characterizing maneuvers paths on the group of rigid body motions in 3D for a quadrotor. The role of the trajectory generator is to generate a feasible time trajectory for the UAV. All the reviewed techniques require the well knowledge of the system dynamic model and parameters. In this paper, a STFIS control strategy is developed based on the systems output measures is implemented. This technique early used for autonomous wheeled robot, is adapted and modified for the used with the XSF. The arrangement of this paper is as follows. The Presentation of the XSF drone is given in the second section. The developed ideas of control for the XSF by the Self-Tunable Fuzzy Inference System (STFIS) controller is presented in the third section. Motion planning and simulation results are introduced in the fourth section. The robustness of the proposed controller is then evaluated and compared with a Static Feedback Linearization controller (SFL) to stabilize the XSF by using the point to point steering stabilization in the fifth section. Finally, conclusion and future works are given in the last section.

PRESENTATION OF THE DRONE XSF

Modeling and controlling aerial vehicles (blimps, mini rotorcraft) are the principal preoccupation of the IBISC-group. Within this optic, who attracted the contest of the DGA-ONERA 1 was the XSF project which consists of a drone with revolving aerofoils, (see Fig. 1 left). It is equipped with four rotors where two are directionals, what we call in the following X4 Stationary Flyer (XSF). The XSF is an engine of 68cm × 68cm of total size and
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Conceptual form of the XSF (left), Frames attached to the XSF (right) not exceed 2kg in mass. It is designed in a cross form and made of carbon fiber. Each tip of the cross has a rotor including an electric brushless motor, a speed controller and a two-blade ducted propeller. The operating principle of the XSF can be presented thus: two rotors turn clockwise, and the two other rotors turn counterclockwise to maintain the total equilibrium in yaw motion. The equilibrium of angular velocities of all rotors done, the Unmanned Aerial Vehicle (UAV) is either in stationary position, or moving vertically. A characteristic of the XSF compared to the existing quadrotors, is the swiveling of the supports of the motors 1 and 3 around the pitching axis thanks to two small servomotors controlling the swiveling angles ξ 1 and ξ 3 . This swiveling ensures either the horizontal rectilinear motion or the rotational movement around the yaw axis or a combination of these two movements which gives the turn (see Fig. 1 right). This permits a more stabilized horizontal flight and a suitable cornering.

SELF-TUNABLE FUZZY INFERENCE SYSTEM

The aim in this section is to make comparison between model based approaches and experts analysis involving fuzzy systems. Classical model based techniques such us the Static Feedback Linearization techniques have been investigated and used for stabilization with motion planning [START_REF] Zemalache | Control of a Drone: Study and Analysis of the Robustness[END_REF].

The formal analogy between a fuzzy inference system and a multilayer neural network associated with optimization algorithms is used from the retro-propagation gradient algorithm have winded up in what is called a STFIS Network.

Presentation of STFIS

A Takagi-Sugeno type fuzzy system is determined in three stages [START_REF] Takagi | Derivation of Fuzzy control rules from human operator's control actions[END_REF]: Given an input x a membership degree µ is obtained from the antecedent part of rules.

2. A truth value degree α i is obtained, associated to the premises of each rule

R i : IF x 1 is X 1 AND IF x 2 is X 2 THEN u IS w i .
3. An aggregation stage to take in account all rules by u = r i=1 α i w i / r i=1 α i permit to obtain a crisp value u.

These operations can be traduced by the layer structure shown in Fig. 2. Each layer, connected with others by adjustable parameters, having a specific function.

Architecture and Learning Algorithm

In this work, we propose to generate the fuzzy control rules by an optimization method, which is done entirely on-line. Jordan [START_REF] Jordan | Internal world models and supervised learning[END_REF] proposes the distal control method, which is used by [START_REF] Renders | Mtaphore biologiques appliques la commande de processus[END_REF] under the name of JEAN (Jordan method Extended for Adaptive Neuro-control). This architecture (Fig. 3 left) needs the used of two STFIS networks:

1. a first networks to identify the drone (Model); 2. a second networks to control the drone (Controller).
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For the control of the XSF, we have used the architecture known as the "mini-JEAN" as illustrated in the Fig. 3 (right) [START_REF] Renders | Mtaphore biologiques appliques la commande de processus[END_REF]. This architecture not require an emulator network. It uses only one network as a controller, the learning of which is done directly by the back-propagation of the output error.

Compared to the architecture JEAN, some equivalent performances are obtained for the mean error in generalization. On the other hand, the computing time favors clearly mini-JEAN [START_REF] Renders | Mtaphore biologiques appliques la commande de processus[END_REF]. Optimization of adjustable parameter is accomplished with a version of the classic gradient retropropagation algorithm adapted to net structure of Fig. 3 (right).

The aim is to minimise cost function E :

E = 1 2 e 2 (1) 
where e is the difference between the process output and the set point. The basic equations of the algorithm are:

w n ij (t) = w n ij (t -1) + ∆w n ij (t) (2) 
∆w n ij (t) = -ηδ n i α n-1 j + b∆w n ij (t -1) (3) 
Where :

w n ij (t) : i th parameter between i of layer n and j st unit of layer n-1. η : learning gain. t : training iteration. b : moment parameter. δ n i : error term (i th neurone of layer n). α n-1 j : output of j th unit of layer n-1. The quality of solution obtained using this algorithm depends on input learning signals, algorithm control parameters and learning duration (number of iterations).

Algorithm Modification Weight Regression

The procedure is entirely done on-line on the engine. The table of rules (weights w i ) can be initially empty or filled with an a priori knowledge. The engine acquires by its systems output measures, calculates the error to the backpropagated, updates the triggered rules on-line. The weights of the table of decision are then adjusted locally and progressively. The cost function is given by:

J = E + λ w 2 i (4)
where E is the classic quadratic error, w are the parameters (weights) to optimize parameters and λ is a constant that controls the growth of parameters. The second term in J is known as weight decay and used usually in the context of classification problems. This technique has been analyzed in the framework of learning theory and it was shown that is a very simple manner to implement a regularization method in a neural network in order to optimize the compromise between the learning error and the generalization error [START_REF] Bishop | Regularization and complexity control in feedforward neural networks[END_REF][START_REF] Chow | An analysis of weight decay as a methodology of reducing three-layer feedforward artificial neural network for classification problems[END_REF]. Thanks to the classic back-propagation algorithm, the parameters are modify as:

w(t + 1) = w(t) + η( -∂J ∂w ) (5) 
This algorithm easily includes the effect of the second term of the cost function J and by taking β = 2λη (regression coefficient) we obtain:

w(t + 1) = w(t) + η( -∂E ∂w ) -βw(t) (6) 
Since a fuzzy inference system is concerned, we adapt this formula by multiplying β by the firing term of the rule, namely α i / α i . α i is the truth value of the premise part of the triggered rule.

If we limit the optimization only on the conclusions parameters w 4 1j . Then, we get

∆w 4 1j (t) = -ηδ 4 1 α 3 j + b∆w 4 1j (t -1) -α 3 j 2ηλw 4 1j (t -1)/ j α 3 j (7) with δ 4 1 = y -y 1 / j α 3 j (8) 
Where: y 1 :effective output value. y:desired output.

MOTION PLANNING AND SIMULATION RESULTS

The XSF is tested in simulation in order to validate some motion planning algorithm considering the proposed STFIS control laws. We have considered a total mass equal to m = 2kg. The technical characteristics of this flying vehicle were presented in [?]. We solve the tracking control problem using the point to point steering stabilization see [START_REF] Beji | Smooth control of an X4 bidirectional rotors flying robots[END_REF][START_REF] Zemalache | Two Inertial Models of X4-Flyers Dynamics, Motion Planning and Control[END_REF] for more details. A Fuzzy controller based on an on-line optimization of a zero order Takagi-Sugeno fuzzy inference system is successfully applied. It is used to minimize a cost function that is made up of a quadratic error term and a weight decay term that prevents an excessive growth of parameters of the consequent part. The main idea is to generate the conclusion parts (so-called weight) of the rules automatically thanks to an optimization technique. The used method is based on a back-propagation algorithm where the parameters values are free to vary during the optimization process.

Starting with a preinitialized rules table, when XSF begins to fly, it performs the acquisition of the distances (observations), calculates the cost function to back-propagation, updates the triggered rules in real time, begins to move and so on. The weights w i are then adjusted locally and progressively. The shape of the used membership functions is triangular and fixed in order to extract and represent the knowledge from the final results easily. The deduce the truth value, we use the MIN operator for the composition of the input variables. For the control of the XSF, we use the architecture known as "mini-JEAN". observe that the two sets of linguistic rules are quite close. Three cases (noted with *) are different and they differ from only one linguistic concept (M instead B and VW instead W). So, we can claim that the extracted rules are quite logical and coherent. On the other hand, the main advantage of the described technique is the optimization of the controller with respect to the actual characteristics of the engine. The use of a function cost gathering a quadratic error and a term of regression of the weights enabled us to achieve our goal. For this behavior, the building of the navigation controller is done entirely on-line by the optimization of a zero order Takagi-Sugeno fuzzy inference system (FIS) by a back-propagation-like algorithm.

Fig. 5 (right) illustrates the controlled positions zxy using STFIS controller where u 3 and u 2 , denote the command signals for z, x or y directions respectively. Note that the input u 3 = mg at the equilibrium state is always verified. The inputs u 2 tend to zero after having carried out the desired orientation of the vehicle. It is also shown in this figure that we can stabilize the system to make a following movement by the swivelling of the engine actuators 1 and 3. The 3D displacement is depicted with straight, arc, round corners like connection and realization of a helical trajectory (see Fig. 5 (left) and Fig. 6).

As comparison, we used also the ANFIS algorithm. According to the found results, Fig. 7 (left), we can say that this approach ensures the vertical flight of the drone with a very weak static error but any time it does not preserve the legibility of the rules. In addition, controller STFIS (Fig. 7 (right)) is compared with method ANFIS. The drone is controlled to accomplish vertical flight according to the direction z by using both technique. Controller STFIS has an advantage, which is the legibility of the rules (tables 1 and 2) contrary to the controller ANFIS who is a black box. 

CONTROLLERS ROBUSTNESS

Disturbances with wind influence

The robustness of the developed controllers are evaluated regarding external disturbances and performance degradations in the case of wind influence. In the case of the XSF, a resistance or a drag force is opposed to its movement in flight. The work produced by this force involves an additional energy consumption at the actuators levels which limits its maneuvering capacities in flight. This force can be expressed as follow:

F i = 1 2 C x ρ A V 2 i ( 9 
)
where F i [N] is the drag force following the i axis, V i [m/s] is the drone velocity, A [m 2 ] is the coss-sectional area perpendicular to the force flow and ρ [Kg/m 3 ] is the body density. The equation 9 induced a drag coefficient C x which is a dimensionless quantity that describes a characteristic amount of aerodynamic drag depending on the XSF structure and which is experimently determined by windtunnel tests. This coefficient is equal to 0.5 for the x and y directions and 0.08 for the z displacement. The surface characteristic A of the XSF drone is equal to A = 0.031m 2 and it density is considered equal to ρ = 1.22Kg/m 3 . The Fig. 8 present the simulation re- sults in the case of a drag force of F dg = 1.4N and of F dg = 2.1N according to the x displacement. The STFIS controller exhibits chattering signal problems in the transition phase while the SFL controller presents static errors that varies proportionally with the drag force amplitude F dg . The same observations are found according to the two directions y and z.

White noise disturbances

The robustness study was realized in simulations taking into account disturbances with a white noise. We considered two cases, in the first one, the noise power is equal to 0.5 and 2 decibel in the second case for both SFL and STFIS controller along the z direction. To see the behavior of the two controllers according to noise measurement, the Fig. 9, shows the vertical flight allure for both controllers. It is noticed that the STFIS controller gives good results compared to the SFL controller. 

CONCLUSION

In this paper, we studied a new configuration of flyer engine called XSF. We have considered in this work the stabilizing/tracking control problem for the three decoupled displacements of a XSF. The objectives are to test the capability of the engine to fly with straight, arc, rounded intersections and complex trajectories (helical). We have presented and implemented an optimization technique allowing an on-line adjustment of the fuzzy controller parameters. The descent gradient algorithm, with its capacities to adapt to unknown situations by the means of its faculties of optimization, and the fuzzy logic, with its capacities of empirical knowledge modelling, are combined to control a new configuration of flyer engine. Indeed, we have obtained an on-line optimized Takagi-Sugeno type FIS of zero order. This method is simple, economical and safe since it is done on a mini-flying robots. It leads to very quick and efficient optimization technique. A comparison between the STFIS set rules and that deduced by human expertise, shows the validity of the proposed technique. An analysis of the STFIS (which not require the good knowledge of the model) and the SFL (requires the well knowledge of the system model and parameters) controllers and their robustness regarding disturbances, shows the advantages and the disadvantages of these two techniques.
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Table 1 .

 1 Weight

				for z displacement	
	de \ e	NB	NS	Z	PS	PB
	PB	29.62 29.71 7.59 2.55 2.99
	PS	29.52 31.34 10.63 3.02 1.69
	Z	34.22 29.73 19.54 4.84 2.79
	NS	39.72 41.37 22.32 1.74 9.61
	NB	39.92 39.82 28.27 7.96 9.62

The universes of discourse are normalized and shared in five fuzzy subsets for all displacement. The linguistic labels are defined as follows: NB: N egative Big, NS: N egative Small, Z: approximately Zero, PS: P ositive Small and PB: P ositive Big. The results of the simulation are reported in the table 1 for z displacement. The optimization phase tends to stable

Table 2 .

 2 Learning 

				linguistic table
	de \ e NB NS	Z	PS	PB
	PB	B	B	W	VW VW
	PS	B	B	W	VW VW
	Z	VB	B	M VW* VW
	NS	VB VB M* VW*	W
	NB	VB VB	B	W	W
	weights (Fig. 4 left). In these circumstances the outputs
	linguistic labels could be interpreteted as follows (Fig. 4
	right):				
	VW: [1 , 5] V ery W eak, W: [7 , 11] W eak, M: [19 , 23]

M edium, B: [28 , 32] Big and VB: [34 , 42] V ery Big. The table 2, illustrates the linguistic translation of the table obtained by on-line optimization for the z displacement (table 1). By comparing the table proposed by learning and by human expertise (see table 2 and table 3), we can

Table 3 .

 3 Expertise

				linguistic table
	de \ e NB NS Z	PS	PB
	PB	B	B	W VW VW
	PS	B	B	W VW VW
	Z	VB	B	M	W	VW
	NS	VB VB B	W	W
	NB	VB VB B	W	W

This work is supported by the mini-flyer competition program organized by the DGA (Direction Générale des Armements) and the ONERA (Office Nationale d'Etude et de Recherche en Aérospatiale), France.