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Abstract. Motivated by seasonality and regime-switching features of some insurance claim

counting processes, we study the statistical analysis of a Markov-modulated Poisson process

featuring seasonality. We prove the strong consistency and the asymptotic normality of a max-

imum split-time likelihood estimator of the parameters of this model, and present an algorithm

to compute it in practice. The method is illustrated on a small simulation study and a real

data analysis.
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1 Introduction

It is often the case that the insurance claim frequency is impacted by environment variables.

For instance, flood risk is higher in a period of frequent heavy rains, and fire risk is more
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intense when the weather is particularly dry. Such environment variables may be hidden to

some extent to the practitioner: for instance, it is now accepted that the probabilities of severe

floods in Australia, strong snowstorms in North America or hurricanes on the East Coast of

the United States increase during La Niña episodes (see Neumann et al. [17], Cole and Pfaff [5],

Parisi and Lund [20] and Landreneau [10]). This is now taken seriously by most reinsurers as

well as Lloyd’s and the UK Met Office [13]. However, observing and understanding the role of

those variables is not easy, which makes it realistic to consider these variables as unobserved

so far.

To take such a dependency into account, one may for instance assume that the underlying

environment process is a Markov process J in continuous time and that in each state of J , the

claim counting process N is a Poisson process. The resulting bivariate process (J,N) is then

called a Markov-Modulated Poisson Process (MMPP). MMPPs have been used in different

fields during the past forty years, in particular in data traffic systems (see e.g. Salvador et

al. [27]), for ATM sources (see Kesidis et al. [9]), in manufacturing systems (see e.g. Ching et

al. [4]) or even in ecology (see for example Skaug [29] for applications of MMPPs to clustered

line transect data). The MMPP cookbook by Fischer and Meier-Hellstern [6] sums up the main

results and ideas that were behind the rise of MMPP applications. The idea of considering

Markov modulation in insurance was first introduced by Asmussen [2]; the obtained model

can capture the fact that the insurance claim frequency may be modified if climatic, political

or economic factors change. Such a model has gained considerable attention recently: see

for instance Lu and Li [15], Ng and Yang [18], Zhu and Yang [33] and Wei et al. [32]. The

parameters of an MMPP are often estimated using a Maximum Likelihood Estimator (MLE),

whose consistency was proved in Rydén [22]. Various methods have been suggested to compute

the MLE; a standard tool is the Expectation-Maximization (EM) algorithm, see Rydén [25] for

the implementation of this procedure for the estimation of the parameters of an MMPP. We

finally mention that in a recent paper, Guillou et al. [7] introduced a new MMPP-driven loss

process in insurance with several lines of business, showed the strong consistency of the MLE

and fitted their model to real sets of insurance data using an adaptation of the EM algorithm.

Of course, once the MMPP model is fitted, it is possible to use Bayesian techniques to determine

probabilities to be in each state and consequently the average number of events during the
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next period (see e.g. Scott [28]). If external information is present, then it is possible to

enrich this Bayesian estimation. This is for example the case for some long-tailed non-life

insurance businesses, where indices of sectorial inflation can provide useful information. For

reinsurance cycles, large claims that may cause a cycle phase change as well as other aspects

of competition or adverse development of reserves can sometimes be plugged into the Bayesian

estimation process. For some other risks however, even if we feel that a phenomenon might

have an impact on the claim frequency, it may be very hard to come up with a measure of such

a phenomenon (for instance, the El Niño-La Niña phenomena). In that case our non-Bayesian

framework is of interest for actuarial risk assessment.

Furthermore, many examples of practical applications in insurance display some sort of seasonal

variation. For example, theft in garages are more frequent before Christmas as people tend

to store Christmas gifts there, fire risk is more intense in the summer, and hurricanes occur

mostly between June and November on the East Coast of the United States. These random,

cyclic factors and their impact on insurance risk, which need to be taken into account to

carry out a proper regime switching analysis, are yet to be understood and forecasted. In an

inhomogeneous context with deterministic intensity function, Lu and Garrido [14] have fitted

double-periodic Poisson intensity rates to hurricane data, for particular parametric forms (like

double-beta and sine-beta intensities) to hurricane data. Helmers et al. [8] have provided an

in-depth theoretical statistical analysis of such doubly periodic intensities. We aim at carrying

out a theoretical statistical analysis in a stochastic intensity framework with seasonality.

An important aspect of pricing in non-life insurance concerns segmentation: thanks to general-

ized linear models or more sophisticated techniques, the insurer takes into account explanatory

variables to adapt the price of the contract and avoid adverse selection (see Ohlsson and Jo-

hansson [19]). Besides, individual ratemaking is updated thanks to credibility adjustments in

order to take into account the claim history of each policyholder or contract (see Bühlmann

and Gisler [3]). Our approach is only operational and interesting at the aggregated risk man-

agement level, and it would be very challenging to try to combine it with regression techniques,

from a theoretical point of view as well as the practical point of view since a very large number

of data points would be needed to ensure that the estimation is reasonably accurate. The only

simple way to combine the two approaches would be to assume that the seasonal and Marko-
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vian intensities are multiplied for each class of contract by a number that corresponds to the

risk of each class and does neither depend on the season nor on the state of the environment.

In other terms, the ratio between claim intensities for classes A and B, say, should remain con-

stant over time. This is of course a strong limitation; in wind-related risk for instance, some

buildings are more subject to damage coming from wind effects than others, and consequently

the rise of their risk should be sharper during windy episodes.

In this paper, we thus consider an MMPP featuring seasonality, and study estimation issues

for this process when the environment process is unobserved. A further motivation for the

introduction of this type of process appears in the Solvency II insurance regulation framework.

In this framework, it is required to carry out an ORSA (Own Risk and Solvency Assessment).

The ORSA has both qualitative and quantitative components, including the continuous com-

pliance requirement: the insurer must be able to provide evidence that he/she satisfies solvency

requirements at all times (see Vedani and Ramaharobandro [30]). This leads insurers to define

confidence regions or to use a continuous time model. The MMPP with seasonality is one

interesting potential tool for this new challenge for some non-life insurance companies.

A problem, however with this type of process is that contrary to when there is no seasonality,

the random sequence of the inter-event times is not ergodic. Studying the asymptotic properties

of the MLE, as Rydén [22] and Guillou et al. [7] do, is thus very difficult; furthermore, the

particular structure of the likelihood makes it hard to compute the MLE in practice. To tackle

this issue, we borrow an idea of Rydén [23, 24] and we introduce a Split-Time Likelihood (STL).

The logarithm of this quantity is shown to be a sum of ergodic random variables; maximizing

the STL then yields a Maximum Split-Time Likelihood Estimator (MSTLE) whose consistency

and asymptotic normality can be proven using regenerative theory.

The outline of the paper is as follows. We give a precise definition of our model in Section 2

where we also introduce our estimator. The asymptotic properties are studied in Section 3. We

explain how to implement our estimation technique in practice in Section 4 where we illustrate

the performance of our estimator on a small simulation study and a real data analysis. Our

paper ends by a conclusion and discussion of the results in Section 5. Technical lemmas are

given and proven in the appendix.
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2 Our model and estimation procedure

2.1 Our model

We consider an irreducible continuous-time Markov process J with generator L on the state

space {1, . . . , r}, where r ≥ 2. Consider further a counting process N and real numbers

τ0 = 0 < τ1 < · · · < τk−1 < 1 = τk such that for every q ∈ N, on the intervals [q+ τs−1, q+ τs),

if J is in state i, then N is a Poisson process with jump rate λ
(s)
i , where λ

(s)
i ≥ 0. The time

interval [q+τs−1, q+τs) represents season s of the period q+1. The case k = 1, in which there

is actually no seasonality, is just the standard MMPP, which was considered from a statistical

point of view by Rydén [22]; in this paper, we shall focus on the case k ≥ 2. The jump intensity

of the counting process N is thus modulated not only by the random switches of the Markov

process J but also by switches from one season to another, which happen at nonrandom times.

The context of our work is the following: let us assume that the process N has been observed

until time n ∈ N \ {0}, so that the available data consists of

1. the number r of states of J and the times τ1, . . . , τk−1,

2. the full knowledge of the process N between time 0 and time n.

The goal is to estimate the unknown parameters of the model, namely the elements ℓij of the

transition intensity matrix L of J and the jump intensities λ
(s)
i of N . Since the modulating

Markov process J is not observed, estimating the parameters of this model is not straightfor-

ward. For the sake of shortness, we let Φ be the global parameter of the model: Φ consists

of the values ℓij , for 1 ≤ i, j ≤ r and i 6= j and of the λ
(s)
i , 1 ≤ i ≤ r and 1 ≤ s ≤ k. The

distribution of the process with parameter Φ is denoted by PΦ and we let E be the parameter

space

E =

{
Φ |L(Φ) is irreducible and min

1≤i≤r
min

1≤s≤k
λ
(s)
i (Φ) > 0

}
.

The space E can be seen as the set of those parameters for which in any state of J and in

any season, an event, namely a jump of N , can occur with positive probability, while the

irreducibility assumption makes sure that all states of J are visited infinitely often and thus

that all parameters may be consistently estimated. Note that an element of E is given by
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|E| = r(r − 1) + rs parameters. Finally, define, for 1 ≤ s ≤ k and 0 ≤ y ≤ τs − τs−1 the

matrix-valued functions

f(y, s,Φ) = exp(y(L(Φ)− Λ(s)(Φ)))Λ(s)(Φ)

and F (y, s,Φ) = exp(y(L(Φ)− Λ(s)(Φ)))

where Λ(s)(Φ) = diag(λ
(s)
1 (Φ), . . . , λ

(s)
r (Φ)). The functions f and F , which will be instrumental

in defining our procedure, have a nice probabilistic interpretation (see Meier-Hellstern [16]):

for any i, j ∈ {1, . . . , r},

fij(y, s,Φ) dy := P(T (s)
1 ∈ dy, J(y) = j | J(0) = i)

and F ij(y, s,Φ) := P(T (s)
1 > y, J(y) = j | J(0) = i),

where T (s)
1 is the time of the first event of an MMPP whose Markov-modulating process is J ,

with jump intensities given by Λ(s). The functions f(·, s,Φ) and F (·, s,Φ) can thus be seen as

the probability density and survival functions of the inter-event times for given states of J in

season s, respectively.

2.2 A Maximum Split-Time Likelihood Estimator

It is impossible to apply any known results on MMPPs here since the jump intensity in a given

state of J changes as time goes by; especially, given that J is in state j, N is an inhomogeneous

Poisson process. To overcome this issue, we introduce some notation: let Wq,s be the number

of jumps of N during season s of the period q, and let T
(q,s)
1 , . . . , T

(q,s)
Wq,s

be the successive

jump times of N during this season. Let Y
(q,s)
l = T

(q,s)
l − T

(q,s)
l−1 be the inter-event times in

season s (with T
(q,s)
0 = (q − 1) + τs−1). It is assumed that the starting distribution of J is its

unique stationary distribution a(Φ) on {1, . . . , r}, that is, the only row vector a(Φ) such that

a(Φ)L(Φ) = 0 and the sum of the entries of a(Φ) is equal to 1.

Let Zq = (Wq,s, Y
(q,s)
1 , . . . , Y

(q,s)
Wq,s

)1≤s≤k be the random vector representing the information

available for period number q. With this notation, the process (Zq)q≥1 is stationary because

J is a stationary Markov process. Besides, given the states of the irreducible Markov chain

(J(q))q∈N, the random variables Zq, q ≥ 1 are independent, so that arguing along the lines of
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the proof of Lemma 1 in Leroux [12] shows that the process (Zq)q≥1 is ergodic. We denote by

Z = (Ws, Y
(s)
1 , . . . , Y

(s)
Ws

)1≤s≤k a random vector which shares the distribution of the Zq, q ≥ 1.

Let then L1(Z,Φ) be the likelihood of the observations over one period, computed under the

parameter Φ: if z = (ws, y
(s)
1 , . . . , y

(s)
ws )1≤s≤k,

L1(z,Φ) = a(Φ)

[
k∏

s=1

{(
ws∏

l=1

f(y
(s)
l , s,Φ)

)
F

(
τs − τs−1 −

ws∑

l=1

y
(s)
l , s,Φ

)}]
1r

where 1r is the column vector of size r having all entries equal to 1. This quantity can be

expanded as:

L1(z,Φ) =
∑

i0,...,ik+1

ai0(Φ)

k∏

s=1

[
e′is−1

ws∏

l=1

f(y
(s)
l , s,Φ)

× F

(
τs − τs−1 −

ws∑

l=1

y
(s)
l , s,Φ

)
eis

]
(2.1)

where ej is the column vector of size r having all entries equal to 0 except the jth which is

equal to 1, and e′j is the transpose of ej. Following Rydén [24], we let

ST Ln(Φ) =
n∏

q=1

L1(Zq,Φ)

be the split-time likelihood (STL) of the observations. If the random variables Zq, q ≥ 1 were

independent, the STL would be the total likelihood of the observations. While these variables

are actually not independent, the sequence (Zq)q≥1 possesses regenerative properties, which

implies in particular that it possesses independence properties given a suitable sequence of

increasing random times; this is the key idea to the proofs of our main results (see the proof

of Theorem 2). An MSTL is then any parameter that maximizes the STL, or equivalently the

log-STL

logST Ln(Φ) =

n∑

q=1

logL1(Zq,Φ)

and an MSTLE is any estimator of an MSTL.

3 Asymptotic results

We shall write Φ ∼ Φ′ whenever the distributions of Z under PΦ and PΦ′ agree. The iden-

tifiability of the parameter Φ, or equivalently the determination of the equivalence class of Φ
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modulo ∼, is a difficult question; for the case of an MMPP, this was discussed in Rydén [26]. In

the special case when there is a season for which the jump intensities of N are distinct, which

shall be the case we consider in our simulation study and real data analysis, this problem does

however possess a simple solution:

Proposition 1. Let Φ ∈ E. Assume that for some s ∈ {1, . . . , k}, the matrix Λ(s)(Φ) pos-

sesses distinct diagonal elements. Then the equivalence class of Φ modulo ∼ reduces to those

parameters Φ′ obtained by permutation of the states of the underlying Markov process J .

Proof of Proposition 1. Let Φ′ be such that Φ ∼ Φ′ and (J,N) (resp. (J ′, N ′)) have distri-

bution PΦ (resp. PΦ′). By stationarity, the restriction of the process (J,N) (resp. (J ′, N ′)) to

the time interval [τs−1, τs] actually has the same distribution as the restriction of an MMPP

(J ,N ) (resp. (J ′,N ′)) with parameters (L(Φ),Λ(s)(Φ)) (resp. (L(Φ′),Λ(s)(Φ′))) to the time

interval [0, τs− τs−1]. Using again the stationarity property of the underlying Markov process,

it is then enough to show that these two processes are deduced from one another (in the distri-

butional sense) by a permutation of the states. Applying Corollary 1 in Rydén [26] completes

the proof.

Roughly speaking, in this case, the strong identifiability constraint on season s carries over, in

some sense, to the whole process by the stationarity property of J . Back to the general case,

the following consistency result holds:

Theorem 1. Let Φ0 ∈ E be the true value of the parameter and Φ0 be the equivalence class of

Φ0 modulo ∼. Let K be a compact subset of E such that Φ0 ∈ K and Φ̂n be the MSTLE for

Φ0 on K, computed over n periods. Then if O ⊂ K is an open set containing K ∩Φ0, one has

Φ̂n ∈ O almost surely for n large enough.

Proof of Theorem 1. The proof is similar to that of Theorem 1 in Rydén [24]: let Φ ∈ E be

such that Φ 6∼ Φ0 and GΦ be a neighborhood of Φ as in Lemma 2. If B(Φ, 1/q) denotes the

Euclidean open ball in E with center Φ and radius 1/q, the continuity of the map ϕ 7→ L1(Z,ϕ)

yields

sup
ϕ∈GΦ∩B(Φ,1/q)

logL1(Z,ϕ) → logL1(Z,Φ) as q → ∞.
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Noticing that

∣∣∣∣∣ sup
ϕ∈GΦ∩B(Φ,1/q)

logL1(Z,ϕ)

∣∣∣∣∣ ≤
∣∣∣∣ sup
ϕ∈GΦ

logL1(Z,ϕ)

∣∣∣∣ + | logL1(Z,Φ)|

the dominated convergence theorem implies

EΦ0

[
sup

ϕ∈GΦ∩B(Φ,1/q)

logL1(Z,ϕ)

]
→ EΦ0

[logL1(Z,Φ)] as q → ∞. (3.1)

Since Φ 6∼ Φ0, the information inequality (see Rao [21]) gives

EΦ0
[logL1(Z,Φ)] + 2ε < EΦ0

[logL1(Z,Φ0)] (3.2)

for some ε > 0. It is thus a consequence of (3.1) and (3.2) that there exists a (possibly different)

neighborhood GΦ of Φ with

EΦ0

[
sup

ϕ∈GΦ

logL1(Z,ϕ)

]
≤ EΦ0

[logL1(Z,Φ0)]− ε. (3.3)

Besides, since (Zq)q≥1 is ergodic,

1

n
sup

ϕ∈GΦ

logST Ln(ϕ) ≤ 1

n

n∑

q=1

sup
ϕ∈GΦ

logL1(Zq, ϕ) → EΦ0

[
sup

ϕ∈GΦ

logL1(Z,ϕ)

]

and
1

n
logST Ln(Φ0) =

1

n

n∑

q=1

logL1(Zq,Φ0) → EΦ0
[logL1(Z,Φ0)]

almost surely as n→ ∞. Hence

lim sup
n→∞

1

n
sup

ϕ∈GΦ

logST Ln(ϕ) ≤ EΦ0

[
sup

ϕ∈GΦ

logL1(Z,ϕ)

]
≤ EΦ0

[logL1(Z,Φ0)]− ε

almost surely as n → ∞, by (3.3). Finally, remark that the compact set Oc ∩K, where Oc is

the complement of O, may be covered by a finite number of such neighborhoods GΦi
, 1 ≤ i ≤ d;

this yields

sup
ϕ∈Oc∩K

{log ST Ln(ϕ)− logST Ln(Φ0)} ≤ max
1≤i≤d

{
sup

ϕ∈GΦi

logST Ln(ϕ)− logST Ln(Φ0)

}

which tends to −∞ almost surely as n→ ∞. As a consequence, necessarily Φ̂n ∈ O for n large

enough, which completes the proof.
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We now wish to obtain an asymptotic normality result for our estimator. In what follows,

we pick i0 ∈ {1, . . . , r} and we let ωk be the successive times when the Markov chain (J(q))

reaches i0:

ω1 = min{q ≥ 1 | J(q) = i0} and ∀k ≥ 1, ωk+1 = min{q > ωk | J(q) = i0}.

Let further P
i0
Φ (·) = PΦ(· | J(0) = i0) be the probability measure deduced from PΦ given that

J starts at i0.

Note that for every Φ ∈ E , since L(Φ) is the generator of an irreducible continuous-time Markov

chain on a finite state space, then 0 is an eigenvalue of the transpose L′(Φ) of L(Φ) with

multiplicity 1 and related normalized eigenvector a′(Φ). Since the map ϕ 7→ L′(ϕ) is infinitely

continuously differentiable in a neighborhood of Φ, a straightforward extension of Theorem 8 in

Chapter 9 of Lax [11] shows that the map ϕ 7→ a′(ϕ) is infinitely continuously differentiable in a

neighborhood of Φ. The function ϕ 7→ logL1(Z,ϕ) is thus infinitely continuously differentiable

in a neighborhood of the true parameter Φ0; if Ei0
Φ denotes the expectation under the measure

P
i0
Φ , we can set for Φ close enough to Φ0

hi(z,Φ) =
∂ logL1

∂ϕi
(z,Φ),

Aij(Φ) = E
i0
Φ

(
ω1∑

q=1

hi(Zq,Φ)hj(Zq,Φ)

)
,

Vij(Φ) = E
i0
Φ

(
ω1∑

p,q=1

hi(Zp,Φ)hj(Zq,Φ)

)
.

We assume that the matrix A(Φ) = (Aij(Φ)) is invertible for Φ = Φ0 and we let V (Φ) =

(Vij(Φ)), C(Φ) = [ai0(Φ)]
−1A−1(Φ)V (Φ)A−1(Φ) for Φ in a neighborhood of Φ0.

Our asymptotic normality result for Φ̂n is as follows:

Theorem 2. Let Φ0 ∈ E be the true value of the parameter and Φ0 be the equivalence class

of Φ0 modulo ∼. Assume that Φ0 lies in the interior of E and let K be a compact subset of E,

whose interior contains Φ0, such that K ∩Φ0 = {Φ0}. Let Φ̂n be the MSTLE computed on K

over n periods. Then

√
n(Φ̂n − Φ0)

d−→ N (0, C(Φ0)) as n→ ∞.
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Proof of Theorem 2. We start as in the proof of Theorem 4 in Rydén [24]. Condition

K ∩ Φ0 = {Φ0} ensures that Φ̂n → Φ0 almost surely as n → ∞. Especially, with probability

1, one has Φ̂n ∈ K for n large enough by Theorem 1. For such n, a Taylor expansion of the

i−th partial derivative of Φ 7→ logST Ln(Φ) at Φ0 implies that

T1,n :=
1√
n

n∑

q=1

hi(Zq,Φ0) = T2,n + T3,n (3.4)

where





T2,n := −
|E|∑

j=1

√
n(Φ̂n,j − Φ0,j)

[
1

n

n∑

q=1

∂2 logL1

∂ϕj∂ϕi
(Zq,Φ0)

]

T3,n := −1

2

|E|∑

j=1

√
n(Φ̂n,j − Φ0,j)




|E|∑

k=1

(Φ̂n,k − Φ0,k)
1

n

n∑

q=1

∂3 logL1

∂ϕk∂ϕj∂ϕi
(Zq, Φ̃n)


 ,

with Φ̃n some point on the line connecting Φ0 and Φ̂n. We start by dealing with the right-

hand side of equality (3.4). To this end, use Lemma 4 and the fact that the process (Zq)q≥1 is

ergodic to obtain

T2,n = −
|E|∑

j=1

√
n(Φ̂n,j − Φ0,j)EΦ0

(
∂2 logL1

∂ϕj∂ϕi
(Z,Φ0)

)
(1 + oP(1)).

Moreover, since
∂2 logL1

∂ϕj∂ϕi
=

1

L1

∂2L1

∂ϕj∂ϕi
− 1

L2
1

∂L1

∂ϕi

∂L1

∂ϕj
,

it is a consequence of Lemma 4 and of a differentiation under the expectation sign that

T2,n =

|E|∑

j=1

√
n(Φ̂n,j − Φ0,j)EΦ0

(hi(Z,Φ0)hj(Z,Φ0))(1 + oP(1))

= ai0(Φ0)

|E|∑

j=1

√
n(Φ̂n,j − Φ0,j)E

i0
Φ0

(
ω1∑

q=1

hi(Zq,Φ0)hj(Zq,Φ0)

)
(1 + oP(1)), (3.5)

by Lemma 6. Besides, Lemma 4, the ergodicity of (Zq)q≥1 and the consistency of Φ̂n entail

T3,n = oP




|E|∑

j=1

√
n(Φ̂n,j − Φ0,j)


 (3.6)
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as n→ ∞. Collecting (3.5) and (3.6), we obtain

T2,n + T3,n = ai0(Φ0)

|E|∑

j=1

√
n(Φ̂n,j − Φ0,j)E

i0
Φ0

(
ω1∑

q=1

hi(Zq,Φ0)hj(Zq,Φ0)

)
(1 + oP(1)) (3.7)

as n→ ∞. We now examine the asymptotic properties of T1,n: notice that (Zq)q≥1 is regener-

ative with associated cycle lengths (Cq = ωq−ωq−1)q≥1 (where we set ω0 = 0 for convenience),

that is:

• for each l ≥ 2, the random process (Cl+1+q , Zωl+q)q≥1 is independent of the ωj , 1 ≤ j ≤
l− 1 and its distribution does not depend on l;

• given (ωq)q≥1, q ≥ 1, the random vectors Zj , ωq−1 ≤ j ≤ ωq − 1 are independent.

We may thus apply a law of large numbers similar to the one proposed in Theorem 2 in

Rydén [24] (see also Asmussen [1]): this leads to

1√
n
T1,n =

1

n

n∑

q=1

hi(Zq,Φ0)
P−→ ai0(Φ0)E

i0
Φ0

(
ω1∑

q=1

hi(Zq,Φ0)

)
as n→ ∞

Besides, thanks to Lemma 4, we may once again differentiate under the integral sign to obtain

EΦ0
(hi(Z,Φ0)) = 0. Lemma 4 and the ergodicity of (Zq)q≥1 thus yield

1√
n
T1,n =

1

n

n∑

q=1

hi(Zq,Φ0) → 0 almost surely as n→ ∞.

Combining these last two convergences entails

E
i0
Φ0

(
ω1∑

q=1

hi(Zq,Φ0)

)
= 0.

Finally E
i0
Φ0

∣∣∣
∑ω1

q=1 hi(Zq,Φ0)
∣∣∣
2

< ∞, see Lemmas 4 and 5; applying a central limit theorem

similar to the one proposed in Theorem 3 in Rydén [24] then gives

T1,n =
1√
n

n∑

q=1

[
hi(Zq,Φ0)− ai0(Φ0)E

i0
Φ0

(
ω1∑

q=1

hi(Zq,Φ0)

)]

d−→ N (0, ai0(Φ0)V (Φ0)) as n→ ∞. (3.8)

Collecting (3.4), (3.7) and (3.8) concludes the proof.
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The interesting point about MSTLEs is that confidence regions for Φ0 may be computed fairly

easily, see Lemma 7: it is enough to compute the MSTLE Φ̂n with a numerical method, to

generate random copies of the process under the law PΦ̂n
and to apply the strong law of large

numbers to get an approximation of C(Φ̂n) and hence of C(Φ0).

We close this section by noting that Lemma 6 makes it possible to give further insight on the

non-singularity of A(Φ0). If A(Φ0) were singular then, by Lemma 6, we would have

∃j ∈ {1, . . . , |E|}, ∀i ∈ {1, . . . , |E|}, EΦ0
(hi(Z,Φ0)hj(Z,Φ0)) =

|E|∑

ℓ=1
ℓ 6=j

γℓEΦ0
(hi(Z,Φ0)hℓ(Z,Φ0))

where the γℓ are real constants. It is then straightforward that

EΦ0





hj(Z,Φ0)−

|E|∑

ℓ=1
ℓ 6=j

γℓhℓ(Z,Φ0)




2
 = 0

so that the partial derivatives of logL1(·,Φ0) are linearly dependent. The structure of the

log-likelihood (over one period) being highly non-linear, one may therefore expect that A(Φ0)

will be invertible in the vast majority of cases.

4 Simulation study and real data analysis

4.1 Practical implementation

The MSTLE is typically computed using a (quasi-)Newton algorithm. Such an algorithm being

iterative, we give a method to start it in practice. Let wq,s be the number of jumps of N during

season s of the period q, t
(q,s)
1 , . . . , t

(q,s)
wq,s be the successive jump times of N during this season

and let u
(q,s)
l = t

(q,s)
l − τs−1 − (q − 1)(1− (τs − τs−1)), 1 ≤ l ≤ wq,s.

For all 1 ≤ s ≤ k, we treat the data Ds = (u
(q,s)
l )q,l as if it were as a sample of a univariate

MMPP with parameters Φ(s) = (L, λ
(s)
1 , . . . , λ

(s)
r ). An EM algorithm is then used to provide

a first estimate of Φ(s); the initial estimation procedure is a straightforward adaptation of the

one in Guillou et al. [7].

Let (L̃(s), λ̃
(s)
1 , . . . , λ̃

(s)
r ) be the EM estimations obtained with this procedure. The EM algo-

rithms involved may have switched some of the parameters: we thus note, if M = (mij) is a
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square matrix having size r and σ is a permutation of {1, . . . , r}, M ◦ σ = (mσ(i)σ(j)). Let, for

such permutations σ1, . . . , σk,

L̃(σ1,...,σk) =
1

k

k∑

s=1

L̃(s) ◦ σs

and

Φ̃(σ1,...,σk) = (L̃(σ1,...,σk), (λ̃
(s)
σs(1)

, . . . , λ̃
(s)
σs(r)

)1≤s≤k).

We then run the optimization algorithm starting from each of these values: in doing so, we

obtain estimates Φ̂(σ1,...,σk) of the parameters. Finally, we compute

(σ0
1 , . . . , σ

0
k) = argmax

σ1,...,σk

ST Ln(Φ̂
(σ1,...,σk))

and our MSTLE is Φ̂ = Φ̂(σ0
1 ,...,σ

0
k).

4.2 Simulation study

In this section, we examine how our estimator behaves on a finite sample situation. We are

motivated by climate-related statistical problems such as the impact of the El Niño-La Niña

cycle on hurricane risk. We choose reasonable parameters for a simple illustration, but cannot

claim that those parameters are estimated on a real data set, simply because it is very hard to

understand the impact of this effect on hurricane frequency. We consider the situation r = 2,

that is, the underlying Markov process J is a two-state continuous-time Markov process. We

further choose k = 2 and τ1 = 1/2, so that any period is divided into two seasons of equal

length. The following cases are considered:

• Case 1: ℓ12 = 1, ℓ21 = 2, λ
(1)
1 = 1, λ

(1)
2 = 5, λ

(2)
1 = 5, λ

(2)
2 = 25.

• Case 2: ℓ12 = 3, ℓ21 = 10, λ
(1)
1 = 1, λ

(1)
2 = 5, λ

(2)
1 = 5, λ

(2)
2 = 25.

• Case 3: ℓ12 = 1, ℓ21 = 2, λ
(1)
1 = 1/2, λ

(1)
2 = 5, λ

(2)
1 = 5/2, λ

(2)
2 = 25.

For each of these cases, we consider the situations n = 50 and n = 100. Our estimation

procedure is carried out on S = 100 replications of the considered process. In each case,

we compute the mean and median L1−error related to each parameter. We also computed

asymptotic 95% confidence intervals (ACI) with the help of Theorem 2 and Lemma 7; we
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display the mean and median half-length of these intervals as well as the estimated coverage

probabilities in Tables 1–3.

Following the intuition, the jump intensities are estimated more accurately when the ratio

of the claim frequencies in different states is further from 1. This is because identifying the

hidden states of J is easier when both regimes of the process are further apart, and thus more

information on the process can be recovered in such cases. Besides, estimating the elements of

L is harder than estimating the jump intensities since J is unobserved, which is confirmed by

our results. Coverage probabilities are globally satisfying; although they are fairly low in case

2 for n = 50, they improve to reasonable levels for n = 100.

From this simulation study, one can see that in practice, if an insurance company had around

50 or 100 years of data, which would be an ideal situation, for intensities like the ones we

chose (as far as the El Niño-La Niña-related problem on hurricane risk is concerned, 5 times

as many hurricanes during the hurricane season as in the other one, and 5 times as many

hurricanes during a bad El Niño-La Niña phase as in a favorable one), it is feasible to estimate

the parameters with an average relative error of around 10 to 20%. Of course, we have taken

here a quite favorable case, as we have only two states of the environment and two seasons

with fixed intensities. Considering 5 or more states and 4 seasons would require a period of

observation too long for the approach to be reasonable. However, in most hidden Markov

models in insurance and finance, the number of states is 2 or 3. In the near future, one could

probably refine these estimations thanks to partial observations of the environment process, as

climatologists understand better and better the El Niño-La Niña phenomenon and its impact

on insurance perils.

4.3 Real data analysis

In this section, we focus on extreme climate events (large bushfires, cyclones, floods, hail,

storms, tornados, tsunamis) experienced by Australia from March 1967 to March 2012. During

this timeframe, 193 such extreme events were observed. Their frequency is largely influenced

by a seasonality effect; the first “season” we consider is fall-winter, which in Australia roughly

corresponds to the end of March until the end of September, and the second one is spring-

summer, namely from the beginning of October to mid-March. Moreover, extreme climate
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events tend to be influenced by external effects such as the El Niño-La Niña phenomenon or

even global phenomena like climate change, which motivates the use of our technique on this

data set. Our unit of time is the standard calendar year; our data is represented in Fig. 1 and

our estimates are given in Table 4. A reconstruction of the underlying process J , carried out

by a straightforward adaptation of the Viterbi algorithm (see Viterbi [31]) to our case, is given

in Fig. 2.

The algorithm seems to identify an underlying process J with very small transition rates. A

consequence of this is that the confidence intervals for the elements of L are poor. This is not

the case however for the jump intensities, and the algorithm confirms that in a given state of

J , the intensities in both seasons are significantly different, thus emphasizing the importance

of taking into account the seasonality effect. Furthermore, the frequency of extreme climate

events is significantly higher in the spring-summer season, which was expected at least as far as

bushfires, cyclones and storms were concerned. We underline that, due to the fact that there are

very few transitions of J , the Markov assumption on this process is questionable; nevertheless,

as already observed in Guillou et al. [7] on real sets of non-life and life insurance data, the

algorithm correctly matches a point where the slope of N sharply increases with a breakpoint

in the data set where the hidden process switches from state 2 to state 1, thus leading to

higher frequencies of jumps of the counting process. We thus believe that our approach is

superior to a naive model using seasonal versions of several different Poisson processes since

such an approach would not be helpful in identifying potential unknown breakpoints in the

global structure of the model. It is also superior to the use of a classical MMPP approach as

in Guillou et al. [7] which would not be able to handle the seasonal components of the data.

5 Conclusion and discussion

In this paper, we introduce an MMPP featuring seasonality for which we discuss estimation

issues when the environment process is unobserved. After establishing the main asymptotic

properties of the resulting estimator, we illustrate its performance on a small simulation study

in which we observe that the number of states is crucial. We conclude our numerical section by

a real data analysis on extreme climate events in Australia on which our developed methodology
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seems to perform well. In the real data study, the Markov assumption is of course questionable,

as well as the absence of impact of climate change on the parameters. Extending the number

of states in order to get a Markov process is feasible in theory, but would lead to estimation

problems that would not be tractable in practice. Another problem, when considering climate-

related problems such as the motivating hurricane risk example, is that in different states of

the environment, the seasons may be longer or shorter, as conditions are more or less met for

events to happen. This is not considered here and would require further theoretical analysis;

linked to this concern, if one had further details about the events and access to meteorological

data, it would of course be relevant to distinguish between categories of extreme events and

to carry out a more detailed analysis. Having said that, even if ENSO values were available,

their measure would not be precise enough and their link with claim intensity and frequency

would still be too loose to use credibility adjustments at this stage, although it is likely to be

possible in the near future. Finally, note that we focus here on frequency of extreme events,

but of course for the insurer the claim amounts are important. Nevertheless, our approach

accounts for periods of time when there are significantly more events, which is very important

for reinsurance and risk management purposes.
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Appendix: technical lemmas and proofs

The first result is a necessary step to obtain the strong consistency of our estimator.

Lemma 1. For every ϕ ∈ E and z = (ws, y
(s)
1 , . . . , y

(s)
ws )1≤s≤k, one has

m(rm)k+2(rm)w1+···+wk ≤ L1(z, ϕ) ≤M(rM)k+2(rM)w1+···+wk

where

M := max

{
1,max

j,s
λ
(s)
j (ϕ)

}
<∞

and if Ks := [0, τs − τs−1],

m := min

{
min
i
ai(ϕ),min

i,j,s
min
y∈Ks

fij(y, s,Φ),min
i,j,s

min
y∈Ks

F ij(y, s,Φ)

}
> 0.

Proof of Lemma 1. Start by remarking that

Fαβ(y, s, ϕ) = [exp(y(L(ϕ)− Λ(s)(ϕ)))]αβ = P(J(y) = β,N (s)(y) = 0 | J(0) = α) ≤ 1

when (J,N (s)) is an MMPP with transition intensity matrix L(ϕ) and jump intensity matrix

Λ(s)(ϕ), see Meier-Hellstern [16]. Therefore, for every y ≥ 0, one has Fαβ(y, s, ϕ) ≤ M and

fαβ(y, s, ϕ) ≤M . Using (2.1), we immediately obtain

L1(z, ϕ) ≤M(rM)k+2(rM)w1+···+wk .

Besides, the compactness of Ks and the continuity of the maps involved entail

min
i,j,s

min
y∈Ks

fij(y, s,Φ) > 0 and min
i,j,s

min
y∈Ks

F ij(y, s,Φ) > 0

so that m > 0. Hence, using (2.1), the inequality

L1(z, ϕ) ≥ m(rm)k+2(rm)w1+···+wk

which completes the proof.

A second pivotal tool is the following technical lemma:

Lemma 2. For every Φ ∈ E, there exists a neighborhood GΦ of Φ in E such that

EΦ0

∣∣∣∣ sup
ϕ∈GΦ

logL1(Z,ϕ)

∣∣∣∣ <∞.
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Proof of Lemma 2. Let GΦ be a neighborhood of Φ, A =

{
sup

ϕ∈GΦ

L1(Z,ϕ) ≤ 1

}
and write

EΦ0

∣∣∣∣ sup
ϕ∈GΦ

logL1(Z,ϕ)

∣∣∣∣ = EΦ0

[
sup

ϕ∈GΦ

logL1(Z,ϕ)1lAc

]
− EΦ0

[
sup

ϕ∈GΦ

logL1(Z,ϕ)1lA

]

≤ EΦ0

[
sup

ϕ∈GΦ

logL1(Z,ϕ)1lAc

]
− EΦ0

[logL1(Z,Φ)1lA] . (B.1)

The goal is to show that the quantity in the right-hand side of this inequality is finite for

a suitable choice of the neighborhood GΦ of Φ in E . Let z = (ws, y
(s)
1 , . . . , y

(s)
ws )1≤s≤k and

GΦ be a compact neighborhood of Φ such that ϕ 7→ a(ϕ) is continuous on GΦ and M :=

supϕ∈GΦ
max

{
1,maxj,s λ

(s)
j (ϕ)

}
<∞. Since the logarithm function is increasing, using Lemma 1

we deduce that

EΦ0

[
sup

ϕ∈GΦ

logL1(Z,ϕ)1lAc

]
≤ logM +

[
k + 2 +

k∑

s=1

EΦ0
(Ws)

]
log rM <∞ (B.2)

since EΦ0
(Ws) <∞ for all s. Furthermore, using Lemma 1, we have

− EΦ0
[logL1(Z,Φ)1lA] ≤ | logm|+

[
k + 2 +

k∑

s=1

EΦ0
(Ws)

]
| log rm| <∞. (B.3)

for some m > 0. Using together (B.1), (B.2) and (B.3) concludes the proof.

The next result shows that for every i0 ∈ {1, . . . , r}, the survival function of the random time

ω1 = min{q ≥ 1 | J(q) = i0} converges to 0 geometrically fast.

Lemma 3. For every i0 ∈ {1, . . . , r}, there exists a neighborhood G of Φ0 and a constant

c ∈ (0, 1) such that

∀k ∈ N, sup
Φ∈G

P
i0
Φ (ω1 > k) ≤ ck.

In particular, Ei0
Φ0

(ωk
1 ) <∞ for every k ≥ 1.

Proof of Lemma 3. The result is obviously true for k = 0. Pick k ≥ 1 and note that

P
i0
Φ (ω1 > k) =

∑

j 6=i0

P
i0
Φ (J(1) 6= i0, . . . , J(k − 2) 6= i0, J(k − 1) = j, J(k) 6= i0)

=
∑

j 6=i0

P
i0
Φ (J(1) 6= i0, . . . , J(k − 2) 6= i0, J(k − 1) = j)Pj

Φ(J(1) 6= i0).(B.4)
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Set, for i, j ∈ {1, . . . , r}, Pij(Φ) := P
i
Φ(J(1) = j) = [exp(L(Φ))]ij . In particular, the maps

Φ 7→ Pij(Φ) are continuous. Moreover, since the Markov process J is irreducible, it holds that

Pij(Φ) > 0 for all i and j. Consequently

0 < c = max
j 6=i0

sup
Φ∈G

P
j
Φ(J(1) 6= i0) < 1.

Using (B.4) entails

sup
Φ∈G

P
i0
Φ (ω1 > k) ≤ c sup

Φ∈G
P
i0
Φ (ω1 > k − 1)

which gives the desired result by induction on k.

A key element in the proof of Theorem 2 is to show the following technical result:

Lemma 4. There exists a neighborhood G of Φ0 in E and positive constants C, C′ such that

for any i, j, ℓ:

sup
ϕ∈G

max

{
1

L1(Z,ϕ)
,L1(Z,ϕ),

∣∣∣∣
∂L1

∂ϕi
(Z,ϕ)

∣∣∣∣ ,
∣∣∣∣
∂2L1

∂ϕi∂ϕj
(Z,ϕ)

∣∣∣∣ ,
∣∣∣∣

∂3L1

∂ϕi∂ϕj∂ϕℓ
(Z,ϕ)

∣∣∣∣
}

≤ C exp

(
C′

k∑

s=1

Ws

)
.

Especially, there exist (possibly different) positive constants C, C′ such that for any i, j, ℓ:

sup
ϕ∈G

max

{
|logL1(Z,ϕ)| ,

∣∣∣∣
∂ logL1

∂ϕi
(Z,ϕ)

∣∣∣∣ ,
∣∣∣∣
∂2 logL1

∂ϕi∂ϕj
(Z,ϕ)

∣∣∣∣ ,
∣∣∣∣
∂3 logL1

∂ϕi∂ϕj∂ϕℓ
(Z,ϕ)

∣∣∣∣
}

≤ C exp

(
C′

k∑

s=1

Ws

)
,

the right-hand side of the above inequality defines a random variable with finite PΦ0
−moments

and for all i1, i and j,

E
i1
Φ0

[
sup
ϕ∈G

|hi(Z,ϕ)hj(Z,ϕ)|
]
<∞.

Proof of Lemma 4. Assume that G is a neighborhood of Φ0 such that ϕ 7→ a(ϕ) is continuous

on G and inf
ϕ∈G

min
j,s

λ
(s)
j (ϕ) > 0. If Ks = [0, τs− τs−1] then for any ϕ ∈ G, the ideas of the proof

of Lemma 1 yield

m := inf
ϕ∈G

{
min
i
ai(ϕ), min

y∈Ks

min
i,j,s

fij(y, s,Φ), min
y∈Ks

min
i,j,s

F ij(y, s,Φ)

}
> 0.
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For all ϕ ∈ G and every z = (ws, y
(s)
1 , . . . , y

(s)
ws )1≤s≤k, Lemma 1 entails

L1(z, ϕ) ≥ m(rm)k+2(rm)w1+···+wk . (B.5)

If moreover G is a neighborhood of Φ0 with sup
ϕ∈G

max
i,j

ℓij(ϕ) < ∞ and sup
ϕ∈G

max
j,s

λ
(s)
j (ϕ) < ∞

then similarly

M1 := sup
ϕ∈G

{
max

i
ai(ϕ),max

i,j,s
max
y∈Ks

fij(y, s,Φ),max
i,j,s

max
y∈Ks

F ij(y, s,Φ)

}
<∞.

Let further

M2 = sup
ϕ∈G

max
n,p,s

max
ℓ

max
y∈Ks

{∣∣∣∣
∂fnp
∂ϕℓ

(y, s, ϕ)

∣∣∣∣ ,
∣∣∣∣
∂Fnp

∂ϕℓ
(y, s, ϕ)

∣∣∣∣
}
,

M3 = sup
ϕ∈G

max
n,p,s

max
ℓ,q

max
y∈Ks

{∣∣∣∣
∂2fnp
∂ϕℓ∂ϕq

(y, s, ϕ)

∣∣∣∣ ,
∣∣∣∣
∂2Fnp

∂ϕℓ∂ϕq
(y, s, ϕ)

∣∣∣∣
}

and M4 = sup
ϕ∈G

max
n,p,s

max
ℓ,q,r

max
y∈Ks

{∣∣∣∣
∂3fnp

∂ϕℓ∂ϕq∂ϕr
(y, s, ϕ)

∣∣∣∣ ,
∣∣∣∣

∂3Fnp

∂ϕℓ∂ϕq∂ϕr
(y, s, ϕ)

∣∣∣∣
}

and note that M = max{M1,M2,M3,M4} <∞. Equation (2.1), inequality (B.5) and tedious

computations may then be used to show that one may find positive constants C, C′ such that

sup
ϕ∈G

max

{
1

L1(Z,ϕ)
,L1(Z,ϕ),

∣∣∣∣
∂L1

∂ϕi
(Z,ϕ)

∣∣∣∣ ,
∣∣∣∣
∂2L1

∂ϕi∂ϕj
(Z,ϕ)

∣∣∣∣ ,
∣∣∣∣

∂3L1

∂ϕi∂ϕj∂ϕℓ
(Z,ϕ)

∣∣∣∣
}

≤ C exp

(
C′

k∑

s=1

Ws

)
.

Consequently

sup
ϕ∈G

max

{
|logL1(Z,ϕ)| ,

∣∣∣∣
∂ logL1

∂ϕi
(Z,ϕ)

∣∣∣∣ ,
∣∣∣∣
∂2 logL1

∂ϕi∂ϕj
(Z,ϕ)

∣∣∣∣ ,
∣∣∣∣
∂3 logL1

∂ϕi∂ϕj∂ϕℓ
(Z,ϕ)

∣∣∣∣
}

≤ C exp

(
C′

k∑

s=1

Ws

)
,

for (possibly different) positive constants C, C′. Finally, since for every s ∈ {1, . . . , k}, Ws

is a Poisson distributed random variable, one has EΦ0
(xWs) < ∞ for all s and x > 0, which

proves that the right-hand side of the inequality above defines a random variable having finite

PΦ0
−moments. The second part of the lemma is thus a straightforward consequence of the

above inequality.
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The next result shall be used to check a couple of integrability conditions used in the proof of

Theorem 2.

Lemma 5. Assume that ψ is a Borel measurable nonnegative function. We consider the

random variable U =
∑ω1

q=1 ψ(Zq).

• If EΦ0
(ψ(Z)) <∞ then for every i0 ∈ {1, . . . , r}, Ei0

Φ0
(U) <∞.

• If EΦ0
(ψ2(Z)) <∞ then for every i0 ∈ {1, . . . , r}, Ei0

Φ0
(U2) <∞.

Proof of Lemma 5. We start by remarking that for any l ≥ 1, if EΦ0
(ψl(Z)) < ∞ then for

any i1:

E
i1
Φ0

|ψl(Z)| ≤ EΦ0
|ψl(Z)|

ai1(Φ0)
<∞

since ai1(Φ0) > 0. To prove the first statement, we then write

E
i0
Φ0

(U) =

∞∑

N=1

E
i0
Φ0

(
N∑

q=1

ψ(Zq)1l{ω1=N}

)
=

∞∑

q=1

E
i0
Φ0

(ψ(Zq)1l{ω1≥q}).

Since {ω1 ≥ q} =
⋂q−1

l=0 {J(l) 6= i0}, the hidden Markov structure of (Zq) yields

E
i0
Φ0

(U) =

∞∑

q=1

∑

i1 6=i0

E
i1
Φ0

(ψ(Z))Pi0
Φ0

(ω1 ≥ q, J(q) = i1) ≤ E
i0
Φ0

(ω1)max
i1

E
i1
Φ0

(ψ(Z)).

Since the Markov chain (J(q)) is irreducible on {1, . . . , r} and has stationary distribution

a(Φ0), one has E
i0
Φ0

(ω1) = 1/ai0(Φ0) < ∞, from which we deduce that the right-hand side is

finite.

We now turn to the second part of the lemma. Note that

E
i0
Φ0

(U2) =

∞∑

N=1

E
i0
Φ0

(
N∑

p,q=1

ψ(Zp)ψ(Zq)1l{ω1=N}

)

=

∞∑

N=1

N∑

q=1

E
i0
Φ0

(
ψ2(Zq)1l{ω1=N}

)
+ 2

∞∑

N=1

E
i0
Φ0




N∑

p,q=1
p<q

ψ(Zp)ψ(Zq)1l{ω1=N}


 .

We already know from the first statement of the lemma that

∞∑

N=1

N∑

q=1

E
i0
Φ0

(ψ2(Zq)1l{ω1=N}) = E
i0
Φ0

(
ω1∑

q=1

ψ2(Zq)

)
<∞.
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Further, for all Borel nonnegative functions f1, . . . , fN and all i1, . . . , iN , the hidden Markov

structure of (Zq) entails

E
i0
Φ0

(
f1(Z1) · · · fN (ZN)1l{J(1)=i1,..., J(N)=iN}

)

=

[
N∏

q=1

E
i0
Φ0

(fq(Zq) | J(q − 1) = iq−1, J(q) = iq)

]
P
i0
Φ0

(
N⋂

q=1

{J(q) = iq}
)

=

[
N∏

q=1

E
iq−1

Φ0
(fq(Z1) | J(1) = iq)

]
P
i0
Φ0

(
N⋂

q=1

{J(q) = iq}
)
.

Since we may write

{ω1 = N} =


 ⋃

j1,...,jN−1 6=i0

N−1⋂

q=1

{J(q) = jq}


 ∩ {J(N) = i0}

it is straightforward that

∞∑

N=1

E
i0
Φ0




N∑

p,q=1
p<q

ψ(Zp)ψ(Zq)1l{ω1=N}


 ≤

[
max
i1,i2

E
i1
Φ0

(ψ(Z) | J(1) = i2)

]2
E
i0
Φ0

(ω2
1)

which is finite since E
i0
Φ0

(ω2
1) <∞, see Lemma 3.

Lemma 6 is the key to the conclusion of the proof of Theorem 2.

Lemma 6. Assume that ψ is a Borel measurable function such that EΦ0
|ψ(Z)| <∞. Then

EΦ0
(ψ(Z)) = ai0(Φ0)E

i0
Φ0

(
ω1∑

q=1

ψ(Zq)

)
.

Proof of Lemma 6. The ergodicity of the process (Zq)q≥1 entails

1

n

n∑

q=1

ψ(Zq) → EΦ0
(ψ(Z)) almost surely as n→ ∞.

Besides, Lemma 5 yields E|∑ω1

q=1 ψ(Zq)| <∞, so that the regenerative properties of (Zq) and

a law of large numbers similar to the one proposed in Theorem 2 in Rydén [24] give

1

n

n∑

q=1

ψ(Zq)
P−→ ai0(Φ0)E

i0
Φ0

(
ω1∑

q=1

ψ(Zq)

)
as n→ ∞

from which the result follows.
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Lemma 7 below is the essential result needed to construct confidence regions for the estimator.

Lemma 7. If Φn → Φ0 as n→ ∞, one has C(Φn) → C(Φ0) as n→ ∞.

Proof of Lemma 7. We shall show that if Φn → Φ0, then A(Φn) → A(Φ0) as n→ ∞. Let n

be so large that Φn belongs to a (compact) neighborhood G of Φ0 as in Lemma 4. Using the

definition of A, one has:

|Aij(Φn)−Aij(Φ0)| ≤
∣∣∣∣∣E

i0
Φn

(
ω1∑

q=1

hi(Zq,Φn)hj(Zq,Φn)

)
− E

i0
Φ0

(
ω1∑

q=1

hi(Zq,Φn)hj(Zq,Φn)

)∣∣∣∣∣

+

∣∣∣∣∣E
i0
Φ0

(
ω1∑

q=1

hi(Zq,Φn)hj(Zq,Φn)

)
− E

i0
Φ0

(
ω1∑

q=1

hi(Zq,Φ0)hj(Zq,Φ0)

)∣∣∣∣∣ .

Applying Lemma 6 and differentiating under the expectation sign yields for any Φ ∈ G

E
i0
Φ0

(
ω1∑

q=1

hi(Zq,Φ)hj(Zq,Φ)

)
=

1

ai0(Φ0)
EΦ0

[
−∂

2 logL1

∂ϕi∂ϕj
(Z,Φ)

]
.

Lemma 4 and the dominated convergence theorem thus entail
∣∣∣∣∣E

i0
Φ0

(
ω1∑

q=1

hi(Zq,Φn)hj(Zq,Φn)

)
− E

i0
Φ0

(
ω1∑

q=1

hi(Zq,Φ0)hj(Zq,Φ0)

)∣∣∣∣∣→ 0 as n→ ∞.

Afterwards, notice that for every Φ ∈ E

E
i0
Φ

(
ω1∑

q=1

hi(Zq,Φn)hj(Zq,Φn)

)
=
∑

i1 6=i0

∞∑

q=1

E
i1
Φ (hi(Z,Φn)hj(Z,Φn))P

i0
Φ (ω1 ≥ q, J(q − 1) = i1)

so that
∣∣∣∣∣E

i0
Φn

(
ω1∑

q=1

hi(Zq,Φn)hj(Zq,Φn)

)
− E

i0
Φ0

(
ω1∑

q=1

hi(Zq,Φn)hj(Zq,Φn)

)∣∣∣∣∣ ≤ r1,n + r2,n

with

r1,n = C
∑

i1 6=i0
q≥1

∣∣Pi0
Φn

(ω1 ≥ q, J(q − 1) = i1)− P
i0
Φ0

(ω1 ≥ q, J(q − 1) = i1)
∣∣

and r2,n = max
i1

∣∣Ei1
Φn

(hi(Z,Φn)hj(Z,Φn))− E
i1
Φ0

(hi(Z,Φn)hj(Z,Φn))
∣∣∑

q≥1

P
i0
Φn

(ω1 ≥ q)

where we set

C = max
i1

E
i1
Φ0

[
sup
ϕ∈G

|hi(Z,ϕ)hj(Z,ϕ)|
]
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which is finite by Lemma 4. We start by controlling r1,n. Set Pij(Φ) = P
i
Φ(J(1) = j) as in the

proof of Lemma 3. For all q ≥ 1 and j 6= i0,

P
i0
Φn

(ω1 ≥ q, J(q − 1) = j) =
∑

i1,...,iq−2 6=i0

Pi0,i1(Φn) · · ·Piq−2,j(Φn)

→
∑

i1,...,iq−2 6=i0

Pi0,i1(Φ0) · · ·Piq−2,j(Φ0) as n→ ∞

= P
i0
Φ0

(ω1 ≥ q, J(q − 1) = j).

Besides, Lemma 3 entails that there exists a constant c ∈ (0, 1) such that for all j 6= i0 and

q ≥ 1:

sup
n≥1

|Pi0
Φn

(ω1 ≥ q, J(q − 1) = j)− P
i0
Φ0
(ω1 ≥ q, J(q − 1) = j)| ≤ 2cq−1

so that the dominated convergence theorem gives r1,n → 0 as n → ∞. To control r2,n, use

Lemma 3 to get for all n

r2,n ≤ 1

1− c
max
i1

∣∣Ei1
Φn

(hi(Z,Φn)hj(Z,Φn))− E
i1
Φ0

(hi(Z,Φn)hj(Z,Φn))
∣∣ .

To prove that the right-hand side of this inequality converges to 0 as n → ∞, pick p ≥ 1 and

let ‖W‖ =
∑k

s=1Ws be the total number of events over one period. For any i1, it holds that

∣∣Ei1
Φn

(hi(Z,Φn)hj(Z,Φn))− E
i1
Φ0

(hi(Z,Φn)hj(Z,Φn))
∣∣

≤
∣∣Ei1

Φn
(hi(Z,Φn)hj(Z,Φn)1l{‖W‖≤p})− E

i1
Φ0

(hi(Z,Φn)hj(Z,Φn)1l{‖W‖≤p})
∣∣

+ E
i1
Φn

[
sup
ϕ∈G

|hi(Z,ϕ)hj(Z,ϕ)|1l{‖W‖>p}

]
+ E

i1
Φ0

[
sup
ϕ∈G

|hi(Z,ϕ)hj(Z,ϕ)|1l{‖W‖>p}

]
.

Since the state space of J is finite, it is enough to prove that the right-hand side of this

inequality converges to 0 as n → ∞. Using Lemma 4, we may find positive constants C1, C2

such that

E
i1
Φn

[
sup
ϕ∈G

|hi(Z,ϕ)hj(Z,ϕ)|1l{‖W‖>p}

]
+ E

i1
Φ0

[
sup
ϕ∈G

|hi(Z,ϕ)hj(Z,ϕ)|1l{‖W‖>p}

]

≤ C1

[
E
i1
Φn

(exp(C2‖W‖)1l{‖W‖>p}) + E
i1
Φ0

(exp(C2‖W‖)1l{‖W‖>p})
]
.

Pick now ε > 0. Since sup
ϕ∈G

max
i,j

λ
(i)
j (ϕ) <∞, one has

sup
Φ∈G

E
i1
Φ (C

‖W‖
3 exp(C4‖W‖)) <∞.
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Consequently, one can choose p ∈ N \ {0} such that for every n

E
i1
Φn

[
sup
ϕ∈G

|hi(Z,ϕ)hj(Z,ϕ)|1l{‖W‖>p}

]
+ E

i1
Φ0

[
sup
ϕ∈G

|hi(Z,ϕ)hj(Z,ϕ)|1l{‖W‖>p}

]
≤ 2ε/3.

It is then enough to prove that for all fixed q ≥ 0,

∣∣Ei1
Φn

(hi(Z,Φn)hj(Z,Φn)1l{‖W‖=q})− E
i1
Φ0

(hi(Z,Φn)hj(Z,Φn)1l{‖W‖=q})
∣∣→ 0

as n → ∞. Note that Z may be written Z = (W,Y ) where W = (W1, . . . ,Wk) and Y is the

list of inter-event times in year one. Therefore, if L1(w, y,Φ0 | i1) is the likelihood of (w, y)

given that J(0) = i1, we may write

∣∣Ei1
Φn

(hi(Z,Φn)hj(Z,Φn)1l{‖W‖=q})− E
i1
Φ0

(hi(Z,Φn)hj(Z,Φn)1l{‖W‖=q})
∣∣

≤
∑

‖w‖=q

∫
sup
ϕ∈G

|hi(w, y, ϕ)hj(w, y, ϕ)|1l{‖w‖=q}|L1(w, y,Φn | i1)− L1(w, y,Φ0 | i1)|dy

where, for a given w = (w1, . . . , wk), the integral in the right-hand side is on the y =

(y
(s)
1 , . . . , y

(s)
ws )1≤s≤k whose components are nonnegative and are such that for every s ∈

{1, . . . , k}, ∑ws

l=1 y
(s)
l ≤ τs − τs−1. Since L1 is a continuous function of the parameters, the

integrand goes to 0 everywhere as n→ ∞. Furthermore, this function is bounded from above

by the function

(w, y) 7→ 2 sup
ϕ∈G

|hi(w, y, ϕ)hj(w, y, ϕ)|1l{‖w‖=q} sup
ϕ∈G

L1(w, y, ϕ | i1).

By Lemma 4 and the irreducibility of J , there exists a positive constant Cq such that

2 sup
ϕ∈G

|hi(w, y, ϕ)hj(w, y, ϕ)|1l{‖w‖=q} sup
ϕ∈G

L1(w, y, ϕ | i1) ≤ Cq.

Finally, for every t > 0, the simplex

{
(y1, . . . , yws

)

∣∣∣∣∣

ws∑

i=1

yi ≤ t and ∀i, yi ≥ 0

}

is contained in the hypercube
∏ws

i=1{yi | 0 ≤ yi ≤ t}, whose volume is tws < ∞. The domi-

nated convergence theorem consequently gives A(Φn) → A(Φ0) as n → ∞. The convergence

V (Φn) → V (Φ0) as n→ ∞ is obtained in the same way.
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Table 1: Mean and median L1−errors associated to the estimators in case 1.

ℓ12 ℓ21 λ
(1)
1 λ

(1)
2 λ

(2)
1 λ

(2)
2

Case 1

n = 50

Mean L1−error 0.303 0.683 0.381 0.866 0.774 2.506

Median L1−error 0.247 0.544 0.239 0.586 0.708 1.893

Mean half–length
0.818 1.740 0.791 2.177 1.611 5.380

of the 95% ACI

Median half–length
0.766 0.837 0.886 2.082 1.570 5.184

of the 95% ACI

Coverage probabilities
0.93 0.93 0.92 0.95 0.92 0.88

of the 95% ACI

n = 100

Mean L1−error 0.307 0.547 0.248 0.657 0.487 1.629

Median L1−error 0.234 0.423 0.176 0.510 0.384 1.259

Mean half–length
0.632 1.208 0.561 1.529 1.194 3.704

of the 95% ACI

Median half–length
0.613 1.097 0.551 1.460 1.155 3.582

of the 95% ACI

Coverage probabilities
0.88 0.92 0.94 0.91 0.93 0.94

of the 95% ACI
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Table 2: Mean and median L1−errors associated to the estimators in case 2.

ℓ12 ℓ21 λ
(1)
1 λ

(1)
2 λ

(2)
1 λ

(2)
2

Case 2

n = 50

Mean L1−error 1.593 4.228 0.692 2.448 1.207 5.341

Median L1−error 1.372 3.504 0.472 1.773 1.030 4.182

Mean half–length
3.528 9.221 1.219 4.549 2.510 11.258

of the 95% ACI

Median half–length
3.036 7.936 1.034 3.682 2.362 10.473

of the 95% ACI

Coverage probabilities
0.79 0.83 0.84 0.79 0.86 0.91

of the 95% ACI

n = 100

Mean L1−error 1.304 3.145 0.483 1.715 0.847 3.599

Median L1−error 0.816 2.184 0.262 1.272 0.654 2.980

Mean half–length
2.893 7.323 0.882 3.115 1.875 8.269

of the 95% ACI

Median half–length
2.429 6.393 0.764 2.788 1.749 7.860

of the 95% ACI

Coverage probabilities
0.9 0.95 0.86 0.87 0.92 0.93

of the 95% ACI
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Table 3: Mean and median L1−errors associated to the estimators in case 3.

ℓ12 ℓ21 λ
(1)
1 λ

(1)
2 λ

(2)
1 λ

(2)
2

Case 3

n = 50

Mean L1−error 0.272 0.551 0.255 0.812 0.370 1.671

Median L1−error 0.213 0.490 0.197 0.611 0.289 1.435

Mean half–length
0.715 1.487 0.593 1.972 1.073 4.707

of the 95% ACI

Median half–length
0.720 1.452 0.594 1.963 1.059 4.709

of the 95% ACI

Coverage probabilities
0.94 0.96 0.91 0.92 0.98 0.96

of the 95% ACI

n = 100

Mean L1−error 0.197 0.410 0.194 0.568 0.298 1.392

Median L1−error 0.169 0.332 0.173 0.505 0.238 1.200

Mean half–length
0.479 0.978 0.421 1.386 0.757 3.240

of the 95% ACI

Median half–length
0.476 0.951 0.416 1.371 0.753 3.221

of the 95% ACI

Coverage probabilities
0.91 0.92 0.9 0.9 0.96 0.96

of the 95% ACI
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Table 4: Estimates of the parameters on our real data set.

Parameters Estimates 95% ACI

ℓ12 0.0771 [−1.162, 1.316]

ℓ21 0.0230 [−0.345, 0.391]

λ
(1)
1 5.434 [2.329, 8.540]

λ
(1)
2 0.762 [0.142, 1.381]

λ
(2)
1 10.659 [6.567, 14.750]

λ
(2)
2 5.361 [3.945, 6.776]
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Figure 1: Counting process N of our real data set.
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Figure 2: Reconstruction of the states of the underlying process J for our real data set.
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