions led to a sub-

stantial improvement of the paper. I was partially supported by the ANR

grant: ANR-12-BS01-0004: Geometry and Topology of Open manifolds.

2. ANALYSIS ON MANIFOLDS WITH A QUADRATIC DECAY OF THE

RICCI CURVATURE

2.1. Setting: In this section, we consider a complete Riemannian manifold

(Mn, g) such that for a fixed point o ∈M , the Ricci curvature satisfies:

(QD) Ricci ≥ − κ2

r2(x)
g ,

where we have defined r(x) = d(o, x). We are going to review geomet-

ric conditions that insure that (M, g) satisfies the so-called relative Faber-

Krahn inequality: there are positive constants C, µ such that for any x ∈M
and R > 0 and any open domain Ω ⊂ B(x,R):

λD1 (Ω) ≥
C

R2

(

vol Ω

volB(x,R)

)− 2
µ

.
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We have noted λD1 (Ω) the lowest eigenvalue of the Dirichlet Laplacian on

Ω:

λD1 (Ω) = inf
ϕ∈C∞

0 (Ω)

∫

Ω
|dϕ|2

∫

Ω
|ϕ|2 .

Our discussion below is based on the results of A. Grigor’yan and L. Saloff-

Coste [26] and V. Minerbe [40].

It is well known [24] that the relative Faber-Krahn inequality are equiva-

lent to the conjunction of the following two properties:

• (M, g) is doubling: there is a constant ϑ such that for any x ∈ M
and radius R > 0:

volB(x, 2R) ≤ ϑ volB(x,R).

• The heat kernel ht(x, y) satisfies the upper bound: for all t > 0 and

all x, y ∈M ,

ht(x, y) ≤
C

volB(x,
√
t)
.

According to [24, Proposition 5.2], the above relative Faber-Krahn inequal-

ity implies (for the same exponent µ) that for some constant C > 0:

for all x ∈M, 0 < r < R : volB(x,R) ≤ C

(

R

r

)µ

volB(x, r).

2.2. Remote balls. A ball B(x, ρ) ⊂M is called remote if its center x and

radius ρ satisfy

ρ ≤ r(x)

2
.

Note that on the remote ball B(x, r(x)/2) the Ricci curvature satisfies:

Riccig ≥ − 4κ2

r2(x)
gx ,

hence the Bishop-Gromov comparison theorem implies that all remote balls

satisfy the doubling condition: If B is a remote ball and if θ ∈ (0, 1) then

(1) θn vol(B) ≤ C(n, κ) vol(θB) .

Similarly, the condition (QD) implies that remote balls satisfy the Poincaré

inequality ([5, inequality (4.5)]) and a relative Faber-Krahn inequality [23,

Theorem 2] or [41, Theorem 3.1]:

Lemma 2.1. If B ⊂M is a remote ball, then for all ϕ ∈ C1(B):

‖ϕ− ϕB‖2L1(B) ≤ B(n, κ) r(B) ‖dϕ‖L1(B) ,
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and for all domain Ω ⊂ B

λD1 (Ω) ≥
C(n, κ)

r(B)2

(

vol Ω

volB

)− 2
n

.

A ball centered at o will be called anchored.

2.3. The doubling condition. According to [26, Proposition 4.7], this con-

dition is insured by the doubling of remote balls (1) and by the volume com-

parison (VC) assumption: there is a constant C such that for any x ∈M :

(VC) volB(o, r(x)) ≤ C volB (x, r(x)/2)

We recall that the doubling condition implies that the volume of balls

varies slowly with the center of balls: for any γ ≥ 1 there is a constant Cγ

such that if d(x, y) ≤ γR and γ−1R ≤ r ≤ γR then :

C−1
γ ≤ volB(x,R)

volB(y, r)
≤ Cγ .

In particular if R ≥ r(x)/γ then

(2) C−1
γ volB(o, R) ≤ volB(x,R) ≤ Cγ volB(o, R).

Finally it is well known (see [26, Lemma 2.10]) that for a connected,

non-compact manifold, the doubling condition implies a reverse doubling

condition: there is a constant δ > 0, depending only on the doubling con-

stant ϑ such that for all x ∈M and all R > r

δ

(

R

r

)δ

≤ volB(x,R)

volB(x, r)
.

2.4. Geometry of annuli.

2.4.1. Number of ends. We remark that the doubling condition implies that

(M, g) has a finite of ends: i.e. there is an integer N such that for any

R, M \ B(o, R) has at most N unbounded connected components. Indeed

if O ⊂ M \ B(o, R) is an unbounded connected component, there is a

point xO ∈ O ∩ ∂B(o, 2R), we have the inclusions B(xO, R) ⊂ O and

B(xO, R) ⊂ B(o, 3R), hence we get
∑

O

volB(xO, R) ≤ volB(o, 3R) .

However using the doubling condition we get:

volB(o, 3R) ≤ volB(xO, 5R) ≤ ϑ
3 volB(xO, R) .

Hence M \B(o, R) has at most ϑ3 unbounded connected components.

A slight variation of this argument shows that for any λ > 1, the annulus

Aλ,R = B(o, λR)\B(o, R) has at mostN(λ, ϑ) connected components that
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intersects ∂B(o, λR), however these connected components do not neces-

sary intersect an unbounded connected component of M \B(o, R).

2.4.2. The (RCE) condition. In [26], A. Grigor’yan and L. Saloff-Coste

have introduced the Relatively Connected Annuli (RCA) condition:

Definition 2.2. A manifold (M, g) is said to satisfy to (RCA) condition if

there is a point o ∈ M and a constant θ ∈ (0, 1) such that for any R > 0
and any points x, y ∈ ∂B(o, R) there is a C1 path c : [0, 1] →M satisfying:

• c(0) = x, c(1) = y,

• L(c) ≤ r(x)/θ,
• c([0, 1]) ⊂ B(o, θ−1R) \B(o, θR).

It is easy to show that the (RCA) condition implies that M has only one

end: i.e. for any compact set K ⊂ M , M \ K has only one unbounded

connected component. The (RCE) condition is an adaptation of the (RCA)

condition for manifolds with several ends.

Definition 2.3. We say that a complete Riemannian manifold (M, g) with

a finite number of ends satisfies the Relatively Connected to an End (RCE)

condition if there is a constant θ ∈ (0, 1) such that for any point x with

r(x) ≥ 1 there is a continuous path c : [0, 1] →M satisfying:

• c(0) = x,

• the length of c is bounded by L(c) ≤ r(x)/θ,
• c([0, 1]) ⊂ B(o, θ−1r(x)) \B(o, θr(x)),
• There is a geodesic ray γ : [1,+∞) →M \B(o, r(x)) with γ(0) =
c(1)

The (RCE) condition implies that any point can be connected to an end

by a path that stays at bounded distance away from the origin. It is easy

to see that if M has only one end, the (RCE) condition is just the (RCA)

condition of A. Grigor’yan and L. Saloff-Coste.

IfM has a finite number of ends, then there is a finite number of geodesic

rays c1, . . . , cr : [0,+∞) → M with ci(0) = o such that for every R >> 1,

M \ B(o, R) has exactly r-unbounded connected component O1, . . . ,Or

and for all i:

ci ((R,+∞)) ⊂ Oi .

In this setting, we could replace the last condition in the definition 2.3 by:

• there is some i ∈ {1, . . . , r} such that c(1) = ci(r(x)).

2.5. Relative Faber-Krahn inequality. The results of A. Grigor’yan and

L. Saloff-Coste and of V. Minerbe imply:
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Theorem 2.4. Assume that (Mn, g) is a complete Riemannian manifold

satisfying the conditions (QD), (VC) and (RCE). Then (M, g) satisfies the

relative Faber-Krahn inequality: for some µ > 0 and C > 0 and for any

ball B ⊂M and any domain Ω ⊂ B

λD1 (Ω) ≥
C

r(B)2

(

vol Ω

volB

)− 2
µ

.

When M has only one end, then (M, g) satisfies the scale invariant L1

Poincaré inequality: for any ball B and any function f ∈ C∞(2B) then

‖f − fB‖L1(B) ≤ Cr(B) ‖df‖L1(2B) .

The second assertion is one of the main result of [26, thm 5.2]–a priori the

article deals with the scale invariantL2 Poincaré inequality but the argument

carries over the case of any Lp Poincaré inequality. Strito senso, the first

assertion can not be found in the paper of V. Minerbe; however a quick

glimpse on the argumentation shows that the limitation on the exponent

ν > 1 in the reverse doubling condition,

(RDν) ∀R > r : volB(o, R) ≥ ε

(

R

r

)ν

volB(o, r)

is made only to insure the (RCA) condition. Under the assumptions of the

Theorem 2.4, the proof of [40, Theorem 2.19] implies that for any p ≥ n
with p > 2 there is a constant C such that the weighted Sobolev inequality

holds

∀f ∈ C∞
0 (M) :

(
∫

M

|f(x)|
2p
p−2dx

)1− 2
p

≤
∫

M

Cr(x)2

(volB(o, r(x)))
2
p

|df |2(x)dx.

Let’s explained how this inequality implies the relative Faber-Krahn in-

equality for anchored balls i.e. balls centered at o: the doubling condition

yields a constant µ such that

∀R > r : volB(o, R) ≤ C

(

R

r

)µ

volB(o, r) .

Remark that if this inequality is true for some µ, then it holds for any µ′ ≥ µ.

Moreover looking at the limit r → 0, we see that µ ≥ n and in the following

we will assume that µ > 2.
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In particular using the above Sobolev inequality for p = µ, we get that

for any function f ∈ C∞
0 (B(o, R)):

(
∫

B(o,R)

|f(x)|
2µ
µ−2dx

)1− 2
µ

≤ C

∫

B(o,R)

r(x)2

(volB(o, r(x)))
2
µ

|df |2(x)dx

≤ C
R2

(volB(o, R))
2
µ

∫

B(o,R)

|df |2(x)dx .

Then with the Hölder inequality, we get for any domain Ω ⊂ B(o, R):

1 ≤ C
R2

(volB(o, R))
2
µ

(vol Ω))
2
µλD1 (Ω) .

It is now easy to show that the relative Faber-Krahn inequality holds for

all balls. Indeed it remains to show the relative Faber-Krahn inequality for

balls B(x, ρ) with ρ ≥ r(x)/2. But such a ball satisfies:

B(x, ρ) ⊂ B(o, ρ+ r(x)) ⊂ B(o, 3ρ) and B(o, 3ρ) ⊂ B(x, 5ρ) .

Hence if Ω ⊂ B(x, ρ) then

λD1 (Ω) ≥
C

(3ρ)2

(

volB(o, 3ρ)

vol Ω

)
2
µ

≥ C

(3ρ)2

(

ϑ
−2 volB(o, 5ρ)

vol Ω

)
2
µ

≥ C

(3ρ)2

(

ϑ
−2 volB(x, 3ρ)

vol Ω

)
2
µ

≥ C

(3ρ)2

(

ϑ
−4 volB(x, ρ)

vol Ω

)
2
µ

.

In fact a remarkable result of V. Minerbe [40, Prop. 2.8] (see also [31,

Proposition 4.5] for an earlier result) shows that the (RCA) condition is in-

sured by an anchored Poincaré inequality and a reverse doubling condition:

Theorem 2.5. Assume that (M, g) is a complete Riemannian manifold that

is doubling and such that balls B = B(o, R) centered at o satisfy the

Poincaré inequalities:

∀f ∈ C∞(2B) ; ‖f − fB‖Lp(B) ≤ CR‖df‖Lp(2B) .

If for positive constants C and ν > p, we have the reverse doubling condi-

tion:

∀R > r : volB(o, R) ≥ C

(

R

r

)ν

volB(o, r)

then (M, g) satisfies the (RCA) condition.
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3. ESTIMATES ON THE RIESZ KERNEL

3.1. Assumptions. In this section, we assume that (Mn, g) is a complete

Riemannian manifold with a based point o ∈ M satisfying the following

conditions:

i) A quadratic decay on the negative part of the Ricci curvature

Riccig ≥ − κ2

r2(x)
g.

ii) There are positive constants µ andC, such that the relative Faber-Krahn

inequality holds: for any ball B ⊂M and any domain Ω ⊂ B

λD1 (Ω) ≥
C

r(B)2

(

vol Ω

volB

)− 2
µ

.

iii) For some positive constants c and ν > 2, we have the reverse doubling

condition (RDν) for anchored balls:

∀R > r : c

(

R

r

)ν

volB(o, r) ≤ volB(o, R).

Remark 3.1. The limitation ν > 2 is not essential, we can handle the case

where ν > 1 as well but in the case ν ∈ (1, 2], the estimate on the Riesz

kernel is more complicated and the conclusion of the main theorem are

interesting only when ν > 2. Indeed the relative Faber-Krahn hypothesis

implies that if p ∈ (1, 2], then the Riesz transform is bounded on all Lp

(Theorem 1.2 or [14]).

3.2. Li and Yau’s inequality. When B ⊂ M is a remote ball, then on
3
2
B the Ricci curvature is bounded from below by −16κ2r(B)−2, so that

according to P. Li and S-T. Yau’s Harnack inequality [36, Theorem 2.1]:

there is a constant c(n, κ) such that for any positive solution of the heat

equation u : [0, 2T ]× 3
2
B → R

∗
+, we have on [T, 2T ]×B:

(3)
|∇u|2
u2

− 2
1

u

∂u

∂t
≤ c(n, κ)

(

1

T
+

1

r2(B)

)

.

3.3. Spatial derivative of the heat kernel. According to A. Grigor’yan

[24, 25], in our setting,the heat kernel satisfies the following Gaussian upper

bound: for all t > 0 and x, y ∈M , we have

ht(x, y) ≤
C

volB(x,
√
t)
e−

d2(x,y)
ct ;

∣

∣

∣

∣

∂

∂t
ht(x, y)

∣

∣

∣

∣

≤ C√
t volB(x,

√
t)
e−

d2(x,y)
ct .
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Let t > 0 and x, y ∈ M ; on the parabolic ball [0, t/2] × B(x,
√
t), the

function u(s, z) := h t
2
+s(z, y) satisfies:

(4) u(s, z) +
√
t

∣

∣

∣

∣

∂

∂s
u(s, z)

∣

∣

∣

∣

≤ C

volB(x,
√
t)
e−

d2(x,y)
ct .

Introduce now ρ = min
{√

t, r(x)/2
}

, the ballB(o, ρ) is remote and Li and

Yau’s above estimate (3) yields the following:

|∇u|2(t/2, x) ≤ 2u(t/2, x)
∂u

∂t
(t/2, x) + C

(

1

t
+

1

ρ2

)

u2(t/2, x)

and with the estimate (4), we get:

|∇xht(x, y)| ≤
(

1√
t
+

1

r(x)

)

C

volB(x,
√
t)
e−

d2(x,y)
ct .

3.4. Application to the Schwartz kernel of the Riesz transform. Recall

that the Riesz transform is the operator

R = d∆− 1
2 : L2(M) → L2(T ∗M),

its Schwartz kernel is smooth on M × M \ Diag: if x 6= y ∈ M then

R(x, y) ∈ T ∗
xM is given by:

R(x, y) =

∫ +∞

0

∇xht(x, y)
dt√
π t

.

Let κ ≥ 4, we are going to estimate |R(x, y)| in three different regimes:

i) First regime: d(x, y) ≥ 1
κ
r(x) and 1

κ
r(x) ≤ r(y) ≤ κr(x),

ii) The short to long range regime: r(x) ≥ κr(y),
iii) The long to short range regime: r(y) ≥ κr(x).

3.4.1. First and second regime. In these regimes, we have r(x) ≃ d(x, y)
hence:

|R(x, y)| ≤ C

[

∫ r2(x)

0

e−
r2(x)
ct

volB(x,
√
t)

dt

t
+

∫ +∞

r2(x)

e−
r2(x)
ct

r(x) volB(x,
√
t)

dt√
t

]

.

Using the doubling assumption, the first integral is bounded by

C
r(x)µ

volB(x, r(x))

∫ r2(x)

0

e−
r2(x)
ct

t
µ
2
+1

dt ≤ C

volB(x, r(x))
≤ C

volB(o, r(x))
.

For the second integral, we use the fact that if
√
t ≥ r(x) then

volB(x,
√
t ) ≥ C volB(o,

√
t ) ≥ C

(
√
t

r(x)

)ν

volB(o, r(x) )
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and because ν > 1, we obtain

∫ +∞

r2(x)

e−
r2(x)
ct

r(x) volB(x,
√
t)

dt√
t
≤ C

rν−1(x)

volB(x, r(x))

∫ +∞

r2(x)

e−
r2(x)
ct

t
ν+1
2

dt

≤ C

volB(o, r(x))
.

3.4.2. The long to short range regime. In this regime we have r(y) ≃
d(x, y) hence we have

|R(x, y)| ≤C
∫ r2(x)

0

e−
r2(y)
ct

volB(x,
√
t)

dt

t

+ C

∫ r2(y)

r2(x)

e−
r2(y)
ct

r(x) volB(x,
√
t)

dt√
t
+ C

∫ +∞

r2(y)

e−
r2(y)
ct

r(x) volB(x,
√
t)

dt√
t
,

Using the same techniques, we get

∫ r2(x)

0

e−
r2(y)
ct

volB(x,
√
t)

dt

t
≤ C

r(y)µ

volB(x, r(y))

∫ r2(x)

0

e−
r2(y)
ct

t
µ

2
+1

dt ≤ C

volB(o, r(y))

and
∫ r2(y)

r2(x)

e−
r2(y)
ct

r(x) volB(x,
√
t)

dt√
t
≤ r(y)

r(x)

C

volB(o, r(y))
.

Similarly, the reverse doubling hypothesis (RDν) and the fact that ν > 2
yield:

∫ +∞

r2(y)

e−
r2(y)
ct

r(x) volB(x,
√
t)

dt√
t
≤ r(y)

r(x)

C

volB(o, r(y))
.

As a conclusion, we have obtained:

Lemma 3.2. There is a positive constant C such that:

• if x, y ∈ M satisfy d(x, y) ≥ 1
κ
r(x) and 1

κ
r(x) ≤ r(y) ≤ κr(x) or

r(x) ≥ κr(y) then

|R(x, y)| ≤ C

volB(o, r(x))
,

• if x, y ∈M satisfy r(y) ≥ κr(x) then

|R(x, y)| ≤ r(y)

r(x)

C

volB(o, r(y))
.
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4. BOUNDEDNESS OF THE RIESZ TRANSFORM

4.1. In this section, the Theorem A will be proved, hence we consider a

complete Riemannian manifold (M, g) satisfying the hypotheses of this the-

orem.

When f ∈ C∞
0 (M), we decompose R(f) in three parts:

R(f) = Rd(f) +R0(f) +R1(f) ,

where the Schwartz kernels of R0 and R1 are locally bounded and given by

the restriction of the Schwartz kernel of R to the sets

Ω0 := {(x, y) ∈M ×M , d(x, y) ≥ κ
−1r(x) andκr(x) ≥ r(y)} ,

Ω1 := {(x, y) ∈M ×M , κr(x) ≤ r(y)} .
That is to say for α ∈ C∞

0 (T ∗M) and f ∈ C∞
0 (M):

〈α,R0(f)〉L2 =

∫

Ω0

〈α(x), R(x, y)〉gf(y)dydx.

and similarly for R1. Note that if κr(x) ≤ r(y) then, recalling κ ≥ 4, we

get:

d(x, y) ≥ r(y)− r(x) ≥ (κ− 1)r(x) ≥ κ
−1r(x) .

Hence on Ω1 we are far away from the diagonal. The Schwartz kernel of the

Riesz transform has a singularity along the diagonal ofM×M andRd is the

restriction the kernel of the Riesz transform to the following neighborhood

of the diagonal:

V(Diag) := {(x, y) ∈M ×M , d(x, y) ≤ κ
−1r(x)} .

4.2. The short to long range part. This part is now relatively easy to han-

dle:

Proposition 4.1. The operator R0 is bounded L∞(M) → L∞(T ∗M) and

L1 → L1
w: that is to say for any f ∈ L1 and any λ > 0, we have

vol{x ∈M , |R0(f)(x)| > λ} ≤ C

λ
‖f‖L1 .

In particular by interpolation,R0 : L
p(M) → Lp(T ∗M) is bounded for any

p ∈ (1,+∞).

Proof. As a matter of fact, our previous analysis (Lemma 3.2) implies that

if f ∈ C∞
0 (M) then

|R0(f)(x)| ≤
C

volB(o, r(x))

∫

B(o,κr(x))

|f(y)|dy ,
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hence the boundedness L∞(M) → L∞(T ∗M) is a direct consequence of

the doubling property. Moreover this also implies that

{x ∈M , |R0(f)(x)| > λ} ⊂ B(o, ρ)

where ρ satisfies

volB(o, ρ) <
C

λ
‖f‖L1

and the boundedness L1 → L1
w follows immediately. �

4.3. The diagonal part. In this part, we are going to use an idea from [14,

section 4] and a result from [3, section 4] in order to prove the following:

Proposition 4.2. The operatorRd is bounded on Lp for every p ∈ (2,+∞).

Proof of Proposition 4.2. We build a cover on M by remote balls. By

induction on N ∈ N:

• B0,1 = B(o, 1).
• We coverB(o, 2N)\∪i<N,jBi,j by a collection of ballsBN,1, . . . , BN,kN

of radius 2N−10 that are centered on B(o, 2N) \ B(o, 2N−1) and

such that the balls 1
2
BN,1, . . . ,

1
2
BN,kN are disjoint and included in

B(o, 2N) \ ∪i<N,jBi,j .

At each stage N , the number of balls is bounded independently of N :

kN ≤ m(ϑ).

We obtain in this way a subset A ⊂ N
2 and a cover

M = ∪α∈ABα

by balls Bα = B(xα, rα). Note that we have by construction: 2−10r(xα) ≤
rα ≤ 2−9r(xα). Moreover this cover has a finite multiplicity: there is a

constant p such that for any x ∈M :

card{α ∈ A, x ∈ Bα} ≤ p.

Let χα be a partition of unity subordinate to this covering; we can assume

|dχα| ≤ C/rα. If κ is chosen large enough (κ ≥ 210), then we have

|Rd(f)(x)| ≤
∑

α

| 14Bα
(x)R(χαf)(x)|.

Let Rα = 14Bα
Rχα, we decompose

Rα = Rα,0 +Rα,1 ,

where

Rα,0(f)(x) = 14Bα
(x)

∫ r2α

0

∇xe
−τ∆(χαf)(x)

dτ√
πτ
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and

Rα,1(f)(x) = 14Bα
(x)

∫ ∞

r2α

∇xe
−τ∆(χαf)(x)

dτ√
πτ

.

The covering M = ∪α∈ABα has finite multiplicity and (M, g) is doubling,

hence we only need to prove that there is a uniform constant C such that for

all α

‖Rα,0‖Lp→Lp ≤ C , ‖Rα,1‖Lp→Lp ≤ C.

Lemma 4.3. There is a constant C independent of α such that:

‖Rα,0‖Lp→Lp ≤ C.

Proof. We will use the arguments of [3, subsection 3.2] and [3, section 4]

together with the following estimates on the gradient of the heat kernel: for

all x, y ∈M and all t ∈ (0, Ar2(x))

(5) |∇xht(x, y)| ≤
C√

t volB(x,
√
t)
e−

d2(x,y)
ct .

We will apply [3, Theorem 2.4]. The setting is the following:

• (M, g) is a complete Riemannian manifold,

• T : L2(M) → L2(M) is a bounded sublinear operator,

• {Ar}r>0 is a family of bounded operator on L2:

sup
r>0

‖Ar‖L2→L2 <∞.

• U ⊂ Ω ⊂ M are two open subsets such that Ω satisfies the relative

doubling condition: there is a constant ϑ̄ such that for all balls B ⊂
M :

vol(2B ∩ Ω) ≤ ϑ̄ vol(B ∩ Ω).

• S : Lp(U) → Lp(Ω) is a bounded operator for all p > 2.

The assumption are

i) For all p > 2, the sublinear operator M# defined by

M#(f)(x) = sup
B,B∩Ω∋x

1

vol(Ω ∩ B)

∫

B∩Ω

|T (Id−Ar(B))(f)|2

is bounded on Lp.

ii) For all f ∈ Lp(U) and all balls B ⊂M and x, y ∈ Ω ∩ B
|TAr(B)(f)|2(y) ≤ CMΩ

(

|T (f)|2 + |S(f)|2
)

(x).

Where we have noted MΩ the maximal operator relative to Ω:

MΩ(f)(x) = sup
B,B∩Ω∋x

1

vol(Ω ∩ B)

∫

B∩Ω

|f | .
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The conclusion is that the operator

T : Lp(U) → Lp(Ω)

is bounded and there is an upper bound on operator norm of T : Lp → Lp

that depends only on the constants involved in the setting and the hypothe-

sis.

The following result can be deduced from [22, Proposition 2.4] or [14, p

1159]:

Lemma 4.4. If (M, g) is doubling then
∫

M\B(x,r)

e−
d2(x,y)

ct |f(y)|dy ≤ C volB(x,
√
t) e−

r2

2ct M(f)(x) ,

where

M(f)(x) = sup
B,B∋x

1

vol(B)

∫

B

|f |

is the maximal operator associated to (M, g).

The next lemma is folklore and a proof can be found in [9, Proposition

4.14] or [34, lemma 2.3.1]:

Lemma 4.5. I If B(x, r) ⊂ M is a remote ball and if M satisfies the (QD)

condition, then for all f ∈ C1(B(x, r)) :

∣

∣f(x)− fB(x,r)

∣

∣ ≤ C r sup
0<s≤r

1

vol(B(x, s))

∫

B(x,s)

|df |.

Using the lemma 4.4, the gradient estimate (5) and the argumentation of

[3, subsection 3.2] we easily get:

M#(f)(x) ≤ C
√

MΩ(|f |2)(x) .
Moreover if f ∈ C1

0(M), if B is a remote ball of radius r and if x, y ∈ B
then the lemma 4.5, yields

(6)

∣

∣

∣
∇e−r2∆f

∣

∣

∣
(y) ≤ C sup

0<s≤r

1

vol(B(x, s))

∫

B(x,s)

|df |+ C

r
M(|f |)(x).

We will use [3, Theorem 2.4] with U = Bα, Ω = 4Bα, Ar = e−r2∆ and

T (f)(x) =

∣

∣

∣

∣

∣

∫ r2α

0

(

de−τ∆f
)

(x)
dτ√
πτ

∣

∣

∣

∣

∣

.

Let v ∈ Lp(U), if we apply the last inequality (6) to

f = S(v) =
∫ r2α

0

e−τ∆v
dτ√
πτ

,
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then we get that for all balls B and all x, y ∈ B ∩ Ω:

|TAr(B)v|(y) ≤ C sup
0<s≤rα

1

vol(B(x, s))

∫

B(x,s)

|T (v)|+ C

rα
M(S(v))(x).

The estimate of the gradient of the heat kernel implies that
∫

B(x,s)

|S(v)|+
∫

B(x,s)

|T (v)| ≤
∫

B(x,s)∩Ω

|T (v)|+C vol(B(x, s) \ Ω)
volU

∫

U

|v| .

Hence we get

|TAr(B)v|(y) ≤ CMΩ(T (v))(x) +
C

rα
MΩ(S(v))(x) + cMΩ(v)(x) .

The fact that

‖S‖Lp→Lp ≤ C rα

yields the uniform estimate

‖Rα,0‖Lp→Lp ≤ ‖T‖Lp(U)→Lp(Ω) ≤ C.

�

Lemma 4.6. There is a constant C independent of α such that:

‖Rα,1‖Lp→Lp ≤ C.

Proof. We use the fact that for all y ∈ Bα, x ∈ 4Bα and t ≥ r2α then

|∇xht(x, y)| ≤
C

rα volB(x,
√
t)
e−

d2(x,y)
ct .

So that the Schwartz kernel of Rα,1 is bounded by

C 14Bα
(x) 1Bα

(y)

∫ ∞

rα

e−
d2(x,y)

ct

rα volB(x,
√
t)
e−

d2(x,y)
ct

dt√
t
.

And using the slow variation of the volume of balls, we get that for all

x ∈ 4Bα and all t ≥ r2α: volB(x,
√
t) ≃ volB(o,

√
t). And with the

reverse doubling condition (RDν), we obtain:

|Tα,1(f)(x)| ≤
C 14Bα

(x)

volBα

∫

Bα

|f |(y)dy.

Hence Tα,1 is bounded on L1 and on L∞ with an operator norm bounded

independently of α. �

The Lemma 4.3 and Lemma 4.6 imply the Proposition 4.2 �
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4.4. The long to short range part. This is the most significant part ; ac-

cording to our previous analysis, theLp boundedness of the Riesz transform

is equivalent to the Lp boundedness of R1. And with the Lemma 3.2, it is

sufficient to find conditions under which the operator

T (f)(x) :=
1

r(x)

∫

M\B(o,κr(x))

r(y)

volB(o, r(y))
|f(y)|dy

is bounded Lp → Lp
w.

When f ∈ Lp(M), we have:

|T (f)(x)| ≤Mp(x)‖f‖Lp

where

Mp(x) =
1

r(x)

(

∫

M\B(o,κr(x))

(

r(y)

volB(o, r(y))

)
p

p−1

dy

)1− 1
p

.

If we introduce the Riemann-Stieljes measure associated to the non-decreasing

function V (r) = volB(o, r), we get (by integrating by parts)

∫

M\B(o,R)

(

r(y)

volB(o, r(y))

)
p

p−1

dy =

∫ ∞

R

(

r

volB(o, r)

)
p

p−1

dV (r)

= (p− 1)
R

p

p−1

V (R)
1

p−1

+ p

∫ ∞

R

r
1

p−1

V (r)
1

p−1

dr.

provided

• lim
R→∞

R
p

p−1

V (R)
1

p−1

= 0 and

•
∫ ∞

1

(

r

V (r)

)
1

p−1

dr <∞.

The second condition implies the first one and in our setting, the second

condition is equivalent to the p-hyperbolicity of the manifold (M, g) ([33]).

Recall that if O ⊂M then its p-capacity is defined by:

cappO := inf

{
∫

M

|dϕ|p dvolg , ϕ ∈ C∞
0 (M) and ϕ ≥ 1 on O

}

,

and that (M, g) is said to be p-hyperbolic if the p-capacity of bounded open

subsets is positive. Using the argument of the proof of the Proposition 4.1,

we obtain as before that

T : Lp → Lp
w
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is bounded provided that for some constant C independent of R, we have:

(7)

∫ ∞

R

(

r

V (r)

)
1

p−1

dr ≤ C

(

rp

V (r)

)
1

p−1

.

Using the reverse doubling condition (RDν), we get that this condition is

satisfied when p < ν; hence we have proven the Theorem A.

According to [17], in our setting the p-capacity of an anchored ball can

be estimated:

capp(B(o, R)) ≤ C

(

∫ ∞

R

r
1

p−1

V (r)
1

p−1

dr

)1−p

.

Hence, when the p-capacity of anchored balls satisfy the uniform estimate:

capp(B(o, R)) ≥ c
volB(o, R)

Rp

then the condition (7) is satisfied. This argumentation provides a direct

proof of the Corollary B.

5. PASSING THE VOLUME GROWTH EXPONENT

We now are proving the Theorem D.

5.1. Reverse Hölder inequality. According to [26], when (M, g) satisfies

the conditions (D), (QD) and (RCA) then (M, g) satisfies the scale invariant

L1 Poincaré inequalities: for any ball B ⊂M and any f ∈ C∞(2B):

‖f − fB‖L1(B) ≤ Cr(B) ‖df‖L1(2B).

These Poincaré inequalities and the doubling condition implies ([2]) that

for all q ∈ (1, 2], the reverse Riesz transform is bounded in Lq: there is a

constant C such that for any f ∈ C∞
0 (M):

‖
√
∆f‖Lq ≤ C‖df‖Lq .

Hence when p > 2, the Riesz transform is bounded on Lp as soon as the

Hodge projector Π = d∆−1d∗ : L2(T ∗M) → L2(T ∗M) has a bounded

extension to Lp (cf. [2, lemma 0.1]).

Now the proof of the implication 1) ⇒ 2) of the [2, theorem 2.1] (see

also [44]) shows that if for some p̃ > p, we have a Lp̃-reverse Hölder in-

equality for the gradient of harmonic functions, then the Hodge projector

has a bounded extension on Lp.

Definition 5.1. A complete Riemannian manifold (M, g) is said to satisfy

the Lp-reverse Hölder inequality if for some constants C > 0, ᾱ > α > 1
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and for any ball B ⊂ M and any harmonic function h defined on ᾱB, one

has the reverse Hölder inequality:

(

1

volB

∫

B

|dh|p
)

1
p

≤ C

(

1

vol(αB)

∫

αB

|dh|2
)

1
2

.

In our case, the quadratic decay of the negative part of the Ricci curva-

ture and the Cheng and Yau’s estimate on the gradient of harmonic function

([11]) yield a L∞-reverse Hölder inequality for remote balls. The following

lemma shows that in our setting, we will get the Lp-reverse Hölder inequal-

ity provided it holds for anchored balls.

Lemma 5.2. Let (M, g) be a complete Riemannian manifold that satisfies

the doubling condition. The Lp-reverse Hölder inequality holds provided it

holds for remote and anchored balls.

Proof. Assume that the Lp-reverse Hölder inequality holds for remote and

anchored balls with parameters ᾱ > α > 1.

Let B(x, r) be a ball that is not anchored nor remote, i.e. x 6= o and

r ≥ r(x)/2. Let λ ≥ 1 be a real parameter.

i) Assume that r ≥ λr(x) and letB′ = B(o, (1+λ
−1)r) we getB(x, r) ⊂

B′ and αB′ ⊂ βB(x, r) provided β = (1 + λ
−1)α + λ

−1. Define now

β̄ = (1 + λ
−1)ᾱ + λ

−1 and β = (1 + λ
−1)α + λ

−1. The six balls

B(x, r) , βB(x, r) , β̄B(x, r) , B′ , αB′ , ᾱB′

have a comparable volume. The inclusions B(x, r) ⊂ B′, ᾱB′ ⊂
β̄B(x, r) and αB′ ⊂ βB(x, r) together with Lp-reverse Hölder in-

equality for the ball B′ imply that if h is a harmonic function defined

on β̄B(x, r), then

(

1

volB(x, r)

∫

B(x,r)

|dh|p
)

1
p

≤ C

(

1

vol(βB(x, r))

∫

βB(x,r))

|dh|2
)

1
2

.

ii) Assume now that
r(x)
2

≤ r ≤ λr(x): let h be a harmonic function

defined on B(x, 4r). Then we have the inclusion B(o, (4 − λ
−1)r) ⊂

B(x, 4r). We consider a minimal covering ofB(o, (4−λ
−1)r)\B(o, 4δr)

by balls of radius δr:

B(o, (4− λ
−1)r) \B(o, 4δr) = ∪i∈IBi .

All the ballsBi are remote and for some constant N depending only on

δ and on the doubling constant ϑ

card I ≤ N.
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Moreover all the balls Bi, B(o, 4δr) have a comparable volume. We

choose δ so that

8δ < 1 and (1 + ᾱ)δ < 1 .

We introduce the collection of balls: B∗ = {B(o, 4δr)}∪{Bi, i ∈ I}
and let

B = {B ∈ B∗, B ∩B(x, r) 6= ∅} .
If B ∈ B then αB ⊂ B(x, 2r) and also ᾱB ⊂ B(x, 2r), so that:
∫

B(x,r)

|dh|p ≤
∑

B∈B

∫

B

|dh|p

≤ C
∑

B∈B

(volB)1−
2
p

(
∫

αB

|dh|2
)

2
p

≤ C (card I + 1)(volB(x, r))1−
2
p

(
∫

2B(x,r)

|dh|2
)

2
p

.

Hence the result.

�

5.2. Hölder Elliptic estimates and the Green kernel. Recall that we say

that (Mn, g) satisfies the scale invariant Hölder Elliptic estimates (EHα) if

there is a constant C such that for any ball B ⊂ M and any harmonic

function h defined on 3B, then we have for all x, y ∈ B:

|h(x)− h(y)| ≤ C

(

d(x, y)

r(B)

)α

sup
z∈2B

|h(z)| .

Remark 5.3. The argument given in the proof of Lemma 5.2) shows that

with the (RCA) and the doubling condition, the scale invariant Hölder El-

liptic estimates (EHα) holds for all balls provided its holds for all remote

and anchored balls. In our setting, the quadratic decay of the negative part

of the Ricci curvature implies a Lipschitz estimates for harmonic function

on remote balls; hence the scale invariant α-Hölder Elliptic estimates holds

for any ball if and only if it holds for anchored balls.

We assume now that (M, g) is a complete Riemannian manifold that sat-

isfies the conditions (QD), (VC) and (RCA) and the scale invariant Hölder

Elliptic estimates (EHα). For R ≥ 1 and κ > 2, we consider the anchored

balls

B∗ = B(o, R/κ) ⊂⊂ B# = B(o, R).
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We will note h#(t, x, y) the heat kernel on the ball B# for the Dirichlet

boundary condition and G#(x, y) the associated Green kernel:

G#(x, y) =

∫ +∞

0

h#t (x, y)dt .

If f ∈ L2(B#), then

u(x) =

∫

B#

G#(x, y)f(y)dy

is the solution of the equation:

∆u = f : u = 0 on ∂B# .

Because our manifold satisfies the Faber-Krahn inequality, we get

λD1 (B
#) ≥ c

R2
.

Recall that for all t > 0, x, y ∈ B#:

h#t (x, y) ≤ ht(x, y),

and for all t > s > 0, x, y ∈ B#:

h#t (x, y) ≤
√

h#t (x, x) h
#
t (y, y) ≤ e−λD

1 (B#)(t−s)

√

h#s (x, x) h
#
s (y, y) .

Hence we get the estimate: t ∈ (0, R2), x, y ∈ B#:

h#t (x, y) ≤
C

volB(x,
√
t)
e−

d2(x,y)
ct .

And for t ≥ R2, x, y ∈ B#:

h#t (x, y) ≤
C

volB#
e−c t

R2 .

Hence if x ∈ B∗, y ∈ B# \ 1
2
B# we get d(x, y) ≃ R and

G#(x, y) ≤
∫ R2

0

C

volB(x,
√
t)
e−

R2

ct dt+
CR2

volB#
.

But using the doubling condition we obtain:
∫ R2

0

C

volB(x,
√
t)
e−

R2

ct dt ≤
∫ R2

0

C

volB(x,R)

(

R√
t

)µ

e−
R2

ct dt ≤ CR2

volB#
.

Finally, we obtain that if x ∈ B∗ and y ∈ B# \ 1
2
B# then

G#(x, y) ≤ C
R2

volB#
.

Using the α-Hölder regularity estimate, we get the following estimation

on the gradient of the Green kernel:
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Lemma 5.4. There is a constant C > 0 such that if x ∈ 1
2
B∗ and y ∈

B# \ 1
2
B# then

|∇xG
#(x, y)| ≤ C

(

R

r(x) + 1

)1−α
R

volB#
.

Proof. Indeed we apply the above α-Hölder regularity estimates for the har-

monic function h(z) = G#(z, y)−G#(x, y). We have seen that

sup
z∈B∗

|h(z)| ≤ C
R2

volB#
.

Hence if x ∈ 1
2
B∗ and z ∈ B(x, 1

2
r(x)) we obtain

|h(z)| = |h(z)− h(x)| ≤ C

(

r(x)

R

)α
R2

volB#
.

And with the Cheng and Yau’s gradient estimate [11], we get:

|∇h|(x) = |∇xG
#(x, y)| ≤ C

r(x)

(

r(x)

R

)α
R2

volB#
.

When r(x) ≤ 1/2, the same idea leads to the estimates:

∀z ∈ B(o, 1), |h(z)| = |h(z)− h(o)| ≤ C

(

1

R

)α
R2

volB#
.

The Cheng and Yau gradient estimate implies that

x ∈ B(o, 1/2) : |∇xG
#(x, y)| ≤ C

(

1

R

)α
R2

volB#
.

�

5.3. From α-Hölder elliptic regularity to reverse Hölder inequality. In

order to prove the Theorem D, we only need to prove that if (M, g) satisfies

the hypotheses of this theorem and if p is such that (1 − α)p < ν then

anchored balls satisfy the Lp-reverse Hölder inequality.

With J.Cheeger and T.Colding [10], we can build a smooth function χ
such that

• χ = 0 on M \B(o, 3R/4)
• χ = 1 on B(o, R/2)
• R|dχ|+R2|∆χ| ≤ C.

Indeed, according to [10, Theorem 6.33], if B is a remote ball then there

is a smooth function χB with compact support in B such that χB = 1 on
1
2
B and such that

r(B)|dχB|+ r2(B)|∆χB| ≤ C(n, κ).
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Using the doubling hypothesis, we can cover ∂B(o, R/2) by at most N
balls of radius R/8 and centered in ∂B(o, R/2):

∂B(o, R/2) ⊂ ∪iBi .

Introduce ϕ =
∑

i χ2Bi
on ∂B(o, R/2), we have ϕ ≥ 1 and ϕ has compact

support in B(o, 3
4
R). Moreover there is a constant (independent of R) such

that: R|dϕ|+ R2|∆ϕ| ≤ C. We let χ = u(ϕ) where u : [0,∞[→ [0, 1] is a

smooth function such that u = 1 on [1,∞) and u = 0 on [0, 1/2].
We will use that annuli satisfy a scale invariant Poincaré inequality (ac-

cording to [26]): there are constants κ > 1 and C > 0 such that for any

R > 1 then

∀f ∈ C∞(A∗
R) : ‖f − fAR

‖L2(AR) ≤ CR‖df‖L2(A∗

R
) ,

where

AR := B(o, R) \B(o, R/2) and A∗
R := B(o, κR) \B(o, R/(2κ)).

Let B# = B(o, R) and let G#(x, y) be the Green kernel of the Dirichlet

Laplacian on B#.

Let h be a harmonic function on B(o, κR). Using the Green kernel, we

have for x ∈ B(o, R/(2κ)) and any constant c:

h(x)− c =

∫

AR

G#(x, y)∆(χ(h− c))(y)dy .

Using the fact that h is harmonic, we know that

∆(χ(h− c)) = (∆χ)(h− c)− 2〈dχ, dh〉g .
With Cauchy-Schwarz inequality, we obtain

|dh|2(x) ≤C

∫

AR

|∇xG
#(x, y)|2dy

×
∫

AR

[

R−4|h(y)− c|2 +R−2|dh|(y)2
]

dy .

Choosing

c =
1

vol(AR)

∫

AR

h(y)dy = hAR

and using the Poincaré inequality for the annulus, we get
∫

AR

|h(y)− c|2dy ≤ CR2

∫

A∗

R

|dh|(y)2dy .

Eventually, we obtain

|dh|2(x) ≤ CR−2

(
∫

AR

|∇xG
#(x, y)|2dy

)

‖dh‖2L2(B(o,κR)) .
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Recall the estimates of the gradient of the Green kernel: for x ∈ B(o, R/(2κ))
and y ∈ B(o, R) \B(o, R/2), we have

|∇xG
#(x, y)| ≤ C

(

R

r(x) + 1

)1−α
R

volB(o, R)
.

So that we get that

(

1

volB(o, R/(2κ))

∫

B(o,R/(2κ))

|dh|p
)

1
p

≤
(

C(R)2

vol(B(o, κR))

∫

B(o,κR))

|dh|2
)

1
2

,

where

Cp(R) =
1

volB(o, R/(2κ))

∫

B(o,R/(2κ))

(

R

r(x) + 1

)p(1−α)

dvol(x).

Now it is easy to show that the reverse doubling assumption (RDν) yields

an uniform bound on C(R) as soon as

p(1− α) < ν.

5.4. On the Hölder elliptic regularity estimates. In our setting, the scale

invariant α-Hölder Elliptic regularity estimates are equivalent to a ”quasi”-

monotonicity result for the L2 norm of the gradient of harmonic function.

Proposition 5.5. Assume that (M, g) is a complete Riemannian manifold

satisfying the hypothesis (QD), (VC) and (RCA). Let α ∈ (0, 1]. Then

(M, g) satisfies the α-Hölder Elliptic regularity estimates if and only if there

are some constants κ > 1, C > 0 such that for any harmonic function h on

B(o, κR) and any 1 ≤ r ≤ R

r2−2α

volB(o, r)

∫

B(o,r)

|dh|2 ≤ C
R2−2α

volB(o, R)

∫

B(o,R)

|dh|2.

Proof. If f is a continuous function on a subset O ⊂ M , we define its

oscillation by:

OscO f = sup
x∈O

f(x)− inf
y∈O

f(y).

Let R ≥ 1 and h be a harmonic function defined on B(o, 2κR). We let

again AR := B(o, R) \ B(o, R/2) and A∗
R := B(o, κR) \ B (o, R/(2κ)).

We have the Poincaré inequality

‖h− hAR
‖2L2(AR) ≤ CR2‖dh‖2L2(A∗

R
) .

But according to [26, lemma 6.3], we have a Harnack inequality on annuli,

so that

(8)

(OscAR
h)2 ≤ C

volAR
‖h− hAR

‖2L2(AR) ≤ C
R2

volB(o, κR)
‖dh‖2L2(B(o,κR).
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Using the function χ defined by

χ(x) =











1 on B(o, R/2)

2− 2r(x)
R

on B(o, R) \B(o, R/2)

0 on M \B(o, R) ,

we get
∫

B(o,R/2)

|dh|2 ≤
∫

B(o,R)

|d(χ(h− hAR
))|2

=

∫

AR

(h− hAR
)2 |dχ|2 = 4

R2

∫

AR

(h− hAR
)2.

In particular we get

(9)
1

volB(o, R/2)

∫

B(o,R/2)

|dh|2 ≤ C

R2
(OscAR

h)2 .

But in our case, the α-Hölder Elliptic regularity estimates is equivalent

to a monotonicity inequality for ρ 7→ ρ−α OscAρ
h. The result is then a

consequence of the inequalities (8) and (9). �

6. NON BOUNDEDNESS OF THE RIESZ TRANSFORM

In this section, we give two criterions for the Lp unboundedness of the

Riesz transform.

6.1. Parabolicity and the Riesz transform. Our argument is a slight im-

provement of some earlier results proved in [8]. The starting point is to

understand the Lp closure of the space of differential of smooth function

with compact support; the following lemma is a Lp adaptation of an idea

from [6].

Lemma 6.1. Let (Mn, g) be a complete Riemannian manifold and let f ∈
W 1,p

loc such that df ∈ Lp. If M(r) =
∫

B(o,r)
|f |p satisfies

∫ ∞

1

(

r

M(r)

)
1

p−1

dr = ∞ ,

then there is a sequence (χℓ) of smooth function with compact support such

that

lim
ℓ→∞

‖df − d(χℓf)‖Lp = 0

in particular:

df ∈ dC∞
0 (M)

Lp

.
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Proof. Let r < R, we define a function χr,R by letting χr,R = 1 on B(o, r),
χr,R = 0 outside B(o, R) and for x ∈ B(o, R) \B(o, r):

χr,R(x) = ξr,R(r(x)) = ε(r, R)

∫ R

r(x)

(

s

M(s)

)
1

p−1

ds ,

where

ε(r, R) =

(

∫ R

r

(

s

M(s)

)
1

p−1

ds

)−1

.

Let f be a function satisfying the hypotheses of the lemma, then we get:

‖df − d(χr,Rf)‖pLp ≤ C

(
∫

M\B(o,r)

|df |p +
∫

B(o,R)\B(o,r)

|f |p|dχr,R|p
)

.

Now we introduce the Riemann-Stieljes measure associated to the non-

decreasing function s 7→M(s) and we have

∫

B(o,R)\B(o,r)

|f |p|dχr,R|p =

∫ R

r

|ξ′r,R(s)|pdM(s)

= ε(r, R)p
∫ R

r

s
p

p−1
1

M(s)
p

p−1

dM(s)

≤ ε(r, R)p

(

r
p

p−1
p− 1

M(r)
1

p−1

+

∫ R

r

p s
1

p−1

M(s)
1

p−1

ds

)

≤ (p− 1)ε(r, R)pr
p

p−1
1

M(r)
1

p−1

+ p ε(r, R)p−1.

With the hypothesis
∫∞

1

(

r
M(r)

)
1

p−1
dr = ∞ it is possible to find two in-

creasing and divergent sequences of rℓ < Rℓ such that

lim
ℓ→∞

ε(rℓ, Rℓ) = 0

and

lim
ℓ→∞

ε(rℓ, Rℓ)
pr

p

p−1

ℓ

1

M(rℓ)
1

p−1

= 0 .

Hence the result.

�

Assume now that (M, g) is non parabolic and that the Riesz transform is

bounded on Lp and on L
p

p−1 . The Hodge projector

Π = d∆−1d∗ = (d∆− 1
2 )(∆− 1

2d∗) = (d∆− 1
2 )(d∆− 1

2 )∗
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extends fromL2∩Lp to a bounded operator onLp(T ∗M). Hence Π(C∞
0 (T ∗M))

is dense in Π(Lp(T ∗M)). Also by definition Π is the identity on dC∞
0 (M)

hence

dC∞
0 (M)

Lp

⊂ Π(Lp(T ∗M)).

If α ∈ C∞
0 (T ∗M) then we have Π(α) = df where

f(x) =

∫

M

G(x, y)d∗α(y)dy

and where G(x, y) is the Green kernel of (M, g). Because d∗α has compact

support, the growth of r 7→
∫

B(o,r)
f p is controlled by

Gp(r) :=

∫

B(o,r)

G(x, o)pdx.

Hence a direct consequence of the last lemma is the following proposition:

Proposition 6.2. If (M, g) is a complete Riemannian manifold such that

• (M, g) is non parabolic and its Green kernel satisfies:

∫ ∞

1

(

r

Gp(r)

)
1

p−1

dr = ∞.

• The Riesz transform is bounded on Lp and on L
p

p−1

then

Π(Lp(T ∗M)) = dC∞
0 (M)

Lp

.

Recall that (M, g) is said to be p-parabolic if we can find a sequence of

smooth function with compact support (χk) such that

0 ≤ χk ≤ 1 lim
k→∞

‖dχk‖Lp = 0 and χk → 1 uniformly on compact set.

A consequence of the definition is that on a p-parabolic manifold, any

bounded function with Lp gradient has its gradient in the Lp-closure of

dC∞
0 (M).

Remark 6.3. If (M, g) is non-parabolic (i.e. 2-hyperbolic) then its Green

kernel G(x, y) is bounded outside its pole: that is to say if r > 0 then x ∈
M \B(y, r) 7→ G(x, y) is positive and bounded by maxx∈∂B(y,r)G(x, y).

In particular we get

Proposition 6.4. Assume that (M, g) is a complete Riemannian manifold

such that

• (M, g) is non 2-parabolic and p-parabolic for some p > 2,

• the Riesz transform is bounded on Lp and on L
p

p−1
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then

Π(Lp(T ∗M)) = dC∞
0 (M)

Lp

.

Those two results should be compared with the one of [8, lemma 7.1]

where a Sobolev inequality was assumed. Then we can show the following

adaptation of [8, corollary 7.5]

Theorem 6.5. Under the hypotheses of the Proposition 6.4, (M, g) has only

one end.

Proof. If M has at most two ends, we can find a compact set K ⊂ M such

that M \ K = O− ∪ O+ with O− ∩ O+ = ∅ and such that both O± are

unbounded. And we can build a smooth function ϕ such that ϕ = ±1 on

O±. Then ∆ϕ ∈ C∞
0 (M), dϕ ∈ C∞

0 (T ∗M), We can defined h : M →
[−1, 1] by:

h(x) = ϕ(x)−
∫

M

G(x, y)∆ϕ(y)dy ,

h is a harmonic function and with the Remark 6.3, we know that h is

bounded and by construction

dh = dϕ− Π(dϕ).

As (M, g) is assumed to be p-parabolic, we get that:

dh ∈ dC∞
0 (M)

Lp

.

So that Π(dh) = dh; but on L2, we have by construction Π(dh) = 0, hence

the contradiction. �

Corollary 6.6. Let p > 2. On a non-parabolic and p-parabolic manifold

with at least two ends, the Riesz transform can not be bounded simultane-

ously on Lp and on L
p

p−1 .

6.2. Sublinear harmonic function and the Riesz transform. Our next

result shows that the existence of non constant sublinear harmonic function

implies some Lp unboundedness of the Riesz transform.

Proposition 6.7. Let (M, g) be a complete Riemannian manifold whose

Ricci curvature satisfies

Riccig ≥ − κ2

r2(x)
g.

Assume moreover that (M, g) is doubling and satisfies the (RCE) condition

and that the volume of anchored balls satisfy for some µ ≥ ν > 2 and

positive constant c:

1 < r < R =⇒ c

(

R

r

)ν

volB(o, r) ≤ volB(o, R) ≤ cRµ .
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Let α ∈ [0, 1). If (M, g) carries a non constant harmonic function h with

α-growth:

h(x) = O(rα(x)) ,

then the Riesz transform is not bounded onLp for any p > 2 and p ≥ µ

1− α
.

A quick inspection of the proof below shows that we only need that ν >
p

p−1
.

Proof. By contraposition, we assume that the Riesz transform is bounded

on Lp with p(1− α) ≥ µ and consider a harmonic function h such that

h(x) = O(rα(x))

and we are going show that necessary h is constant. We remark that our

conditions imply a relative Faber-Krahn inequality, hence by Theorem 1.2

or [14], the Riesz transform is bounded on L
p

p−1 . The quadratic decay of the

negative part of the Ricci curvature together with the Cheng-Yau’s gradient

estimate implies that

dh(x) = O
(

rα−1(x)
)

,

The volume growth condition

volB(o, r) = O(rµ)

implies

dh ∈ Lp.

Moreover we also have M(r) =
∫

B(o,r)
hp ≤ Crµ+pα ≤ Crp, so that

(
∫ ∞

1

r

M(r)

)
1

p−1

dr = ∞,

and with the Lemma 6.1, we get that:

dh ∈ dC∞
0 (M)

Lp

.

The volume growth assumption also implies that (M, g) is p-parabolic and

the Proposition 6.2 yields:

Π(dh) = dh.

Let α ∈ C∞
0 (T ∗M) then the Hodge projector being bounded on Lp and on

L
p

p−1 , we get

〈dh, α〉 = 〈Π(dh), α〉 = 〈dh,Π(α)〉 .
But

Π(α) = df
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where f is given by

f(x) =

∫

M

G(x, y)d∗α(y)dy.

There is a R > 0 so that f is harmonic outsideB(o, R) and using the Green

kernel estimate, we know that f tends to zero at infinity. We are going to

estimate the decay of f . Let q = p/(p− 1). Because Π is bounded on Lq,

we have df ∈ Lq .

Let x ∈ M \ B(o, 2R), f is harmonic on the remote ball B(x, r(x)/2)
and u = |df | satisfies the elliptic inequality:

∆u ≤ C

r(x)2
u on B(x, r(x)/2) .

The lower bound on the Ricci curvature implies that

uq(x) ≤ C

volB(x, r(x)/2)

∫

B(x,r(x)/2)

uq =
o(1)

volB(o, r(x))
.

hence:

|df(x)| ≤ o(1)

(volB(o, r(x)))
1
q

.

Using the (RCE) condition, we can integrate this inequality along a path

starting from x and escaping to infinity and get

|f(x)| ≤ o(r(x))

(volB(o, r(x)))
1
q

+ o(1)

∫ ∞

r(x)

1

(volB(o, s))
1
q

ds.

Using the reverse doubling condition (RDν) for the anchored balls we get

that

|f(x)| ≤ C
o(r(x))

(volB(o, r(x)))
1
q

.

Now we define a function χk by

χk(x) =











1 on B(o, k)

2− r(x)
k

on B(o, 2k) \B(o, k)

0 on M \B(o, 2k).

Because dh ∈ Lp and df ∈ Lq, we have

〈dh, α〉 = 〈dh, df〉 = lim
k→∞

〈dh, χkdf〉 = lim
k→∞

〈dh, d(χkf)〉 − 〈fdh, dχk〉.

However h is harmonic hence

〈dh, d(χkf)〉 = 0 ,
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moreover

|〈fdh, dχk〉| ≤ C
volB(o, 2k) o(k)

(volB(o, k))
1
q

k(α−1)k−1

≤ (volB(o, k))
1
pkα−1o(1)

≤ Ck
µ

p kα−1o(1) .

Our hypotheses imply that this quantity tends to zero when k tends to in-

finity. Eventually we obtain that for all α ∈ C∞
0 (T ∗M): 〈dh, α〉 = 0 hence

dh = 0. �

In fact, the α-Hölder Elliptic estimates imply that a sublinear harmonic

function with β-growth and β < α is necessary constant.

Lemma 6.8. Assume that (M, g) carries a non constant sublinear harmonic

function h with

h(x) = O
(

rβ(x)
)

.

If α > β then (M, g) can not satisfy the α-Hölder Elliptic estimates .

Proof. Indeed, assume that (M, g) satisfies (EHα) and consider a harmonic

function h : M → R such that for some positive constants C and β < α:

∀x ∈M, |h(x)| ≤ C
(

1 + d(x, o)β
)

.

Using (EHα) we get that for any x ∈ B(o, R):

|h(x)− h(o)| ≤ Λ

(

d(x, o)

R

)α

sup
y∈B(o,2R)

|h(y)|.

Hence we get that for any x ∈ M and any R ≥ r(x):

|h(x)− h(o)| ≤ CΛ

(

d(x, o)

R

)α
(

1 + (2R)β
)

.

Letting R → +∞, we get that h(x) = h(o) for any x ∈M . �

7. EXAMPLES

In this section, we describe three series of applications of our results.

7.1. Manifolds with conical ends. These manifolds (Mn, g) are isometric

outside a compact set to a truncated cone:

CR(Σ) :=
(

(R,∞)× Σ, (dr)2 + r2h
)

where (Σ, h) is compact Riemannian manifold. We are going to explain

how our results can be used to recover the Theorem 1.3 of H-Q. Li, C.

Guillarmou and A. Hassell and of A. Hassell and P. Lin ([35, 27, 28, 32]).

From the explicit form of the metric, it is easy to remark that the conditions
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(QD), (VC) and (RCE) are satisfied. Concerning the volume growth of

geodesic balls, there is a positive constant C such that for all x ∈ M and

R > 0:

C−1Rn ≤ volB(x,R) ≤ CRn .

⋆ A general positive result: The hypotheses of Theorem A are satis-

fied for ν = n, hence the Riesz transform is bounded on Lp for all

p ∈ (1, n) ∪ {2}.

⋆ Negative results if Mn has several ends (i.e. if Σ is not con-

nected): In the case where n > 2, [8, Corollary 7.5] already told

us that the Riesz transform is unbounded on Lp when p ≥ n. In

the case where n = 2, it is well known that (M, g) carry a non con-

stant harmonic function with logarithmic growth. Indeed (M2, g) is

conformally equivalent to a compact surface with a finite number of

points removed:

(M2, g) =
(

Σ \ {p1, . . . , pr}, ϕ−2ḡ
)

where (Σ, ḡ) is compact Riemann surface. Moreover around each

pi we have

dḡ(x, pi) ≃ dg(x, o)
−1.

Consider Ḡ the Green kernel on (Σ, ḡ), then the function f(x) =
G(x, p1) − G(x, p2) is harmonic on (Σ \ {p1, p2}, ḡ) and satisfies

for i = 1, 2:

f(x) ≃ (−1)i log ((dḡ(x, pi)) .

Recall ∆g = ϕ2∆ḡ, hence f is a harmonic function on (M2, g) and

it has logarithmic growth: f(x) = O (log r(x)). The Proposition E

imply that if p > 2 then the Riesz transform can not be bounded in

Lp .

Assume now that (Σ, h) is connected. Let

0 < λ1 ≤ λ2 ≤ . . .

be the spectrum of the Laplace operator of (Σ, h), where the eigen-

values are repeated according to their multiplicity. And let ϕ0, ϕ1 . . .
be an associated set of normalized eigenfunctions: ∆hϕi = λiϕi.

We define 0 < α1 ≤ α2 . . . by

αi(n− 2− αi) = λi .

⋆ Negative results ifMn has only one end: According to [12, Lemma

6], (M, g) carries a harmonic function f such that

f(r, θ) = rα1ϕ1(θ) + o (rα1) .

Define now

α = min(α1, 1).
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The Proposition E imply that if p(1− α) ≥ n, then the Riesz trans-

form can not be bounded in Lp.

⋆ Positive results if Mn has only one end: Assume that (Σ, h) is

connected. Let B(r) = K ∪ ([1, r]× Σ). Following the analysis

of [1, Proposition 4.1], it can be shown that there is a constant C
such that for all harmonic function f defined over B(R) and all

1 < r < ρ ≤ R:

r2−2α

rn

∫

B(r)

|df |2 ≤ C
ρ2−2α

ρn

∫

B(ρ)

|df |2.

From this result and Proposition 5.5, we obtain that (M, g) satisfies

the α-Hölder estimates (EHα). Hence if p(1 − α) < n, then the

Riesz transform is bounded on Lp .

7.2. Model manifolds. We consider a Riemannian manifold (Mn, g) that

is isometric outside a compact set to the warped product:

CR(Σ) :=
(

(R,∞)× Σ, (dr)2 + f 2(r)h
)

where f(r) = eu(ln(r)), for some function u : [1,∞) → R with bounded

second derivative and

α ≤ u′ ≤ 1.

We assume that (Σ, h) is a compact manifold with non negative Ricci cur-

vature so that (M, g) satisfies the quadratic decay on the negative part of

the Ricci curvature and the conditions (VC) & (RCE). Moreover anchored

balls satisfies the reverse doubling condition (RDν) for the exponent ν =
(n− 1)α+ 1.

If u satisfies the asymptotic condition:

(10) u′(θ) ≥ ᾱ− ψ(θ) for some non negative ψ ∈ L1

then the exponent in the reverse doubling is improved to ν̄ = (n− 1)ᾱ+ 1.

Hence the Theorem A implies that the Riesz transform is bounded on Lp

for p < (n− 1)ᾱ+ 1.

If
∫∞

1
1

fn−1(r)
dr <∞ then (M, g) is non-parabolic and if

∫∞

1
1

f
n−1
p−1 (r)

dr =

∞ then (M, g) is p-parabolic. Hence by Theorem C: if p > 2 and if Σ is

non connected then the Riesz transform is not bounded on Lp.

If Σ is connected and if
∫∞

1
(1− u′(r)) dr = ∞ then the diameter of

geodesic sphere growth slowly

diam ∂B(o, R) = sup
x,y∈∂B(o,R)

d(x, y) = o(R)

and we can apply the Corollary F and we know that the Riesz transform is

bounded on Lp for all p ∈ (1,+∞). In conclusion, we get:
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Proposition 7.1. • If the function u satisfies the condition (10) and if

p < (n− 1)ᾱ+ 1 then the Riesz transform is bounded on Lp.

• Assume that 1 < (n− 1)ᾱ and that Σ is non connected. If
∫ ∞

1

1

f
n−1
p−1 (r)

dr = ∞

then the Riesz transform not bounded on Lp.

• If Σ is connected and if
∫∞

1
(1− u′(r)) dr = ∞ then the Riesz

transform is bounded on Lp for all p ∈ (1,+∞).

7.3. Examples with infinite topological type. Our last example is inspired

by a construction of J.Lott and Z.Shen [37]. Assume that (P n, g) is a com-

pact Riemannian manifold with boundary ∂P = Σ−∪Σ− and that Σ± have

collared neighborhoods U± and assume moreover that there is a diffeomor-

phism f : U− → U+ with

f ∗g = 4g.

For ℓ ∈ N, we define 2ℓP to be the rescaled Riemannian manifold

(P, 4ℓg) .

Using the map f we can glue all the 2ℓP and get a Riemannian manifold

(X, g) with boundary ∂X = Σ−. If there is a compact manifold K with

boundary diffeomorphic to Σ− then we can form X0 = X ∪ K. We can

also form X1 = X#Σ−
(−X) the double of X . These manifolds have qua-

dratic curvature decay and Euclidean growth. Hence our results yield the

following:

Proposition 7.2. • On X0 and X1, the Riesz transform is bounded on

Lp for every p ∈ (1, n).
• On X1, the Riesz transform is not bounded on Lp if p ≥ n > 2.

• Assume that P is connected, then there is some ε ∈ (0, 1] such that

on X0, the Riesz transform is Lp-bounded for every p ∈
(

1, n
1−ε

)

.

8. SOME PERPECTIVES

In this last section, we conclude by some remarks and perpectives:

8.1. Perturbations. In [13], T. Coulhon and N. Dungey obtained a nice

property of stability under perturbation for Lp boundedness of the Riesz

transform. This result implies that if (M, g) is a complete Riemannian man-

ifold satisfying the hypotheses of the Theorem A (resp. Theorem D) and a

non collapsing hypothesis:

inf
x∈M

volB(x, 1) > 0
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then the same conclusions hold for any other metric g̃ that satisfies for some

ε > 0:

g̃ − g = O
(

r−ε(x)
)

.

8.2. Riesz transform associated to Schrödinger operator. Let (M, g) be

a complete Riemannian manifold satisfying the geometric condition (QD),

(VC) and (RCE) and V : M → R be a locally bounded function that satis-

fies

V (x) = O
(

r−2(x)
)

.

A challenging question is to study the boundedness of the Riesz transform

associated to Schrödinger operator ∆+ V :

RV = d(∆ + V )−
1
2 .

In this case, the situation can be very complicated even in the case of man-

ifolds with conical ends (see [27, 28, 32]). Some part of our analysis ex-

tends easily to this case but some crucial points are missing, we leave as an

open question of finding the appropriate spectral condition for the operator

∆+ V that leads to results similar to Theorem A or Theorem D. Note that

in the case where the potential is small in some Kato class, then the Lp-

boundedness of the Riesz transform R0 implies the Lp-boundedness of the

Riesz transform RV ([21]) .

8.3. Gaussian estimates on the heat kernel on 1-forms. In the setting

of Theorem D, it will be interesting to understand under which geometric

assumptions, one get a Gaussian estimate on the heat kernel of the Hodge

Laplacian on 1-forms. Recall that such an estimate implies a boundedness

result for the Riesz transform ([15, 16, 45]). According to [18, 19, 21], a

sub-critical assumption on the Ricci curvature implies such an upper bound.

It has recently been shown that this sub-critical assumption yields results for

the Riesz transform on 1 and 2-forms ([38]).

8.4. Riesz transform associated to differential forms. Let ∆k = dd∗ +
d∗d : C∞

0 (ΛkT ∗M) → C∞
0 (ΛkT ∗M) be the Hodge Laplacian acting on k-

differential forms. Following the questions asked in [8], one would like to

understand the Lp boundedness of the Riesz transforms

d(∆k)
− 1

2 , d∗(∆k)
− 1

2 ,∇(∆k)
− 1

2 .

On manifold with conical ends, these questions have been recently investi-

gated by C. Guillarmou and D. Sher ([29]) and it appears that it is a very

difficult problem; it is tempting to analyze what can be done on a mani-

fold whose curvature tensor decays quadratically, however in order to use

our analysis, we will need Gaussian upper bound on the heat kernel on
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forms and such an estimate already provided some boundedness result for

the Riesz transform according to a general principle ([15, 45]).

8.5. The Riesz transform of second order. Another interesting question

is about the Lp boundedness of the Riesz transform of second order:

∇d∆−1 .

The study of the Lp boundedness of the operator ∇d(∆ + 1)−1 has been

recently investigated by B. Güneysu and S. Pigola ([30]). Motivated by this

paper, in a future work, we intend to consider applications of these ideas

for the operator ∇d∆−1 on manifold where the full curvature tensor decays

quadratically:

‖Rm(x)‖ = O
(

1

r2(x)

)

.
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391–404.

[7] G. Carron: Harmonic functions on manifolds where large spheres are small,

preprint, arxiv:503.05506 (2015), to appear in Ann. Math. Blaise Pascal.

[8] G. Carron, T. Coulhon, A. Hassell: Riesz transform and Lp-cohomology for man-

ifolds with Euclidean ends, Duke Math. J. 133 (2006), no. 1, 59–93.

[9] J. Cheeger: Differentiability of Lipschitz functions on metric measure spaces,

Geometric and Functional Analysis 9 (1999), no. 3, 428–517.

[10] J. Cheeger, T.H. Colding: Lower bounds on Ricci curvature and the almost rigid-

ity of warped products, Annals of Math. 144 (1996), 189–237.

[11] S.Y. Cheng, S.T. Yau: Differential equations on Riemannian manifolds and their

geometric applications, Comm. Pure Appl. Math. 28 (1975), 333–354.

[12] T. Christiansen, M. Zworski: Harmonic functions of polynomial growth on cer-

tain complete manifolds, Geom. and Funct. Anal. 6(1996), no. 4, 619–627.

[13] T. Coulhon, N. Dungey: Riesz transform and perturbation, J. Geometric Anal.,

17 (2007), no. 2, 213–226.

[14] T. Coulhon, X.T. Duong: Riesz transforms for 1 ≤ p ≤ 2, Trans. Amer. Math.

Soc. 351 (1999), no. 3, 1151–1169.



RIESZ TRANSFORM ON MANIFOLDS WITH QUADRATIC CURVATURE DECAY 41

[15] T. Coulhon, X.T. Duong: Riesz transforms for p > 2, C.R.A.S. Paris, 332 (2001),
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