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CONVOLUTION OF ORBITAL MEASURES ON SYMMETRIC SPACES

OF TYPE Cp AND Dp

P. GRACZYK AND P. SAWYER

Abstract. We study the absolute continuity of the convolution δ♮
eX

⋆δ♮
eY

of two orbital measures on the symmetric

spaces SO0(p, p)/SO(p)×SO(p), SU(p, p)/S(U(p)×U(p)) and Sp(p, p)/Sp(p)×Sp(p). We prove sharp conditions
on X, Y ∈ a for the existence of the density of the convolution measure. This measure intervenes in the product
formula for the spherical functions.

1. Introduction

The spaces G/K = SO0(p, p)/SO(p) × SO(p) are Riemannian symmetric spaces of non-compact type corre-
sponding to root systems of type Dp. The spaces SU(p, p)/S(U(p)×U(p)) and Sp(p, p)/Sp(p)×Sp(p) correspond
to root systems of type Cp.

Consider X , Y ∈ a and let mK denote the Haar measure of the group K. We define δ♮
eX

= mK ⋆ δeX ⋆ mK . It

is the uniform measure on the orbit KeXK. The problem of the absolute continuity of the convolution

mX,Y = δ♮
eX

⋆ δ♮
eY

of two orbital measures that we address in our paper has important applications in harmonic analysis of spherical
functions on G/K and in probability theory. Let λ be a complex-valued linear form on a and φλ(e

X) be the

spherical function, which is the spherical Fourier transform of the measure δ♮eX . The product formula for the
spherical functions states that

φλ(e
X)φλ(e

Y ) =

∫

a
φλ(e

H) dµX,Y (H)

where µX,Y is the projection of the measure mX,Y on a via the Cartan decomposition G = KAK. Then the
existence of a density of µX,Y , equivalent to the absolute continuity of mX,Y , is of great importance.

It was proven in [3] that as soon as the space G/K is irreducible and one of the elements X , Y is regular and

the other nonzero, then the convolution δ♮eX ⋆ δ♮eY has a density. The density can however still exist when both X
and Y are singular. It is a challenging problem to characterize all such pairs X , Y .

This problem was solved for symmetric spaces of type An and for the exceptional space SL(3,O)/SU(3,O) of
type E6 in [4], and for symmetric spaces of type Bp and BCp in [6]. In the present paper, we present the solution
of the problem for Riemannian symmetric spaces of type Cp and Dp.

For the good comprehension of the methods of this paper, it is useful to know the paper [6]. However, the cases
Cp and Dp require many original ideas that did not appear in the case Bp. We refer to S. Helgason’s books [7] and
[8] for the standard notation and results.

In Section 2, we are reminding the reader of the basic information about the Lie group SO(p, p) and its Lie
algebra so(p, p). We also provide the necessary notation to describe the configuration of an element of the Cartan
subalgebra a of so(p, p). This configuration notion allows us to “measure” how singular an element of a is and to
describe in a precise manner which pairs X , Y ∈ a are “eligible”, the sharp criterion that we establish in the paper
for the absolute continuity of µX,Y . The following theorem is the main result of the paper:

Theorem A. Let G/K = SO0(p, p)/SO(p)×SO(p) and X, Y ∈ a. The density of the convolution δ♮
eX

⋆ δ♮
eY

exists
if and only if X and Y are eligible (see Definition 2.4).

In the following Section 3, a series of definitions and accessory results are given to set the stage for the proof
of Theorem A. In Section 4, we show that (X,Y ) has to be an eligible pair for the measure µX,Y to be absolutely
continuous. In Section 5, we then show that the eligibility condition is also sufficient.
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In the last section, as in [4] and [6], we extend our results to the complex and quaternionic cases. Again, the
richness of the root structure comes into play: in the table in Remark 6.1, we find that the complex and quaternionic
cases have much more in common with the cases q > p than with the real case SO(p, p).

We conclude the paper with a discussion of the absolute continuity of powers of δ♮
eX

for a nonzero X ∈ a.

2. Preliminaries and definitions

We start by reviewing some useful information on the Lie group SO0(p, p), its Lie algebra so(p, p) and the
corresponding root system. Most of this material was given in [9]. For the convenience of the reader, we gather
below the properties we will need in the sequel. In this paper, Eij is a rectangular matrix with 0’s everywhere
except at the position (i, j) where it is 1. Recall that SO(p, p) is the group of matrices g ∈ SL(2 p,R) such

that gT Ip,p g = Ip,p where Ip,p =

[
−Ip 0p×p

0p×p Ip

]

. Unless otherwise specified, all 2 × 2 block decompositions in

this paper follow the same pattern. The group SO0(p, p) is the connected component of SO(p, p) containing the
identity. The Lie algebra so(p, p) of SO0(p, p) consists of the matrices

[
A B
BT D

]

where A and D are skew-symmetric. A very important element in our investigations is the Cartan decomposition
of so(p, p) and SO(p, p). The maximal compact subgroup K is the subgroup of SO(p, p) consisting of the matrices

[
A 0
0 D

]

of size (2 p)× (2 p) such that A, D ∈ SO(p) (hence K ≃ SO(p)× SO(p)). If k is the Lie algebra of K and p is the
set of matrices

[
0 B
BT 0

]

(2.1)

then the Cartan decomposition is given by so(p, p) = k ⊕ p with corresponding Cartan involution θ(X) = −XT .
To shorten the notation, for X ∈ p as in (2.1), we will write Xs = B.
The Cartan space a ⊂ p is the set of matrices

H =

[
0p×p DH

DH 0p×p

]

where DH = diag[H1, . . . , Hp]. Its canonical basis is given by the matrices

Ai := Ei,p+i + Ep+i,i, 1 ≤ i ≤ p.

The restricted roots and associated root vectors for the Lie algebra so(p, p) with respect to a are given in Table
1. The positive roots can be chosen as α(H) = Hi ± Hj , 1 ≤ i < j ≤ p. The simple roots are given by

root α multiplicity root vectors Xα

α(H) = ±(Hi −Hj) 1 Y ±
i,j = ±(Ei,j − Ej,i + Ep+i,p+j − Ep+j,p+i) + Ei,p+j + Ep+j,i

1 ≤ i, j ≤ p, i < j + Ej,p+i + Ep+i,j

α(H) = ±(Hi +Hj) 1 Z±
i,j = ±(Ei,j − Ej,i − Ep+i,p+j + Ep+j,p+i)− (Ei,p+j + Ep+j,i)

1 ≤ i, j ≤ p, i < j + Ej,p+i + Ep+i,j

Table 1. Restricted roots and associated root vectors

αi(H) = Hi −Hi+1, i = 1, . . . , p− 1 and αp(H) = Hp−1 +Hp. We therefore have the positive Weyl chamber

a+ = {H ∈ a : H1 > H2 > · · · > Hp−1 > |Hp|}.
The elements of the Weyl group W act as permutations of the diagonal entries of DX with eventual sign changes

of any even number of these entries. The Lie algebra k is generated by the vectors Xα + θXα. We will use the
notation

ktXα
= et(Xα+θXα).

The linear space p has a basis formed by Ai ∈ a, 1 ≤ i ≤ p and by the symmetric matrices Xs
α := 1

2 (Xα − θXα)
which have the following form

Yi,j : = Ei,p+j + Ej,p+i + Ep+j,i + Ep+i,j , 1 ≤ i < j ≤ p;

Zi,j : = −Ei,p+j + Ej,p+i − Ep+j,i + Ep+i,j , 1 ≤ i < j ≤ p.
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Thus, if X ∈ p is as in (2.1), then the vectors Ai generate the diagonal entries of B = Xs and Yi,j and Zi,j the
non-diagonal entries.

We now recall the useful matrix S ∈ SO(p+ q) which allows us to diagonalize simultaneously all the elements
of a. Let

S =

[ √
2
2 Ip

√
2
2 Jp√

2
2 Ip −

√
2
2 Jp

]

where Jp = (δi,p+1−i) is a matrix of size p× p. If H =

[
0 DH

DH 0

]

with DH = diag[H1, . . . , Hp] then ST H S =

diag[H1, . . . , Hp,−Hp, . . . ,−H1]. The “group” version of this result is as follows:

ST eH S = diag[eH1 , . . . , eHp , e−Hp , . . . , e−H1 ].

Remark 2.1. The Cartan projection a(g) on the group SO0(p, p), defined as usual by

g = k1e
a(g)k2, a(g) ∈ a+, k1, k2 ∈ K

is related to the singular values of g ∈ SO(p, p) in the following way. Recall that the singular values of g are defined
as the non-negative square roots of the eigenvalues of gT g. Let us write H = a(g). We have

gT g = kT2 e2H k2 = (kT2 S) (ST e2H S) (ST k2)

where ST e2H S is a diagonal matrix with nonzero entries e2H1 , . . . , e2Hp , e−2Hp , . . . , e−2H1 , satisfying H1 ≥
. . . ≥ Hp−1 ≥ |Hp|. Let us write aj = eHj for j = 1, . . . , p− 1 and ap = e|Hp|. Thus the set of 2p singular values of

g contains the values a1 ≥ . . . ≥ ap ≥ a−1
p ≥ . . . ≥ a−1

1 with a1 ≥ . . . ≥ ap ≥ 1.
Then

a(g) =

[
0 Da(g)

Da(g) 0

]

with Da(g) = diag[log a1, . . . , log ap−1, sgn(Hp) log ap].

Note that this method does not allow us to distinguish between the situations where Hp is positive or negative.

Singular elements of a. In what follows, we will consider singular elements X , Y ∈ ∂a+. We need to control
the irregularity of X and Y , i.e. consider the simple positive roots annihilating X and Y . A special role is played
by the last simple root αp = Hp−1 +Hp, different from the simple roots αi(H) = Hi −Hi+1, i = 1, . . . , p− 1. Note
that αp(X) = 0 implies that the last diagonal entry of DX is negative or 0.

We introduce the following definition of the configuration of X ∈ a+.

Definition 2.2. Let X ∈ a+. In what follows, xi > 0, xi > xj for i < j, si ≥ 1, u ≥ 0 and
∑r

i=1 si + u = p. Let
s = (s1, . . . , sr). We define the configuration of X by:

[s;u] if DX = diag [

s1
︷ ︸︸ ︷
x1, . . . , x1,

s2
︷ ︸︸ ︷
x2, . . . , x2, . . . ,

sr
︷ ︸︸ ︷
xr, . . . , xr,

u
︷ ︸︸ ︷

0, . . . , 0 ](2.2)

[s] if DX = diag [

s1
︷ ︸︸ ︷
x1, . . . , x1,

s2
︷ ︸︸ ︷
x2, . . . , x2, . . . ,

sr−1
︷ ︸︸ ︷
xr−1, . . . , xr−1,

sr=1
︷︸︸︷

−xr ](2.3)

[s]− if DX = diag [

s1
︷ ︸︸ ︷
x1, . . . , x1,

s2
︷ ︸︸ ︷
x2, . . . , x2, . . . ,

sr
︷ ︸︸ ︷

xr, . . . , xr,−xr].(2.4)

We extend naturally the definition of configuration to any X ∈ a, whose configuration is defined as that of the
projection π(X) of X on a+.

Remark 2.3. We will often write X = X [. . .] when [. . .] is a configuration of X . For the configuration (2.4), we
write the − superscript in X [s]− to indicate that X contains nonzero opposite entries. We omit the − superscript
in (2.3) and write X [s] because we are essentially in the same case as in (2.2) with u = 0 and sr = 1.

If the number of zero entries u = 0, it may be omitted in (2.2). In particular, in the configurations (2.3) and
(2.4), u = 0. Note that X = 0 has configuration [0; p]. A regular X ∈ a+ has the configuration [1p; 0] or [1p−1; 1],
where 1k = (1, . . . , 1) with 1 repeated k times.

In what follows, we will write max s = maxi si and max(s, u) = max(max s, u). We will show that in the case of
the symmetric spaces SO0(p, p)/SO(p) × SO(p), the criterion for the existence of the density of the convolution

δ♮eX ⋆ δ♮eY is given by the following definition of an eligible pair X and Y :
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Definition 2.4. Let X and Y be two elements of a with configurations [s;u] or [s]− and [t; v] or [t]− respectively.
We say that X and Y are eligible if one of the two following cases holds

u ≤ 1, v ≤ 1 and max(s) + max(t) ≤ 2 p− 2,(2.5)

u ≥ 2 or v ≥ 2 and max(s, 2u) + max(t, 2v) ≤ 2 p(2.6)

and, for p = 4,

{DX ,DY } 6= {diag[a, a, a, a], diag[b, b, c, c]} nor {diag[a, a, a,−a], diag[b, b, c,−c]},(2.7)

for any a 6= 0, b 6= 0, |b| 6= |c|.
Observe that if X and Y are eligible, then X 6= 0 and Y 6= 0. The non-eligible pairs given by (2.7) are

{[4], [(2, 2)]}, {[4]−, [(2, 2)]−} with u = v = 0 or {[4], [2; 2]} and {[4]−, [2; 2]} with u = 0 and v = 2.

Remark 2.5. It is interesting to note that the definition of eligible pairs is more complicated for the space SO(p, p)
than for the spaces SO(p, q) with p < q (recall that the latter spaces have a much richer root structure). As for the
spaces SO(p, q) with p < q, the number of zeroes on the diagonal of DX is important. Unlike in the case SO(p, q)
with p < q, this only becomes a factor when the number of zeroes is greater than 1 (as opposed to greater than 0).

In [6], we showed that if p < q and X and Y ∈ a were such that the DX and DY have no zero diagonal elements
on the diagonal then µX,Y was absolutely continuous. This is no longer the case when p = q and this is one of main
differences between the SO(p, p) and SO(p, q) cases. Another difference is the anomalous case when p = 4 seen in
(2.7) and the fact that lower dimensional cases require different proofs. On the other hand, when the number of
zeroes on the diagonal of either DX or DY is at least 2, then the proof of Theorem A is similar to the one found
in [6] but requires considering separately a low dimension case X [5], Y [3; 2].

3. Basic tools and reductions

Definition 3.1. For Z ∈ a, let VZ be the subspace of p defined by

VZ = span{Xα − θ(Xα) | α(Z) 6= 0} ⊂ p.

We denote by |VZ | the dimension of VZ . It equals the number of positive roots α such that α(Z) 6= 0.

The following definition and lemmas will help reduce the number of cases of configurations of (X,Y ) to verify.

Definition 3.2. We will say that X and X ′ ∈ a are relatives if exactly one of the diagonal entries of DX and DX′

differs by sign. If X is a relative to X ′ and Y is a relative to Y ′ then we will say that (X,Y ) is a relative pair of
(X ′, Y ′).

The properties listed in the following lemma are straightforward.

Lemma 3.3.

(1) X is a relative of X if and only if DX has at least one diagonal entry equal to 0, i.e. u ≥ 1 in X [s;u].

Thus X ∈ a+ has no other relatives in a+.
(2) If X and X ′ are relatives then |VX | = |VX′ |.
(3) If (X,Y ) and (X ′, Y ′) are relative pairs then (X,Y ) is an eligible pair if and only if (X ′, Y ′) is an eligible

pair.
(4) If X = X [s;u] ∈ a+ with u > 0 then all Xi’s are non-negative.
(5) If X = X [s;u], Y [t; v] ∈ a+ are such that u > 0 or v > 0 then either DX , DY have no negative entries or

we can choose a relative pair X ′, Y ′ ∈ a+ in such a way that DX′ , DY ′ have no negative entries.
(6) If X is a relative of X ′ and X ′ is a relative of X ′′ then X and X ′′ are in the same Weyl-group orbit.

Lemma 3.4. If (X,Y ) and (X ′, Y ′) are relative pairs then either both sets KeX K eY K and KeX
′

K eY
′

K have
nonempty interiors or neither has.

Proof. Let J0 = diag{
2 p−1

︷ ︸︸ ︷

1, . . . , 1,−1} and note that J0 is orthogonal and that J2
0 ∈ SO(p) × SO(p). Suppose that

X , Y , X ′ and Y ′ are as in the statement of the lemma. Suppose that w1, w2 ∈ W ⊂ K are such that the element
of Dw1·X′ (resp. Dw2·Y ′) that differs by a sign from the corresponding element of DX (resp. DY ) is placed at the
end. Then

K eX K eY K = J0 K J0 w1 e
X w−1

1 J0 K J0 w2 e
Y w−1

2 J0 K J0

= J0 K (J0 w1 e
X w−1

1 J0)K (J0 w2 e
Y w−1

2 J0)K J0 = J0 K eX
′

K eY
′

K J0

which allows us to conclude. �



ORBITAL MEASURES ON SPACES OF TYPE Cp AND Dp 5

In the sequel we use some ideas, results and notations of [4, Section 3], that we strengthen and complete.

Proposition 3.5.

(i) The density of the measure mX,Y exists if and only if its support KeXKeYK has nonempty interior.
(ii) Consider the analytic map T : K ×K ×K → G defined by

T (k1, k2, k3) = k1 e
X k2 e

Y k3.

The set T (K ×K ×K) = KeXKeYK contains an open set if and only if the derivative of T is surjective
for some choice of k = (k1, k2, k3).

Proof. Part (i) follows from arguments explained in [3] in the case of the support of the measure µX,Y , equal to
a(eX KeY ). Part (ii) is justified for example in [8, p. 479]. �

Corollary 3.6. Let (X,Y ) and (X ′, Y ′) be relative pairs. The measure mX,Y is absolutely continuous if and only
if the measure mX′,Y ′ is absolutely continuous.

Proof. We use Proposition 3.5(i) and Lemma 3.4. �

Proposition 3.7. Let UZ = k + Ad(eZ)k. The measure mX,Y is absolutely continuous if and only if there exists
k ∈ K such that

U−X +Ad(k)UY = g.(3.1)

Proof. We want to show that this condition is equivalent to the derivative of T at k being surjective. We have

dTk(A,B,C) =
d

dt

∣
∣
t=0

etAk1 e
X etBk2 e

Y etCk3

= Ak1 e
X k2 e

Y k3 + k1 e
X B k2 e

Y k3 + k1 e
X k2 e

Y C k3(3.2)

We now transform the space of all matrices of the form (3.2) without modifying its dimension:

dim{Ak1 e
X k2 e

Y k3 + k1 e
X B k2 e

Y k3 + k1 e
X k2 e

Y C k3 : A,B,C ∈ k}
= dim{k−1

1 Ak1 e
X k2 e

Y + eX B k2 e
Y + eX k2 e

Y C : A,B,C ∈ k}
= dim{AeX k2 e

Y + eX B k2 e
Y + eX k2 e

Y C : A,B,C ∈ k}
= dim{e−X AeX +B + k2 e

Y C e−Y k−1
2 : A,B,C ∈ k}

The space in the last line equals k+Ad(e−X)(k) + Ad(k2) (Ad(e
Y )(k)) = U−X +Ad(k2)UY . �

In order to apply the condition (3.1), we will consider convenient symmetrized root vectors and the spaces VZ

generated by them.

Lemma 3.8. Let Z ∈ a. Then UZ = k+ VZ = U−Z .

Proof. Clearly VZ = V−Z . We show that VZ ⊂ UZ and therefore that k + VZ ⊂ UZ : let α be a root such that
α(Z) 6= 0. Note that [Z,Xα] = α(Z)Xα and [Z, θ(Xα)] = −α(Z) θ(Xα). Let U = Xα + θ(Xα) ∈ k. Now,

Ad(eZ)U = eadZ (Xα + θ(Xα)) = eα(Z) Xα + e−α(Z) θ(Xα).

Therefore Xα = (eα(Z) − e−α(Z))−1
(
−e−α(Z) U +Ad(eZ)U

)
∈ k + Ad(eZ)(k) = UZ . The vector θXα is a root

vector for the root −α, so we also have θXα ∈ UZ .
It remains to show that UZ ⊂ k + VZ . It suffices to show that Ad(eZ) k ⊂ k + VZ : for every α, Ad(eZ) (Xα +

θ(Xα)) = eα(Z) Xα + e−α(Z) θ(Xα) =
eα(Z)+e−α(Z)

2 (Xα + θ(Xα)) +
eα(Z)−e−α(Z)

2 (Xα − θ(Xα)) ∈ k+ VZ . �

The following corollary is then straightforward:

Corollary 3.9. The measure mX,Y is absolutely continuous if and only if there exists k ∈ K such that

VX +Ad(k)VY = p.(3.3)

Corollary 3.10. The measure mX,Y is absolutely continuous if and only if there exists a dense open subset U ⊂ K
such that for every k ∈ U

(1) Vw1·X +Ad(k)Vw2·Y = p for every w1, w2 ∈ W ,
(2) For every r < 2p, the matrix obtained by removing the first r rows and r columns of k is non-singular.
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Proof. First we note that condition (3.3) for some k is actually equivalent to the existence of a dense open subset
U ⊂ K such that (3.3) holds for every k ∈ U . Indeed, since the equality (3.3) can be expressed in terms of nonzero
determinants, if it is satisfied for one value of k, it will be satisfied for every k in a dense open subset of K.

In addition, (3.3) is equivalent to the fact that a(eX K eY ) has non-empty interior which, in turn, implies that
a(ew1·X K ew2·Y ) has non-empty interior for any given w1, w2 ∈ W and for every k ∈ Uw1,w2 where Uw1,w2 is open
and dense. Hence, for any given w1, w2 ∈ W , there is a dense open set Uw1,w2 with Vw1·X +Ad(k)Vw2·Y = p. For
similar reasons, there exists a dense open subset of K such that the second condition is satisfied (the condition
being satisfied by the identity matrix). Given that a finite intersection of dense open sets is a dense open set, the
statement follows. �

Remark 3.11. Corollary 3.9 and the fact that Vw·X = Ad(w)VX for w ∈ W and X ∈ a ( [4, Lemma 3.3]) imply
that in the proof of Theorem A one can assume that X has a configuration [s;u] with s1 ≥ s2 ≥ . . . ≥ sr or a
configuration [s]− with s1 ≥ s2 ≥ . . . ≥ sr−1. The same remark applies to the configuration of Y .

The following necessary criterion for the existence of the density will be very useful:

Corollary 3.12. If mX,Y is absolutely continuous then |VX |+ |VY | ≥ dim p = p2.

The following definition and results will be helpful in resolving the exceptional case indicated in (2.7).

Definition 3.13. For n ≥ 1, let Z(n) be the group formed by the matrices of the form









cos θ1 − sin θ1
sin θ1 cos θ1

. . .

cos θr − sin θr
sin θr cos θr










where the last block is replaced by 1 is n is odd.

Remark 3.14. Note that dimZ(n) ≤ n/2 and that each element in Z(n) has a square root in Z(n).

Lemma 3.15. Consider n ≥ 2 and k ∈ SO(n). Then there exists A ∈ SO(n) such that A−1 k A ∈ Z(n).

Proof. Consult for example [2]. Recall that the eigenvalues of k are e±iθj , θj ∈ R. �

Corollary 3.16. Every matrix

[
A1 0
0 A2

]

∈ SO(p)× SO(p) can be written in the following format

[
A1 0
0 A2

]

=

[
A 0
0 A

] [
B 0
0 B−1

] [
C 0
0 C

]

with A, C ∈ SO(p) and B ∈ Z(p).

Proof. According to Lemma 3.15, there exists a matrix A ∈ SO(p) such that B′ = A−1 A1 A
−1
2 A ∈ Z(p). Pick

B ∈ Z(p) such that B2 = B′ and let C = B−1 A−1 A1. Then ABC = A1 and

AB−1 C = AB−1 (B−1 A−1 A1) = A (B2)−1 A−1 A1

= A (B′)−1 A−1 A1 = A (A−1 A1 A
−1
2 A)−1 A−1 A1 = A2

which proves the lemma. �

Remark 3.17. The matrices

[
B 0
0 B−1

]

in the last corollary can be written as
∏[p/2]

i=1 kti
Z+

2 i−1,2 i

for an appropriate

choice of ti’s.

In the proof of the necessity of the eligibility condition, we will use the following result stated in [5, Step 1, page
1767]. Let the Cartan decomposition of SL(N,F) be written as g = k1e

ã(g)k2.

Lemma 3.18. Let U = diag([

r
︷ ︸︸ ︷
u0, . . . , u0, u1, . . . , uN−r] and V = diag([

N−s
︷ ︸︸ ︷
v0, . . . , v0, v1, . . . , vs]. where s+ 1 ≤ r < N ,

s ≥ 1, and the ui’s and vj’s are arbitrary. Then each element of the diagonal of ã(eU SU(N,F) eV ) has at least
r − s entries equal to u0 + v0.

We will use Lemma 3.18 with N = p+ q in the proofs of Proposition 4.5 and Theorem 6.7.

In the proof of Theorem A we will need the following technical lemma from [6]:

Lemma 3.19.
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(1) For the root vectors Z+
i,j and Y +

i,j, we have

Ad(et (Y
+
i,j

+θ(Y +
i,j

)))(Yi,j) = cos(4 t)Yi,j + 2 sin(4 t) (Ai −Aj),

Ad(et (Z
+
i,j

+θ(Z+
i,j

)))(Zi,j) = cos(4 t)Zi,j + 2 sin(4 t) (Ai +Aj).

(2) The operators Ad(et (Y
+
i,j

+θ(Y +
i,j

))) and Ad(et (Z
+
i,j

+θ(Z+
i,j

))) applied to the other symmetrized root vectors do
not produce any components in a.

In the proof of the existence of the density for the pairs X [4], Y [2, 2]− and X [5], Y [3; 2] without predecessors,
we will need the following elementary lemma. Recall that Zk,l =

1
2 (Z

+
k,l − θ(Z+

k,l)) ∈ p.

Lemma 3.20. Let 1 ≤ i < j ≤ p and 1 ≤ k < l ≤ p. We have

[Z+
i,j + θ(Z+

i,j), Zk,l] =







0 if {i, j} ∩ {k, l} = ∅,
4 (Ai +Aj) if {i, j} = {k, l},
2 Ymin(j,l),max(j,l) if i = k, j 6= l,
2 Ymin(i,k),max(i,k) if i 6= k, j = l,
−2 Yi,l if j = k,
−2 Yk,j if i = l.

Proof. We apply the well known fact that [gα, gβ ] ⊂ gα+β when α+ β is a root and [gα, gβ ] = 0 otherwise. For the
computation of exact coefficients in the formulas, we use Table 1. �

4. Necessity of the eligibility condition

Proposition 4.1. If X = X [s;u] and Y = Y [t; v] ∈ a with u ≤ 1 and v ≤ 1 are such that max s+max t > 2 p− 2
then |VX |+ |VY | < p2.

Proof. Assume that X = X [s;u] and Y = Y [t; v] ∈ a+. Without loss of generality, assume that max s ≥ max t.
We then have max s = p and max t ≥ p− 1. The only possible pairs are

X [p], Y [p] and the relative pair X ′[p]−, Y ′[p]−

X [p], Y [p− 1, 1] and the relative pair X ′[p]−, Y ′[1, p− 1]−(4.1)

X [p], Y [p]− and the relative pair (X ′, Y ′) = (Y,X)

X [p], Y [1, p− 1]− and the relative pair X ′[p]−, Y ′[p− 1, 1].

By Remark 3.11 we do not need to consider the configuration [1, p− 1]. We have |VX | = p(p−1)
2 and |VY [p−1,1]| =

p(p−1)
2 + p− 1. We apply Lemma 3.3 and we find by examination that |VX |+ |VY | ≤ p2 − 1 in all cases. �

Corollary 4.2. Let p ≥ 2. Consider a pair X = X [s;u] and Y = Y [t; v] with u ≤ 1 and v ≤ 1. Then
|VX |+ |VY | ≥ p2 if and only if

max(s) + max(t) ≤ 2 p− 2.(4.2)

Proof. By Proposition 4 only the sufficiency of condition (4.2) needs to be proven. Suppose max(s)+max(t) ≤ 2 p−2
and that max s ≥ max t. If max s = p then |VX | = p (p−1)/2 and max t ≤ p−2 implies |VY | ≥ p (p−1)/2+2(p−2).
If both max s ≤ p − 1 and max t ≤ p− 1 then |VX | ≥ p (p− 1)/2 + p− 1 and |VY | ≥ p (p− 1)/2 + p− 1. In both
cases, the result follows. �

Definition 4.3. We will call exceptional the set of configurations listed in (4.1) and denote it by E.
Proposition 4.4. Let X, Y ∈ a be such that DX = diag[b, b, c, c] with b > c > 0 and DY = diag[a, a, a, a] with

a > 0. Then δ♮eX ⋆ δ♮eY has no density.

Proof. According to Corollary 3.16, we can write

K eX K eY K =K eX
[

A 0
0 A

]

kt1
Z+

1,2

kt2
Z+

3,4

[
C 0
0 C

]

eY K

=K eX exp(







0 R 0 0
−R 0 0 0
0 0 0 R
0 0 −R 0






)kt1

Z+
1,2

kt2
Z+

3,4

eY K = K eXkr1
Y +
1,3

kr2
Y +
2,4

kt1
Z+

1,2

kt2
Z+

3,4

eY K
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(here Z+
1,2, Z

+
3,4, Y

+
1,3, Y

+
2,4 are exactly as in Table 1). We used the fact that eY and

[
C 0
0 C

]

commute, the Cartan

decomposition A =

[
A1 0
0 A2

]

exp(

[
0 R

−R 0

]

)

[
C1 0
0 C2

]

(R = diag[r1, r2], Ai, Ci ∈ SO(2)), and the facts

that eX ,







A1 0 0 0
0 A2 0 0
0 0 A1 0
0 0 0 A2






commute and







C1 0 0 0
0 C2 0 0
0 0 C1 0
0 0 0 C2






commutes with kt1

Z+
1,2

kt2
Z+

3,4

and with eY .

Now it is easy to see by considering the proof of Proposition 3.5(ii) that for these particular X and Y , the
condition VX + Ad(k)VY = p must be satisfied by k of the form k0 = kr1

Y +
1,3

kr2
Y +
2,4

kt1
Z+

1,2

kt2
Z+

3,4

. On the other hand,

VY = 〈Zi,j , i < j〉 and Ad(k0)(Zi,j), i < j, can only produce diagonal elements which satisfy H1 +H3 = H2 +H4

as can be checked by Lemma 3.19 and using the fact that Ad(k0) = Ad(kr1
Y +
1,3

) Ad(kr2
Y +
2,4

) Ad(kt1
Z+

1,2

) Ad(kt2
Z+

3,4

).

Consequently, a 6⊂ VX +Ad(k0)VY and the density cannot exist. �

Proposition 4.5. If X and Y are not eligible then the density does not exists.

Proof. Let the configuration of X be [s;u] or [s]− and the configuration of Y be [t; v] or [t]−. Proposition 4.1,
Proposition 4.4 and Corollary 3.6 imply the non-existence of density when X and Y are not eligible and u ≤ 1 and
v ≤ 1.

Suppose then that u ≥ 2 or v ≥ 2 and max(s, 2 u) + max(t, 2 v) > 2 p and consider the matrices a(eX k eY ),
k ∈ SO(p)×SO(p). Using (5) of Lemma 3.3 and Lemma 3.4, we may assume that the diagonal entries of DX and
DY are non-negative. Applying Remark 2.1, we have

ã(eX k eY ) = ã(

eS
T X S

︷ ︸︸ ︷

(ST eX S)

∈SO(p+q)
︷ ︸︸ ︷

(ST k S)

eS
T Y S

︷ ︸︸ ︷

(ST eY S))

where ã(g) is the diagonal matrix with the singular values of g on the diagonal, ordered decreasingly (see the
explanation before Lemma 3.18).

If u + v > p then there are r − s = r + (N − s) − N = 2 u + 2 v − 2 p = 2 (u + v − p) repetitions of 0 + 0 = 0
in coefficients of ã(eXkeY ). Therefore 0 occurs at least u + v − p > 0 times as a diagonal entry of DH for every
H ∈ a(eX K eY ) which implies that a(eX K eY ) has empty interior. If 2 u+max(t) > 2 p denote t = max(t). Let
Yi 6= 0 be repeated t times in DY (or, if t = tr and Y = Y [t]−, we have t − 1 times Yr and once −Yr in DY ).
Then there are r − s = r + (N − s)−N = 2 u+ t− 2 p repetitions of Yi + 0 in coefficients of ã(eXkeY ). Therefore
Yi occurs at least 2 u + t − 2p > 0 times as a diagonal entry of DH for every H ∈ a(eX K eY ) which implies that
a(eX K eY ) has empty interior. �

5. Sufficiency of the eligibility condition

5.1. Case u ≤ 1 and v ≤ 1.

Remark 5.1. In our proof, the case u ≤ 1 and v ≤ 1 is equivalent to the case u = v = 0. Indeed, for H ∈ a+, if
the sole diagonal entry 0 in DH is replaced by a positive entry different from the existing diagonal entries of DH ,
then VH is unchanged. We will therefore assume in this section that u = 0 and v = 0.

Definition 5.2. Let s = (s1, s2 . . . , sm) and t = (t1, t2, . . . , tn) be two partitions of p (
∑

i si = p =
∑

i tj). We
will say that s is finer than t if the ti’s are sums of disjoint subsets of the sj’s (for example, s = [3, 2, 2, 1, 1, 1] is
finer than t = [5, 3, 2] = [3 + 2, 2 + 1, 1 + 1]).

Remark 5.3. If X = X [s] and Y = Y [t] and s is finer than t then VY ⊂ VX .

In the following lemma, we reduce in a significant way the number of elements for which we must prove the
existence of the density.

Lemma 5.4. For p ≥ 5, it is sufficient to prove the existence of the density in the following cases:

S1: X [p], Y [p− k, k] for p− k ≥ k ≥ 2
S2: X [p]−, Y [p− k, k] for p− k ≥ k ≥ 2
S3: X [1, p− 1]−, Y [p− 1, 1]
S4: X [p− 1, 1], Y [p− 1, 1].

For p = 4 the same is true provided the case S1 is replaced by the cases X [4], Y [2, 1, 1] and X [3, 1], Y [2, 2].

Proof. Suppose p ≥ 5. Let us call A0 the configurations of the form [s] and A1 all the others, i.e. the configurations
of the form [s]−.
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(a) We first observe that if the density exists for S1 then it follows that it exists for all pairs {X,Y } such
that X , Y ∈ A0, except when X or Y have configurations [p] or [p− 1, 1]. This comes from the fact that
all these X , Y have structures that are finer and, consequently, the corresponding VX and VY are larger.
Thus, existence of the density in the cases S1 together with S4 will imply the existence of the density in
all the cases when X , Y ∈ A0, except when {X,Y } ∈ E .

(b) By switching to relatives and changing the order of X and Y , we see that it implies the existence of the
density in all the cases when X , Y ∈ A1, except when {X,Y } ∈ E .

(c) It remains to show that the cases S2 and S3 imply the existence of the density in all the cases when
X ∈ A1 and Y ∈ A0, except when {X,Y } ∈ E . Note first that if X = [s]− then either [s]− = [p]− or
VX′ ⊂ VX with X ′ = X ′[1, p− 1]−. In the first case, we observe that the case S2 implies the cases X [p]−

and Y ∈ A0 \ {[p], [p− 1, 1]} for the same reason as in (a). The only cases that remain with Y [p− 1, 1] are
covered by S3. Finally, switching to relatives, we get the pairs X ∈ A1, Y [p] which are not in E .

We illustrate the proof of the Lemma in the case p = 5.

[2, 13] [2, 2, 1] [3, 1, 1] [3, 2] [4, 1] [5] [13, 2]− [2, 1, 2]− [1, 1, 3]− [3, 2]− [2, 3]− [1, 4]− [5]−√ √ √ √ √ √ √ √ √ √ √ √ √
[2, 13]√ √ √ √ √ √ √ √ √ √ √ √
[2, 2, 1]√ √ √ √ √ √ √ √ √ √ √
[3, 1, 1]√ √

S1
√ √ √ √ √ √

S2 [3, 2]
S4 X

√ √ √ √ √
S3 X [4, 1]

X
√ √ √ √ √

X X [5]√ √ √ √ √ √ √
[13, 2]−√ √ √ √ √ √
[2, 1, 2]−√ √ √ √ √
[1, 1, 3]−√ √ √ √
[3, 2]−√ √ √
[2, 3]−√

X [1, 4]−

X [5]−

In the above table,
√

indicates that the pair is eligible, X indicates that the pair is not eligible and therefore
that the density does not exist (the cases identified in (4.1)) and the Si’s correspond to the notation above (the
pair is eligible where the Si’s appear). We use the reduction from Remark 3.11. �

Theorem 5.5. Let p ≥ 2 and suppose that X = X [s;u] or [s]− and Y = Y [t; v] or [t]− are such that u ≤ 1 and
v ≤ 1. If the pair {X,Y } does not belong to the set E ∪ {[4], [2, 2]} ∪ {[4]−, [2, 2]−} then the density exists.

Proof. The proof proceeds by induction similarly as in [6], but with a different “asymmetric” technique of executing
Steps 2 and 3. Also, for small values of p the proofs must be led separately, due the lack of available good
predecessors. With some exceptions in the starting phase of the induction, and in the case S3 of the Lemma 5.4,
the elements X and Y will be in a+ and their “usual” predecessors will be obtained by skipping the first diagonal
terms of DX and DY .

The only case of existence of the density for p = 2 is for regular X [1, 1] and Y [1, 1] (according to (4.1), only the
pair X [1, 1], Y [1, 1] of two regular elements verifies |VX |+ |VY | ≥ p2).

For p = 3, we have four possible configurations of nonzero singular elements: [2, 1], [3], [1, 2]−, [3]−.
All exceptional cases listed in (4.1) appear and only three pairs of singular configurations, namely (X [2, 1],

Y [2, 1]), (X [2, 1], Y [1, 2]−) and (X [1, 2]−, Y [1, 2]−), verify |VX |+ |VY | ≥ p2. Given that the pairs (X [2, 1], Y [2, 1])
and (X [1, 2]−, Y [1, 2]−) are relatives, we only have to check the cases (X [2, 1], Y [2, 1]) and (X [2, 1], Y [1, 2]−).

In the case X [2, 1], Y [2, 1], we write DX = diag[a, a, b], DY = diag[c, c, d] and the predecessors DX′ = diag[a, b],
DY ′ = diag[c, d], obtained by skipping the first coordinates, are regular. In the case X [2, 1], Y [1, 2]− we consider
DX = diag[a, a, b], Dw · y = diag[−d, c, d] and only now go to regular predecessors DX′ = diag[a, b], D(w·Y )′ =
diag[c, d]. The general proof given below applies in these cases.

When p = 4, by Lemma 5.4, we must show the existence of the density for:

(1) X [4], Y [2, 1, 1] and X [2, 2], Y [3, 1],
(2) X [4]−, Y [2, 2] or equivalently the relative pair X [4], Y [2, 2]−,
(3) X [1, 3]−, Y [3, 1],
(4) X [3, 1], Y [3, 1].

In the cases (1), (3) and (4), the usual predecessors have density when p = 3. The general proof given below
applies in these cases.
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For the case (2), observe that when p = 3, the configuration X ′[3] never gives the existence of density, when
Y ′ is singular. That is why the second case X [4], Y [2, 2]− has no good predecessors and this case must be proved
separately. We will do it after the general proof.

Starting from p = 5, the general proof by induction applies, the exceptions due to small values of p being
taken care of. We present this proof now.

Step 1. Let Y ∈ a+ be such that DY = diag[

p−k
︷ ︸︸ ︷
a, . . . , a,

k
︷ ︸︸ ︷

b, . . . , b] and let its predecessor Y ′ be such that DY ′ =

diag[

p−k−1
︷ ︸︸ ︷
a, . . . , a,

k
︷ ︸︸ ︷

b, . . . , b]. The space VY is generated by completing a basis of VY ′ with

NY = {Y1,p−k+1, . . . , Y1,p, Z1,2, . . . , Z1,p}.
We choose the predecessor X ′ of X in the same manner, except in the case S3, where we first write DX =

diag[b, b, . . . , b, a,−b] where a > b > 0 and skip the first term b in DX .
It is easy to see that the predecessors of X and Y are in the corresponding classes Si for p− 1, so with density,

except for X [5], Y [3, 2], due to the non-eligible case X [4], Y [2, 2]. In this last case we arrange DX = diag[a, a, a, a, a]
and DwY = diag[−b, b, b, c,−c] and go down to good predecessors X ′[4], (wY )′[2, 2]−. The proof described below
leads to the existence of the density.

By the induction hypothesis and considering Corollary 3.10, there exists an open dense subset D′ of SO(p −
1)× SO(p− 1) such that for all w′ ∈ W ′ and k0 ∈ D′,

Vw′·X′ +Ad(k0)VY ′ = p′(5.1)

and k0 verifies condition (2) of Corollary 3.10.
We embed K ′ = SO(p− 1)× SO(p− 1) in SO(p)× SO(p) in the following manner:

K ′ ∋ k′ =







1
k0,1

1
k0,2






∈
[

SO(p)
SO(p)

]

, k0,1, k0,2 ∈ SO(p− 1).

Hence, we have (identifying p′ with its natural embedding into p)

V1 := Vw′·X′ +Ad(k0)VY ′ = p′ =

[
0 B′

B′T 0

]

(5.2)

for any w′ ∈ W ′, where B′ =

[
01×1 01×(p−1)

0(p−1)×1 B′′
(p−1)×(p−1)

]

, and the matrix B′′ is arbitrary (note that p′ is of

dimension (p− 1)2). We must show that for some k ∈ K, the space VX +Ad(k)VY = p.
Step 2. The element Y is always of the same form, so the next step of the proof is common for all the 4 cases.

Similarly as in [6], Step 2 of the proof of Theorem 4.8, case (i), we prove that for k0 ∈ D′ ⊂ SO(p− 1)×SO(p− 1)
the following property holds:

The space Ad(k0)span(NY ) is of dimension p+ k − 1 and its elements can be written in the form














0 a1 . . . ap−1

τ1
...

τp−1−k 0
ap+k−1

...
ap















s

with ai ∈ R arbitrary and τj = τj(a1, . . . , ap+k−1). We will not need to write explicitly the functions τj . For the
sake of completeness, we give a proof of Step 2.

Step 2 comes from the fact that the action of Ad(k0) on the elements of NY gives the linearly independent
matrices

Ad(k0)Y1,i =

[
0 βT

i−1

αi−1 0

]s

, i = p− k + 1, . . . , p, Ad(k0)Z1,i =

[
0 −βT

i−1

αi−1 0

]s

, i = 2, . . . , p(5.3)

where the αi’s are the columns of k0,1 and the βi’s are the columns of k0,2. Let us write α′
i for a column αi with

the first p − 1 − k entries omitted. In order to prove the statement of Step 2, we must show that the matrices
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obtained by replacing αi by α′
i in (5.3) are still linearly independent. This is equivalent to the linear independence

of the matrices
[

0 −βT
i

α′
i 0

]s

, i = 1, . . . , p− k − 1,

[
0 βT

i

0 0

]s

, i = p− k, . . . , p− 1,

[
0 0
α′
i 0

]s

i = p− k, . . . , p− 1.(5.4)

The matrices in (5.4) are linearly independent given that the matrix k0 was assumed to satisfy condition (2) of
Corollary 3.10.

Observe that contrary to [6], we have filled the zero margins of the matrix B′ asymetrically, which is why we
call this method “asymmetric”. The reason for doing this will be clear from the structure of the set NX that we
study now.

Step 3. Let us write the set NX in the four cases Si:

(1) S1: NX = {Z1,2, . . . , Z1,p}
(2) S2: NX = {Z1,2, . . . , Z1,p−1, Y1,p}
(3) S3: NX = {Z1,2, . . . , Z1,p−1, Y1,p−1, Y1,p}
(4) S4: NX = {Z1,2, . . . , Z1,p, Y1,p}.
We will now use the elements of NX in order to generate thw missing p− k − 1 dimensions τj in the margins of

B′. We use for this the vectors Z1,2, . . . , Z1,p−k available in all four cases for k ≥ 1. We proceed as follows:
If τ1(1, 0, . . . , 0) = −1, the vector Z1,2 ∈ NX is unhelpful. We change X ′ into X ′′ by putting the sign − before

the second and the last term of X ′. We obtain X ′′ = w′′ · X ′ such that NX contains Y1,2 instead of Z1,2 and
w′′ ∈ W ′ changes two signs of X ′. This manipulation is justified by the fact that (5.1) holds for any w′′ ∈ W ′. We
repeat this procedure, if needed, whenever τj(ej) = −1 and obtain, from elements of Nw·X and Ad(k0) (NY ),













0 a1 . . . ap−1

a2 p−2

...
ap+k−1 0

...
ap













s

(5.5)

for w ·X with w ∈ W and where the ai’s are arbitrary.
Step 4. Noting that we have at least one element of NX that has not been used, either Y1,p or Z1,p, combining

(5.1) and (5.5), we have

V0 := Ṽw·X +Ad(k0)(VY ) =








0 ∗ . . . ∗
∗ ∗ . . . ∗
...

...
. . .

...
∗ ∗ . . . ∗








(5.6)

where Ṽw·X corresponds to the all of VX without using the remaining Y1,p or Z1,p. To fix things, let us assume
that the unused element is Z1,p, the reasoning being similar if it is Y1,p instead.

The end of the proof is similar to the final step of the proof in [6]. Refer to Lemma 3.19 and note that for t small,

Ad(et (Z
+
i,j+θ Z+

i,j))(Ṽw·X) + Ad(k0)(VY ) = V0. Indeed, the lemma shows that no new element is introduced and,

for t small, the dimension is unchanged. On the other hand, V0 is strictly included in Ad(et (Z
+
i,j

+θ Z+
i,j

))(〈Z1,p〉 ∪
Ṽw·X)+Ad(k0)(VY ) since, still by Lemma 3.19, a new diagonal element is introduced. We conclude that for t small

enough, Ad(et (Z
+
i,j

+θ Z+
i,j

))(〈Z1,p〉 ∪ Ṽw·X) + Ad(k0)(VY ) = p. Finally,

Vw·X +Ad(e−t (Z+
i,j

+θ Z+
i,j

) k0)(VY ) = p.

The case X [2, 2]−, Y [4]: This case is awkward since (X,Y ) do not have eligible predecessors. We select X and
Y such that DX = diag[a, a, b,−b] and DY = diag[c, c, c, c] (assuming a, b, c 6= 0 and a 6= b). Then VY is generated
by the basis BY composed of all the 6 vectors Zi,j , i < j, while the basis BX of VX contains the vectors Y1,3, Y1,4,
Y2,3, Y2,4, Y3,4 and all the vectors Zi,j except Z3,4. Note that |VX | = 10.

For a root vector Z+
i,j denote Zk

i,j = Z+
i,j + θ(Z+

i,j) ∈ k. Define Z0 = Zk
1,2 + Zk

2,3 + Zk
1,4 + Zk

2,4 ∈ k. We denote

Ft = VX +Ad(etZ0)VY = VX + etadZ0(VY ),

Et = VX + 〈{v + t[Z0, v] : v ∈ VY }〉.
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We will write

ft = det(BX ,Ad(etZ0)BY )

where the elements of p are seen as column vectors inRp2

. Analogously, we denote by et the determinant constructed
in a similar way from the vectors of BX and the vectors v+ t[Z0, v], v ∈ BY , belonging to Et. We write ft = et+ rt
and we analyse now et and rt in order to show that ft 6= 0 for some small nonzero t.

Using Lemma 3.20, we check that et = ct5 with c = det(BX , Z3,4, [Z0, Z1,2], . . . , [Z0, Z2,4]) 6= 0. The coefficient
of t6 in et equals zero since det(BX , [Z0, BY ]) = 0. On the other hand it is easy to see in a similar way that the
remainder rt in the analytic expansion ft = et + rt does not have terms in tn for n < 6. We conclude that ft 6= 0
for small nonzero t. �

5.2. Case u ≥ 2 or v ≥ 2. This case is handled in much of the same way as the case u > 0 or v > 0 in [6]. A
notable difference is that the basis for induction is the previous case (u ≤ 1 and v ≤ 1). For p = 3, we only need to
consider the pair X [1; 2], Y [2, 1] which has regular predecessors. Similarly, for p = 4, we see that all eligible pairs
with u ≥ 2 or v ≥ 2 have eligible predecessors.

In the case p = 5, because of (2.7), there are eligible pairs with no eligible predecessors. It suffices to consider
the pair X [5], Y [3; 2]. In order to show that the density exists in this case, we use the same technique as for the

case X [2, 2]−, Y [4]. We take Z0 = Zk
1,2 + Zk

2,3 + Zk
3,4 + Zk

1,5 + Zk
2,5. In order to prove that et = ct9 with c 6= 0,

we check using Lemma 3.20 that the 9 vectors [Z0, Z1,2], . . . , [Z0, Z3,5] produce the missing vectors Y1,2, Y1,3, Y2,3,
Y4,5 and the diagonal.

Starting from p = 6, the induction proof works. The fact that the roots αi defined by αi(X) = Xi are absent
in the case SO(p, p) does not influence the proof (in [6] the roots αi were not used in Step 4 of the proof). These
two differences being overcome, the proof is sufficiently similar that it should not be repeated here.

6. Applications

We now extend our results to the symmetric spaces of type Cp, i.e. to the complex and quaternion cases.
Recall that SU(p, p) is the subgroup of SL(2p,C) such that g∗ Ip,p g = Ip,p while Sp(p, p) is the subgroup of
SL(2p,H) such that g∗ Ip,p g = Ip,p. Their respective maximal compact subgroups are S(U(p) × U(p)) and

Sp(p)×Sp(p) ≡ SU(p,H)×SU(p,H). Their subspaces p can be described as

[
0 B
B∗ 0

]

where B is an arbitrary

complex (respectively quaternionic) matrix of size p × p. The Cartan subalgebra a is chosen in the same way as
for so(p, p), with real entries in the diagonal.

Remark 6.1. The following table is helpful in showing the differences and similarities between SO(p, p)/SO(p)×
SO(p), SU(p, p)/S(U(p)×U(p)) and Sp(p, p)/Sp(p)× Sp(p) (the “real”, “complex” and “quaternionic” cases).

SO(p,p)/SO(p)×SO(p) SU(p,p)/S(U(p)×U(p)) Sp(p,p)/Sp(p)×Sp(p)

Root system Dp Cp Cp

mα where
α(X)
= Xi−Xj, i < j

1 2 4

mα where
α(X)
= Xi+Xj, i < j

1 2 4

mα where
α(X) = 2Xi,
i = 1, . . . , p

0 1 3

Dimension of p p2 2 p2 4 p2

Action of the
Weyl group on
X ∈ a

Permutes the
diagonal entries
of D(X) and
changes any
pair of signs

Permutes the
diagonal entries
of D(X) and
changes any
sign

Permutes the
diagonal entries
of D(X) and
changes any
sign

Theorem 6.2. Consider the symmetric spaces SU(p, p)/S(U(p) ×U(p)) and Sp(p, p)/Sp(p) × Sp(p). Let X =

X [s;u] and Y = Y [t; v] ∈ a. Then the measure δ♮
eX

⋆ δ♮
eY

is absolutely continuous if and only if max(s, 2u) +
max(t, 2v) ≤ 2 p.

Proof. Let X , Y ∈ a. Note that since

a(eX S(U(p)×U(p)) eY ) ⊂ a(eX (Sp(p)× Sp(p)) eY ),
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if the density exists in the complex case, it also exists in the quaternionic case. On the other hand, given Lemma
3.18, one can reproduce Proposition 4.5 using F = C and F = H to show that the condition is necessary in the
complex and quaternionic cases.

However, the root structure is richer in the complex and quaternionic cases compared to the real cases. The
existence of the roots α(X) = 2Xk makes the complex and quaternionic cases very similar to the case q > p.

It clearly suffices to prove the result in the complex case. The involution θ is given by θ(X) = −X∗ and

the positive root vectors are generated by X+
k =

[ −i Ek,k i Ek,k

−i Ek,k i Ek,k

]

for the root α(H) = 2Hk, by Y +
r,s =

[
Er,s − Es,r Er,s + Es,r

Er,s + Es,r Er,s − Es,r

]

, Y +
r,s,C =

[
i (Er,s + Es,r) i (Er,s − Es,r)
i (Er,s − Es,r) i (Er,s + Es,r)

]

for the root α(H) = Hr − Hs and by

Z+
r,s =

[
Er,s − Es,r Es,r − Er,s

Er,s − Es,r Es,r − Er,s

]

, Z+
r,s,C =

[
−i (Er,s + Es,r) i (Er,s + Es,r)
−i (Er,s − Es,r) i (Er,s + Es,r)

]

for the root α(H) = Hr +Hs

(here the matrices Er,s are of size p× p).
Taking into account the fact that if the density exists in the real case, it also exists in the complex case, we

only have a few cases to verify. Given that changing any sign of a diagonal element of DX , X ∈ a, is a Weyl group
action, we can always assume that all entries of DX are non-negative. The configuration [s]− thus disappears.

We will need to show that the cases (X [p], Y [p]), (X [p], Y [p − 1; 1]) and (X [4], Y [2; 2]) all have a density. We
will use the case p = 1 which is of rank 1 as the inductive step (there is nothing to prove for that case).

For the case X [p], Y [p], p > 1, we proceed much as in [6]. We note here a few differences. If k0 ∈ S(U(p)×U(p))

with k0 =







1
k0,1

1
k0,2






∈ S(U(p) ×U(p)) then

Ad(k0) (Z1,k) =

[
0 −β∗

k−1

αk−1 0

]s

,Ad(k0) (Z1,k,C) =

[
0 i β∗

k−1

i αk−1 0

]s

, k = 1, . . . , p− 1 and(6.1)

Ad(k0) (X1) =

[
i 0
0 0

]s

.

Given that

Z1,j =

[
0 −eTj−1

ej−1 0

]s

, Z1,j,C =

[
0 i eTj−1

i ej−1 0

]s

, j = 2, . . . , p,(6.2)

we want to show that the matrices in (6.1) together with those of (6.2) are linearly independent for a k0 ∈
S(U(p − 1) × U(p − 1)) for which the equality (5.1) holds. Note that if k0,1 = i Ip−1, k0,2 = −i Ip−1 then the
matrices in (6.1) and (6.2) are linearly independent. Since the linear independence is based on a determinant being
nonzero, this implies that the set of matrices k0 for which this is true is open and dense in S(U(p− 1)×U(p− 1)).

We conclude that if N ′
X = NX\{X1} then span (N ′

X + VX′) + Ad(k′0)VY has the form

















i a ∗ . . . ∗
∗ ∗ . . . ∗
...

...
. . .

...
∗ ∗ . . . ∗

















where

the ∗’s represent arbitrary complex numbers and a is an arbitrary real number.
We finish the proof as in the case SO(p, p) using the vector X+

1 .
The case (X [p], Y [p−1; 1]) has eligible predecessors (X ′[p−1], Y ′[p−1]). We then have NX = {Z1,k, Z1,k,C, X1}

and NY = {Z1,k, Z1,k,C, Y1,k, Y1,k,C}. The rest follows easily.
Finally, the case (X [4], Y [2; 2]) has predecessors (X ′[3], Y ′[2; 1]) which are eligible. �

We will conclude this paper with two further applications.

Proposition 6.3. Let X and Y ∈ a be such that
(

δ♮
eX

)∗2
and

(

δ♮
eY

)∗2
are absolutely continuous. Then δ♮

eX
∗ δ♮

eY

is absolutely continuous.

Proof. The proof is very similar to the one found in [6]. �

In previous papers, we have studied a related question: if X ∈ a and X 6= 0, for which convolution powers l is

the measure
(

δ♮eX

)l

absolutely continuous? This problem is equivalent to the study of the absolute continuity of

convolution powers of uniform orbital measures δ♮g = mK ∗ δg ∗mK for g 6∈ K. It was proved in [5, Corollary 7]
that it is always the case for l ≥ r + 1, where r is the rank of the symmetric space G/K. It was also shown in [6]
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that r + 1 is optimal for this property for symmetric spaces of type An ([5, Corollary 18]) but this is not the case
for the symmetric spaces of type Bp where r was shown to be sufficient in [6].

Proposition 6.4. If p = 3 and DX = diag[a, a, a], a > 0, then (δ♮eX )3 is not absolutely continuous in

SO(p, p)/SO(p)× SO(p) while (δ♮
eX

)4 is absolutely continuous.

Proof. Computing the derivative of the map T (k1, k2, k3, k4) = k1 e
X k2 e

X k3 e
X k4 at (k1, k2, k3, k4) as in (3.2),

we obtain

k1 e
X k2 (Ad(k

−1
2 )U−X +Ad(eX)UX) eX k3 k4 = k1 e

X k2 (k+Ad(k−1
2 )V−X +Ad(eX)VX) eX k3 e

X k4.

The dimension of this space is at most |k| + |V−X | + |VX | = |k| + 3 + 3 < |k| + |p| = |g| so the map cannot be
surjective.

On the other hand, X ′ such DX′ = diag[2 a, a, a] belongs to a(eX K eX) from what precedes (taking x = a) and
the pair (X ′, X ′) is eligible. From there, we conclude that a(eX K eX K eX K eX) has nonempty interior. �

Proposition 6.5. If p = 4 and DX = diag[a, a, a, a], a > 0, then (δ♮
eX

)3 is not absolutely continuous in

SO(p, p)/SO(p) × SO(p) while (δ♮eX )4 is absolutely continuous. Consequently, if X = X [s;u] with u ≥ 1 or

X = X [s]− then (δ♮
eX

)4 is absolutely continuous.

Proof. We know that the elements of eX K eX have the form ka e
Z kb where DZ = diag[c, c, d, d], c ≥ d. From the

end of the proof of Proposition 4.4, we know that for all H ∈ a(eX K eX K eX), DH = diag[H1, H2, H3, H4] will
satisfy H1 +H3 = H2 +H4. We conclude therefore that a(eX K eX K eX) has empty interior. On the other hand,
since there exists Z ∈ a(eX K eX) with DZ = diag[c, c, d, d] with c > d > 0 and (Z,Z) forms an eligible pair, it
follows that a(eX K eX K eX K eX) has nonempty interior since it contains a(eZ K eZ). �

Proposition 6.6. If p ≥ 5 and DX = diag[a, . . . , a], a > 0, then (δ♮eX )3 is absolutely continuous in SO(p, p)/SO(p)×
SO(p). Consequently, if X = X [s;u] with u ≥ 1 or X = X [s]− then (δ♮

eX
)3 is absolutely continuous.

Proof. Note that for t > 0 small enough, Z = a(eX k
Z+

p−1,1

t eX) ∈ a(eX K eX) is such that DZ = diag[

p−2
︷ ︸︸ ︷
a, . . . , a, x, x]

with a > x > 0. Given that (Z,X) form an eligible pair and that a(eZ K eX) ⊂ a(eX K eX K eX), the result
follows. �

Theorem 6.7. On symmetric spaces SO0(p, p)/SO(p)×SO(p), (p ≥ 4), SU(p, p)/S(U(p)×U(p)) and Sp(p, p)/Sp(p)×
Sp(p), p ≥ 2, for every nonzero X ∈ a, the measure (δ♮

eX
)p is absolutely continuous. Moreover, p is the smallest

value for which this is true: if X has a configuration [1; p− 1] then the measure (δ♮
eX

)p−1 is singular.

Proof. We used the three preceding propositions and [6, Theorem 5.3]. �

7. Conclusion

With this paper and with [4, 6], we have now obtained sharp criteria on singular X and Y for the existence of

the density of δ♮
eX

⋆ δ♮
eY

for the root systems of types An, Bp, Cp, Dp and E6. Thanks to [5, 6] and Theorem 6.7 of

the present paper, sharp criteria are now given for the l-th convolution powers (δ♮
eX

)l to be absolutely continuous
for any X 6= 0, X ∈ a. It is interesting to note that the eligibility criterion depends strongly on the geometry of the
root system. Consequently, a characterization of eligibilty that would be applicable for all Riemannian symmetric
spaces of non-compact type is unlikely to exist.
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