
HAL Id: hal-00965074
https://hal.science/hal-00965074v1

Preprint submitted on 25 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Extraction of Developer Expertise
Cédric Teyton, Marc Palyart, Jean-Rémy Falleri, Floréal Morandat, Xavier

Blanc

To cite this version:
Cédric Teyton, Marc Palyart, Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc. Automatic Extrac-
tion of Developer Expertise. 2014. �hal-00965074�

https://hal.science/hal-00965074v1
https://hal.archives-ouvertes.fr


Automatic Extraction of Developer Expertise

Cédric Teyton
Univ. Bordeaux, LaBRI, UMR

5800
F-33400 Talence, France

cteyton@labri.fr

Marc Palyart
Univ. Bordeaux, LaBRI, UMR

5800
F-33400 Talence, France

mpalyart@labri.fr

Jean-Rémy Falleri
Univ. Bordeaux, LaBRI, UMR

5800
F-33400 Talence, France

falleri@labri.fr

Floréal Morandat
Univ. Bordeaux, LaBRI, UMR

5800
F-33400 Talence, France
fmorandat@labri.fr

Xavier Blanc
Univ. Bordeaux, LaBRI, UMR

5800
F-33400 Talence, France

xblanc@labri.fr

ABSTRACT

Context: Expert identification is becoming critical to ease
the communication between developers in case of global
software development or to better know members of large
software communities. To quickly identify who are the ex-
perts that will best perform a given development task, both
the assignment of skills to developers and the computation
of their corresponding expertise level have to be automated.
Since the real level of expertise is tedious to assess, our chal-
lenge is to identify developers having a significant level of
experience with respect to a skill. Method: In this paper
we propose XTic, an approach that takes up this challenge
with the intent to be accurate and efficient. XTic provides
a language to specify skills. It also provides an automatic
process that extracts skills and experience levels from source
code repositories. Our approach is based on the idea that an
expert has a high level of experience with respect to a skill.
Results: We have validated XTic both on open source and
industrial projects to measure its accuracy and its efficiency.
The results we obtained show that its accuracy is between
moderate and strong and that it scales well with medium and
large size software projects. Conclusion: XTic supports
the specification of a diversity of developer skills and the
extraction of the expertise of these developers under the form
of level of experience.

1. INTRODUCTION
Expert identification is becoming critical to ease the com-

munication between developers in case of global software
development [18, 13] or to better know members of large soft-
ware communities [7, 21]. As software development is more
and more complex and requires expertise in many technolo-
gies, a particular attention is currently paid to automate the
identification of experts with the intent to quickly identify

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

who are the best developers to perform a given development
task.

From an abstract point of view, expert identification con-
sists in (1) assigning skills to developers but also (2) defining
their corresponding expertise level. A skill is an abstract
term that can have multiple definitions. It can be very
generic such as java, test or web design. It can also be much
more precise such as library skills with for example JUnit

1 or
JQuery

2. Further, skills can even be specific to a given project
or a given team of developers such as mastering the ’core’
module of the project for example. The levels of expertise for
a given skill are values that must belong to an ordinal scale
such as high, middle, low or a five stars level for instance.
Their intent is to compare the expertise of developers for a
given skill in order to rank them.
Any approach that aims to automate the identification

of experts has then to provide a process that automatically
assigns skills to developers with their expertise levels. To
that extent, both the semantics of skills and expertise levels
have to be clearly defined. Moreover, the process has to be
accurate as it must identify true experts. It should also be
deterministic or at least convergent as it should always assign
the same skills and expertise levels to the same developers.
Moreover, it has to be efficient with the main objective to
identify experts as fast as possible, even in a large community
of developers.
Many approaches aim to support expert identification.

Some of them target specific skills such as code ownership [14]
or bug fixing [1]. Other aim to provide an abstract data model
that can be queried to ease the identification of experts [18,
2]. To the best of our knowledge, none of them propose to
explicitly define the semantics of skills and assign expertise
levels, which is the main purpose of our approach. Our pur-
pose is to support project managers who want to assign tasks
to their developers, or developers who search collaborators
to help them. Our approach takes up the three following
challenges:

• How to specify skills?

• How to extract developer’s skills and expertise levels?

• How to classify developers to better identify experts?

1
JUnit is a Java library used to develop Unit Tests in Java

2
JQuery is a JavaScript library that eases many manipulations

of the DOM tree



Our approach provides a DSL (Domain Specific Language)
for defining what is a skill. Based on this language it provides
an extraction mechanism that browses software repositories
(currently only source code repositories) to automatically
assign expertise levels to developers. The concept of this
mechanism is based on the Thomas the Apostle principle :
we only rely on the observation of the developers actions to
evaluate them. Therefore, instead of computing the expertise
level which is subjective and hard to define, we compute the
experience level which is objective. Our key hypothesis is
that a high level of experience with respect to a skill equals
to a high level of expertise for the skill. We then provide an
aggregation formulae to rank developers and, on top of it, a
simple mechanism to ease the identification of experts.

Our approach is fully implemented in an open source tool,
named XTic. We have validated XTic by realizing two ex-
periments. First, we identify experts in a sub-part of GitHub
that is composed of 16 projects and 280 developers with the
intent to stress-test our approach. Our experiment shows
that expert identification can be realized for these projects in
less than 3 hours. Second, we have used our approach in an
industrial case study with the intent to validate the accuracy
of our approach. It shows that all the skills that interest our
industrial partner can be defined with our language. Further,
the experts identified by our approach strongly correspond
to the experts manually identified by our industrial partner.
Our paper is organized as follows. Section 2 starts by

presenting the related work. Section 3 clarifies the field of
expert identification by giving some rigorous definitions. It
then deeply presents our approach. Section 4 presents the
two validations we have done. Finally Xection 5 discusses
the limits of our approach and suggests some improvements
and Section 6 concludes.

2. RELATED WORK
Expert finding is a prolific topic in the domain of infor-

mation retrieval [10, 15] and is an important subject of the
Enterprise tracks of the Text REtrieval Conferences (TREC)
since 2005 [4]. However these research approaches are based
on generic text analyses and thus cannot fully exploit the
data present in a source code repository (history, ownership).
Another example of early work is the Expertise Browser

(ExB) [18] proposed by Mockus and Hersleb. They define the
concept of experience atom (EA), a basic unit of experience,
that can be built from each delta of each files from the
VCS of the project. An EA may then be associated with
one or multiple domains (functional area, technology used,
purpose or type of the change). Finally to measure the level
of expertise in a particular domain they count the number
of EA associated with this domain. This work is close to our
mainstream idea, however there is information on how the
set of domains is built and how the domains are specified,
and finally how the experience atoms are extracted. We
argue that our DSL allows more freedom and flexibility in
the specification of the targeted skills.

Specific research approaches targeting the search of experts
in the case of a software development project has been accom-
plished. The Expertise Recommender (ER) [16] proposed by
McDonald and Ackerman was one of the first. Their tool
relies on two heuristics to identify experts. The first one
called change history considers that the revision authors are
the experts for the corresponding file. The second one called
tech support uses a support database to identify users that

already solved problems.
More recently, several research tools [5, 17, 22] were devel-

oped to help a developer who is looking for an expert on a
file she is modifying or using. They use the touches made on
the selected files to determine the list of experts.

As we have seen, some projects rely solely on the analysis
of the source code [18] and others attempt to improve the
recommendations by looking at other forms of data. For
example Moraes et al. with the Conscius tool [19] look at
mailing lists.
Codebook [2] is a tool that builds a graph by mining

the source code repository, the work item database, the
employee directory as well as documents. It also offers a
regular expressions language that can be used to search the
graph. Based on this framework they have developed several
applications over the years. For example, Hoozizat [2], a
web search portal for finding the people who own and are
responsible for a feature, an API, a product or a service.
Another example of application is CARES [13] which is a
Visual Studio extension that exposes developers profiles who
have contributed to a given file.

Schuler et al. have defined a technique to identify experts
of Java methods by looking at the history of usage of a
particular method [20]. They argue that developers that
use a method should be considered with the same level of
expertise than developers that change and edit the method.
In their work the unit of experience considered is thus a Java
method.

At that point, it is crucial to understand that the domains
of expertise we target are not necessarily related to source
code areas. For instance, a skill can be defined as the usage
of third-party library in the software, which is often scattered
in many places of the software. Also, if one want to track
who adds or removes the Deprecated annotation on Java
elements, we clearly see this is not linked with source code
areas. One purpose of our approach is to allow to track either
skills related to the implementation of a unit of code (ex:
edition of a Java method) or usage of this unit (ex: a call to
this method).

Globally our work distinguishes itself from these approaches
by providing a way for specifying (with a DSL), extracting
(with a tool) and measuring (according to several levels) the
developers skills. To our knowledge, no existing work comes
up with these three particular features. The DSL not only
eases the work of writing down the skills, but is intended to
offer much more possibilities when specifiying the targeted
skills.

3. APPROACH
As a base hypothesis, we consider that skills can be ex-

tracted from syntactical modifications performed by develop-
ers on the software artefacts of their projects. For instance,
we consider that a developer is a Java expert if and only if
she has syntactically edited Java files. The main principle of
our approach is then to analyze changes made by developers
on software artifacts to extract their skills as well as their
levels. It should be noted that we deliberately choose to focus
on the analysis of software repositories as they contain most
of the activity performed by developers. As a consequence,
we support only programming skills, i.e. skills that can be
extracted from artifacts that are managed within a source
code repository.
As there are many definitions of skills, we define them



using a domain specific language. This language is used to
define what are the syntactical changes that a developer must
perform on a software artifact to have a corresponding skill.
For instance, one may consider that a developer must just
modify a Java file to be a Java developer. However, another
one may consider that such a definition is too permissive as
Java files do not only contain Java code but also comments.
She may consider that a developer must create a Java class
or modify Java methods to be truly considered as a Java
developer.

Once skills have been rigorously defined, our approach uses
them while browsing source code repositories to compute
developers experience levels. An experience level is a quan-
titative measure that is used to compare the developers, in
order to identify experts. Our extraction mechanism is incre-
mental and has been optimized to scale well and to quickly
measure developers skills even in large software projects. The
comparison of the experience levels can be facilitated by the
use of well known clustering algorithms.
This section presents the two main elements of our ap-

proach: the skill definition language, the skill and experience
levels extraction process.
To better explain our approach, we introduce a simple

example of a Java project managed by a software repository.
Figure 1 presents the only Java file contained in this project.
This file has been modified three times. The first version of
the file (v0) has been created by Alice. Then the version v1
has been committed by Bob. Finally, the version v2 has been
committed by Alice again. We assume that the manager of
this project is interested in quantifying developers experience
with regard to the JUnit test framework. We assume that
she wants to identify two kinds of JUnit expert. The first
ones (Test creators) are developers that create tests and the
second ones (Test modifiers) are the developers that update
existing tests.

3.1 Definitions
To ease the explanation of the approach we first lay out

several definitions. Let D be the set of developers, S the set
of skills and L the set of experience levels. The goal of any
approach that aims to identify experts is to assign skills to
developers with a corresponding experience level. In other
word, such an approach computes a binding function that
builds triples (d, s, l) ∈ D × S × L. Our approach computes
such a binding function by analyzing software repositories.
It analyzes all the syntactical changes that are made by
developers. To that extent, we define the concept of an
atomic file change that is the set of all the modifications
performed to a file by a developer during a commit. More
formally an atomic file change c is completely defined by the
two versions of the file before (f0) and after (f1) the commit
(c = (f0, f1)). The kind of the modification is either defined
by the software repository or can be inferred by looking at
the two files. If f0 does not exist, that means that the file
has been created. If f1 does not exist, that means that the
file has been deleted. If both files exist and have the same
name, it means that the content of the file has been modified.
If the names of the two files are not the same, it means that
the file has been renamed or moved.

Finally, as a commit may target several files and as devel-
opers commit several times in a software project, we consider
that each developer d performs a set of changes Cd. The set
of changes of each developer can be computed by browsing

any software repository. For instance, the repository of Fig-
ure 1 contains the two following sets of changes (Ca for Alice
and Cb for Bob):

Ca = {(∅,Foo.java
v0), (Foo.javav1,Foo.javav2)}

Cb = {(Foo.java
v0,Foo.javav1)}

Our approach then inputs the set of changes Cd of all
developers d and performs an analysis to assign skills to de-
velopers with a corresponding experience level. This analysis
consists in matching changes (c ∈ Cd) against syntactical
patterns, which have been defined using our domain specific
language.

3.2 Skills definitions by syntactical patterns
Rather than presenting the syntax of our domain specific

language for defining skills, we present in this section its
main concepts. We propose to specify a skill as a set of
syntactical patterns applying to atomic file changes. If the
modifications that a developer performs during an atomic
file change match at least one pattern of a skill, then the
skill is assigned to the developer or his experience regarding
this skill is increased.

A skill definition may contain several patterns. Moreover,
a developer may perform several atomic file changes. As a
consequence, several matches occur for one developer and
one skill during the analysis of a software repository. The
number of matches corresponds to the level of the skill. A
level then corresponds to the number of editing operations
performed by a developer that match a skill definition.

A syntactical pattern of a skill defines a syntactical modi-
fication that can be done on the file target of an atomic file
change. The modification can be done on the file (create
the file, delete it or change its name) or can be done on
its content (change a line or a token). We then defines a
syntactical pattern as a chain of four filters: a path filter,
a kind filter, a content filter and a tree modification filter.
These four filters are chained for the sake of efficiency. All
atomic file changes that have been filtered out by one filter
will not be checked by the next filters.

The kind filter applies first to the kind of change that
is made to the file target of the atomic change file. Then,
the path filter constraints the path of either the source or
target file, or both. This last case can be useful do detect
moved files during refactoring for instance. The content filter
and tree modification filter apply to the content of the file.
The content filter considers that the content is a sequence
of character while the tree modification filter considers that
the content is an abstract syntax tree (AST). These two
filters can also be computed on the source or target file of
the atomic change file.

Kind filter. The purpose of the kind filter is to describe
which are the kinds of modification that must be performed
by a developer to have the skill. The kinds of modification can
be: creation, modification, deletion or renaming. The kind
filter is therefore defined by a mask that specifies the allowed
kinds of modification. By default, only the creation and the
modification of files are allowed. In our example, the JUnit

creator can create, modify or rename files whereas the JUnit

modifier must only modify or rename them (and not delete or



//Version v0
class Foo {
}

//Version v1
class Foo {
@Test
void testFoo() {
assertTrue(true);

}
}

//Version v2
class Foo {
@Test
void testFoo() {
assertTrue(true);
assertFalse(false);

}
}

Figure 1: A project repository containing only the Foo.java file, modified three time. Version v0 has been committed by Alice,
then Bob has committed the version v1 and finally Alice a committed again the version v2.

create, as an updated file cannot be found in these cases). The
kind filter is therefore "added,modified,renamed" for the
JUnit creator and "modified,renamed" for the JUnit modifier.

Path filter. The purpose of the path filter is to constrain
the paths of the files that must be modified by a developer to
have the skill. It is a regular expression that constraints the
path of the target file of an atomic file change. As an atomic
file change is completely defined by two versions of a file (f0
and f1), which may have different path in case of renaming
for instance, the path filter contains two regular expressions
(one for f0 and one for f1). In our example, the JUnit tests
are contained in Java files, the path filter is therefore the
same for both the JUnit creator and the JUnit modifier, for
both f0 and f1: "^.\*.java$".

Content filter. The purpose of the content filter is to de-
scribe what must be the content of the files that must be
changed by a developer to have the skill. We choose to use
regular expressions to specify this filter. As a regular expres-
sion is not really adapted to express absence of strings, a
content filter is composed of two sets of regular expressions
(the positives and negatives ones). Moreover, as the content
filter may apply to f0 and to f1, each file may have two
sets of regular expressions. In our example, for the JUnit

creator and modifier, the file must contain a reference to the
JUnit library, which can be specified by a regular expression
defining that the org.junit string must be included in the
file. Such a regular expression is contained in the positive
set. Further, it only constraints f1 for the JUnit creator but
constraints both f0 and f1 for the JUnit modifier.

Tree modification filters. The purpose of the tree modifi-
cation filter is to describe what are the changes that must
be performed by a developer to the AST of the file to have
the skill. Before explaining the semantics of this filter, let
us explain on which structure it works. We assume that
the files f0 and f1 are in the same format, or that one of
them is empty. By same format, we mean that they can
be parsed into an abstract syntax tree (AST) by the same
parser. We build the AST of the two files and compute
an annotated modification tree using these two trees. The
annotated modification tree is constructed by applying the
longest common sub-sequence algorithm on the sequence
constructed by a depth first pre-order traversal of the nodes
of the two trees. It corresponds to the AST of the file after
modification, where the nodes that are not contained in the
longest common sub-sequence are annotated as added. List-
ing 1 shows the annotated modification tree corresponding
to the second modification of Figure 1.
The tree modification filter is an XPath expression over

Listing 1: The annotated modification tree computed be-
tween the two ASTs corresponding to the first and second
modification of Figure 1

<CompilationUnit>
<TypeDeclaration>
<SimpleName label="Foo" />
<MethodDeclaration added="1">
<MarkerAnnotation added="1">
<SimpleName label="Test" added="1" />

</MarkerAnnotation>
<PrimitiveType label="void" added="1" />
<SimpleName label="testFoo" added="1" />
<Block added="1">
...

</Block>
</MethodDeclaration>

</TypeDeclaration>
</CompilationUnit>

Listing 2: Addition of a Test annotation

<tree parser="java">
<queries>
<query value="
//MethodDeclaration
[MarkerAnnotation[@added]
/SimpleName[@label=’Test’][@added]] />

</queries>
</tree>

the annotated modification tree. It returns a set of nodes cor-
responding to the location where a syntactical modification
indicating the skill has been observed. As a tree modification
filter may return several nodes, we increment the experience
level of the skill for each returned node.
For instance, for the JUnit creator skill, we look for de-

velopers that have added a method definition with a @Test

annotation. The corresponding filter is exposed Listing 2.
This XPath expression selects all MethodDeclaration nodes
that contain a @Test annotation marked as added.
For the JUnit modifier skill, the associated filter is shown

Listing 3. This XPath expression selects all MethodDecla-
ration nodes that are not marked as added that contain 1)
a @Test annotation not marked as added and 2) any node
marked as added.

Summary example. To provide a better insight on how our
language can be used in practice, we provide a full example
of a skill that targets the addition of Java files containing
import org.junit. and defining a new test method. The
full example is available Listing 4.



Listing 3: Modification of a test method

<tree parser="java">
<queries>
<query value="
//MethodDeclaration[not(@added)]
[MarkerAnnotation[not(@added)]
/SimpleName[@label=’Test’][not(@added)]]
[..//*[@added]] />

</queries>
</tree>+

Listing 4: Complete example using the 4 filters proposed by
XTic

<skill id="Creation of JUnit tests">
<kind value="added" />
<files>
<file value="\.java$"/>

</files>
<contents>
<content value="import org.junit" />

<contents>
<tree parser="java">
<queries>
<query value="//MethodDeclaration
[MarkerAnnotation[@added]
/SimpleName[@label=’Test’][@added]]"/>

</queries>
</tree>

</skill>

3.3 Skills and experience levels extraction
Our skills extraction process is a two steps process. The

first step consists in creating the required data model by
browsing a software repository. During this first step, a par-
ticular attention has to be paid on renamed and moved files
as they can have a significant wrong impact on the results
of our approach. A renamed/moved file in most VCS (Ver-
sioning Configuration System) is seen as a file deletion and
creation, performed in the same commit. Therefore, when
applying our skills extraction process, all the syntactical pat-
terns contained in the file might be assigned to the developer
that performed the renaming/moving, even if she performed
no modification at all on the file content. To avoid that,
we introduce a move/renaming detection algorithm that we
run when extracting a set of changes from a VCS. This al-
gorithm focuses on commits where there are both deleted
D and added files A. On these commits, we compute the
normalized compression distance of each element in D ×A.
Whenever this distance is below a threshold 0.25, and when-
ever it involves two files that have no better distance with
another file, we mark the files has being moved/renamed.

The second step aims at assigning skills to developers and
to compute a level, which is a positive integer that represents
how many times a syntactical pattern has been matched.
This step is quite straightforward. It iterates on the atomic
file changes of each developer. For each atomic file change,
all the patterns that define a skill definitions are checked.
As previously explained, skill definitions are composed of
several syntactical patterns. These patterns are checked
iteratively against changes and return each one a positive
integer. These integers are finally aggregated into one integer
that corresponds to the level of the skill. By default they

are aggregated using a sum, but it is possible to provide a
custom formula.

To simplify the analysis of the results of the skill extractor,
we propose to apply a post-processing step. Its purpose is to
map the levels of skills into a smaller ordinal scale such as low,
medium and high. We propose to use the K-means clustering
algorithm [8] to map the developers into the clusters. This
algorithm creates clusters of values regarding their distance.
Configured to output three clusters, it then groups lower
values together, as well as higher values and medium values.
Thanks to this step, one can then ask for an expert with a
high level. This post-processing is optional as it depends on
the number of developers being analyzed. If this number is
too small, the clusters will not reflect the developer skills. In
this case, the integer value is more meaningful.

Conceptually, our approach allows to analyze several soft-
ware repositories with a same set of skills. However, we
currently do not provide a module for merging developer
profiles and experience levels scattered on several projects.
However, this aspect has already been studied and should
be easily included in XTic in a future work [12].

4. VALIDATION
In this section we first describe the implementation of

XTic. We then stress test our approach on several open-
source projects, to evaluate its performance. Finally, we
evaluate the accuracy of our approach in a case study con-
ducted with AKKA, our industrial partner.
Our validation then aims to answer to the following re-

search questions:

• Is XTic able to analyze a large-scale set of data? (RQ1)

• Are the results computed by XTic correct? (RQ2)

4.1 Implementation
XTic has been written in Java on top of the Harmony [9]

framework. Harmony is an infrastructure designed to ease
the development of tools that mine software repositories. It
provides an abstract model that can be used to specify anal-
ysis of commits. Thanks to this model, Harmony analyses
such as XTic can be run on many version control systems
such as Git, SVN, Mercurial, TFS or CVS. The XTic anal-
ysis also relies on the Eclipse JDT parser to perform the
parsing of the Java files. The building of the clusters of de-
velopers is done by using the implementation of the K-means
clustering provided by Weka [6].

4.2 Stress test
The purpose of this stress test is to answer the first research

question (RQ1): is XTic able to analyze a large-scale set of
data? Since this analysis depends on the syntactical patterns,
the size of the source code and the number of versions, it
is not possible to make a single experiment to provide a
definitive answer. We thus choose to apply some worst case
scenarios to a corpus of 16 Java projects. All these project
are hosted on GitHub, they are active and have more than
one developer. They vary from 140 commits with 2,097
lines of code (LoC) for nanohttpd to 1,419 commits with
79,236 Java LoC (crunch)3. We argue that the 16 projects

3More details on the corpus may be found at http://se.
labri.fr/xtic/



5 10 15

0
20

0
40

0
60

0
80

0
10

00
12

00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a) Time by project in seconds (high: worst case, low: JUnit).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
20

40
60

80
10

0

Model Co. content Content Co. diff Diff xpath

(b) Breakdown % of running time (left: worst case, right: JUnit).
Figure 2: Time and breakdown of XTic worst case versus JUnit test on a Java corpus.

selected for this experiment will provide a solid insight of the
performance of XTic in action.

As described in Section 3, a syntactical pattern may contain
filters on file names, kinds of modification (creation, edition),
file content and tree modifications. Since the two first filters
are almost free to check, this experiment focuses on the last
two. Searching for file content requires reading files, thus
the worst case is to search for an absent string in all files.
Since we are unable to figure out what is the worst case of
the tree modification filter, i.e., an XPath query, we define
three queries on Java files which have an heavy load:

• all nodes added: the XPath engine has to return plenty
of results.

• new local variable: this requires to find specific nodes
and most commits introduce variables.

• genericity usage: since genericity may be found on class
declaration or instantiation this query has to perform
disjunctions.

This worst case scenario is compared with another one
that only includes the JUnit skill definition. This definition
considers that a JUnit tester is a developer that performs
modifications on Java files that contain the string org.junit

and where a method annotated by a JUnit has been introduced
or changed. It corresponds to the JUnit creator and modifier
patterns described in Section 3.
Experiments are performed on a Intel Core i7 Cpu M640

at 2.80Ghz with 8Go of RAM running with Ubuntu 13.04
(kernel 3.8.0-24) and OpenJDK 1.7.0 25. All these scenario
(each part of the worst case and JUnit) are run many times
(more than 5) on different passes to avoid IO cache effects

and only the worst times are reported. The Figure 2 is two-
fold, the left-hand side shows the whole computation time
(y-axis) for each project (x-axis) as segments. The upper end
of each segment represents the worst case scenario, while the
lower end represents the JUnit scenario. The right-hand side
of Figure 2 shows a breakdown of these running times as per-
centages. Each group of two bars represents a single project,
where the left bar shows the worst case scenario and the
right one the JUnit scenario. Breaks represents respectively
(bottom up) the time spent analyzing the VCS (Model), the
time of checking out the files in order to search for patterns
(Co. content), the time of searching effectively these patterns
(Content), the time for checking out the previous version of
a file (Co. diff) in order to build ASTs and doing the tree
differentiation (Diff), and finally the time consumed by the
XPath queries (xpath).

Conclusion.
This experiment shows mainly two things. First XTic

analysis is generally fast enough, even on large scale project,
which answer our RQ1. On average, the worst case scenario
(resp. JUnit scenario) is under 7 minutes (resp. 5 minutes)
with a maximum of 20 minutes (resp. 15 minutes) for a
project containing 1,282 revision (with 135,644 LoC in the
last version)—it is worth noting that it is not even the biggest
project neither from the number of commits nor the number
of LoC.

Moreover this experiment shows some of the design choice
of XTic. When looking only the left bars, i.e., the worst case
scenario, the time is mostly spent in doing tree differentiation
which makes sense since all possible diffs are computed. On
the more realistic example of JUnit (right bars) a simple
content filter avoids most of them, thus the biggest part of



time is spent doing the checkout of files. In any case the
matching inside the files itself is almost free compared to
other things (when carefully looking at the graphs it can be
barely seen). As a first advice learned from this experiment,
if possible, any skill definition should contain a content filter
to avoid wasting time in tree differentiation. Adding more
XPath queries is not expensive compared to the whole process
as soon as a diff is already computed. Computing many skills
in a single pass should be preferred in order to avoid redoing
tree differentiation.
When looking at the breakdowns, the project 2 seems

really singular since both bars look like the same. After
manually inspecting this project, we found that 70% of the
files contains test code. Again even though JUnit rules are
more realistic, the whole computation time is thus subsumed
by tree differentiation which explains this result.

4.3 Industrial case study
The purpose of this case study is to answer the second

research question (RQ2): are the results computed by XTic

correct?. To that extent we perform an experiment on an
industrial project where we compare the results of XTic with
developers expertise estimated by a manager and a software
architect.

4.3.1 Setup

We first present the software project analyzed in this case
study, as well as the skills required by our industrial partner.

Project and developers. Our industrial partner AKKA
Technologies4 agreed to grant us access into a software project
repository and to provide us a list of developers skills they are
interested in. The project studied is a document management
system which development started in 2009 and contains 3
years of development activity. A total of 13 developers are
involved in this project. The software is mainly written in
Java and contains 53 Java KLOC at its latest version.

Skills definitions. We asked to our industrial partner to
define the set of developers skills they wanted to measure. A
meeting of 2 hours with 2 project managers was necessary
to come up with a set of 8 high-level skills that encompass
28 concrete skills according to our definiion. They were
described in natural language first. The 2 hours include the
time to introduce XTic capabilities to the 2 project managers.
Then, we wrote the skill definitions to integrate them into
XTic. We were able to express all the skills in about 15
minutes. It turned out that each skill necessitate several
patterns, and only file and content filters were necessary to
write these patterns, as shown in Table 1. XTic was therefore
expressive enough to fit the requirements of our industrial
partner. The skills definitions are not freely available for the
sake of confidentiality.

Developers skills. We asked our industrial partner to de-
liver several skills evaluations indicating for each developer
d ∈ PD and each skill s ∈ S (as shown in Table 1), what
is the expertise level l ∈ L = {low,medium, high} of the
developer w.r.t. the skill. We end up therefore with several
ternary relations that are subsets of PD ×S×L. The project
manager and architect accepted to complete an independent

4http://www.akka.eu/index_en.php

Table 1: Number of patterns and filters in the skill definitions.

#Filters

Skill #Patterns File Kind Content Tree

config 5 5 0 6 0
workflow 2 2 0 2 0
domain 2 2 0 5 0

modeling 7 7 0 0 0
graphics 3 3 0 4 0

jsf 2 2 0 1 0
plugins 4 4 0 1 0

tests 3 3 0 3 0

Total 28 28 0 22 0

Table 2: Distribution of the developers in the levels for the
evaluations Ear and Ema.

#Low #Medium #High

Skill Ear Ema Ear Ema Ear Ema

config 7 7 2 3 4 3
workflow 7 9 2 2 4 2
domain 7 7 4 0 2 6

modeling 6 11 5 0 2 2
graphics 4 5 0 7 9 1

jsf 3 3 4 2 6 8
plugins 9 10 0 0 4 3

tests 3 5 4 1 37 7

total 46 57 21 15 37 32

evaluation based on their personal knowledge. We therefore
have two evaluations Ear and Ema, which distribution in the
levels are shown in Table 2. As these two persons disagree
on several developers, we have also built another relation
Eag computed from Ear and Ema, where we kept only the
triples (d, s, l) that were included both in Ear and Ema. This
relation contains thus only the developers and skills on which
both persons agreed. Its distribution in the levels is shown
in Table 3.

The evaluations Ear and Ema contain 13 ∗ 8 = 104 triples.
The evaluation Eag contains 48 triples. It means that the
two persons agreed only on about one developer out of two.
Table 2 indicates that the proportion of low, medium and
high developers is similar globally but can vary a lot in the
rules (in graphics for instance). Low developers are the
most common, followed closely by high developers. Medium
developers are less frequent. Table 3 indicates that the two
persons agree more frequently on the high and low developers
than on medium developers. This is probably due to the fact
that it is easier to know if a developer is high or low, but the
border between low and medium on one hand, and medium
and high on the other hand, is fuzzy and very subjective.

4.3.2 Experiment

We ran XTic on the software project repository using the
previously described skills definitions to compute an integer
score for each of the 13 developers on each of the 8 skills.
To convert the integer into a level, we used the K-means
clustering algorithm configured to produce three clusters,
as explained in Section 3. It led to an evaluation called
Ext. To be able to compare XTic on the evaluation Eag,
that contains only the developers for which the manager and
architect agreed, we computed an evaluation Ext′ containing



Table 3: Distribution of the developers in the levels for the
evaluation Eag.

Skill #Low #Medium #High

config 4 1 2
workflow 6 1 1
domain 4 0 1

modeling 5 0 0
graphics 0 1 0

jsf 2 0 3
plugins 8 0 2

tests 2 0 5

total 31 3 14

Table 4: Agreements (#A), disagreements (#D), strong
disagreements (#SD) and Kappa between XTic (Ext), the
manager (Ema) and the architect (Eac).

Couple #A #D #SD Kappa

{Ema, Eac} 48 56 21 0.26
{Ext, Ema} 67 37 6 0.59
{Ext, Eac} 59 45 14 0.42

{Ext′ , Eag} 41 7 1 0.85

only the developers and skills contained in Eag.

4.3.3 Results

To measure the agreements among the three evaluations,
we used Cohen’s kappa coefficient [3]. This coefficient is a
value between 0 and 1, with 1 meaning a perfect agreement
and 0 no agreement. The comparison of XTic evaluation
(Ext) with the one of the manager (Ema), the one of the
architect (Eac), and between these two persons are exposed
in Table 4. In this table, strong disagreement means that a
person assigned a low level while the other assigned high level.
A detailed comparison is also shown in the Venn diagram
from Figure 3.
First of all, the agreement between the architect and the

manager is poor (Kappa of 0.26). Moreover they have many
strong disagreements (about 20%). This shows that evalu-
ating developers skills is complex and prone to subjectivity.
Moreover, it means that XTic results can not conform with
both the manager and the architect. The agreement between
XTic and both the manager and architect is fair (Kappa of
resp. 0.59 and 0.42), which is a satisfying point. Moreover
there are fewer strong disagreements for XTic with both the
manager and architect. The agreement with the manager
(0.59) is good, and the number of strong disagreement is very
low (only about 5%). The results therefore indicate that
XTic have a similar opinion to the manager.

Since the architect and manager significantly disagree,
we produced an evaluation Eag where we kept only the
triples (d, s, l) where the manager and architect assigned the
same skill level. The developers and skills contained in this
evaluation have therefore a good confidence. This evaluation
contains 48 triples, which is still a fair number of developers
and skills. As shown in Table 4, the results of XTic on the
developers and skills of Eag contains 41 agreements and only
7 disagreements leading to a Kappa coefficient of 0.85 that
indicates an almost perfect agreement.
To have a more precise view of the results of XTic, we

computed the precision and recall of XTic with regard to

XTic

Manager Architect

7

41

26 16

30 40

21

Figure 3: Agreement distribution of the results. Our ap-
proach has 21 times disagreed with both the manager and
the architect.

Table 5: Precision and recall of XTic for each level of the
Eag relation.

Low Medium High

Prec. Rec. Prec. Rec. Prec. Rec.

0.94 0.94 0.29 0.67 1.0 0.71

each level of skill, as shown in Table 5. We can see that
the recall and precision for the low and high levels range
from good to perfect. On the contrary, the precision on
the medium class is poor, while the recall is just fair. This
confirms that a human is more prone to assign either a low
or high level, while a medium evaluation is more likely to
be given by XTic. A medium level remains fuzzy from a
human point of view.

4.3.4 Discussion

Since a manual analysis of each case of disagreement would
have taken too much time, we presented to our industrial
partner only the strong disagreements of the manager, the
architect andXTic during a meeting where both the architect
and the manager were present. They were asked to reach an
agreement on each case. With regard to the cases of strong
disagreements between the architect and the manager, it
turned out that in every case, the manager was right. The
reason is because the manager is closer to the developers and
therefore knows better the work they do every day and the
skill they have. On the contrary, the architect assign tasks to
the developers, but does not ensure that they perform it in
person. Therefore they have a biased vision of the developers
skills. However, a possible threat to this experiment is the
lower hierarchical position of the architect compared to the
project manager whose ascendency may have prevailed over
the architect point of views.

Also, with regard to XTic, only six cases remain of strong
disagreements unexplained with the manager. After analyz-
ing these cases, we understood that the manager was right,
but he confirmed that these particular skills were not used
on the project we analyzed, the developers being assigned to
other coding tasks.

This conclusion was very interesting for our industrial part-
ner since knowing whom of the architects and the managers
has a better vision of the developers skills has led to an
internal debate. Unfortunately, the lack of time granted by
our partner prevented us to question directly the developers
on their opinion on each others. We are conscious that team
members are fairly good at evaluating at each others.



Finally, we observed that only the content filter and path
flter were used. We argue that the usage proportion of each
type of filter is variable, and there exists cases where the
kind filter and tree filter are needed, like shown earlier in the
description of the language.

5. LIMITS AND IMPROVEMENTS
The previous section shows that XTic has a good accuracy

and a good efficiency. While it offers some new supports to
the field of expert identification, it still suffers from some
limits. In this section we highlight these limits and explain
how we can handle them.

First of all, XTic is based on a syntactical analysis of source
code. The diff technique it uses currently does not support
refactoring operations such as method renames or moves.
These operations are therefore considered to be delete and add
operations. They have then a strong impact on the skill and
experience level extraction as a developer that just renames or
moves a method will be considered to have all the skills that
are related to the content of the method. To overcome this
limitation, we think about using more efficient diff techniques
such as Change Distilling for instance [11]. Furthermore,
the parser used by XTic currently cannot handle files that
contain more than one programming language since they are
complex to parse. Such files are for instance HTML files that
contain both HTML and JavaScript code. To handle them,
we need to define specific parsers and diff techniques.

Secondly, XTic support expert identification by analyzing
all the commits performed by developers on a software repos-
itory. Therefore it does not reflect the real expertise level of a
developer but rather her experience level. As a consequence,
XTic will not identify as experts developers that do not
make a lot of work. For instance, newcomers will always be
identified as non expert even if they do have a strong knowl-
edge. This limit comes from the base hypothesis of XTic

that states that an expert is a developer who committed
in her field of expertise. However, we can overcome it by
performing analysis according to a time window (some weeks
or some months) with the objective to normalize production
of newcomers with the one of older developers. Similarly, a
high level of experience possibly does not necessarily reflect
that the developer produces high quality work with respect
to the skill. If such quality can be expressed using XTic,
then we will be able to distinguish developers that produce
such high quality work.

In this paper, the DSL proposed by XTic was designed to
uniformly specify a large range of skills. In practice, XTic

is intended to help project managers and developers who are
willing to track a defined set of skills. However, this early
paper does not give any clue on how much this DSL can be
appropriated by a person who does not know XTic. Indeed,
in the experiments we wrote the skills, and we rather focused
on the results that are produced. In a future work, we will
have to evaluate how people appropriate our DSL so that
they can use it without our intervention. But more generally,
we claim that the usage of XTic definitively requires a good
knowledge of the technical aspects of the software to be
analyzed in order to efficiently benefit the tool.
Finally, the language proposed by XTic to define skills

can be improved. Currently it does not allow for conjunction
of skill patterns. However, we think that there exists skills
that are spread over more than one file per commit. For
instance, in a Java context we can define a library update

skill, which consists in modifying the JUnit JAR file and in the
same time editing the test files adequately. Moreover even
though the expressiveness of our language remains tedious to
validate, we observed that we managed to specify a various
range of skills. In that direction, additional requirements
and feedbacks from both industrial partners and open source
communities would help us to improve our language, and
better understand their needs.

6. CONCLUSION
The identification of expert is one of the current challenges

of software engineering. In this paper we propose to take
up this challenge by analyzing source code changes that are
managed by a software repository.
Our approach, named XTic, proposes a domain specific

language to specify skills. It then automatically extracts
developers experience by browsing software repositories and
by matching skills definitions to the work committed by the
developers. Finally, it provides some simple support to rank
developers and hence to ease the identification of expert.

Our approach is based on the hypothesis that a developer
has to commit work in her field of expertise to be considered
as an expert. Our approach is then more like Thomas the
Apostle as it needs to observe commits and does not rely on
any other claim.

We have validated our approach by stress testing its imple-
mentation to show its efficiency and by checking its accuracy.
Our validation shows that it is quite efficient and that its
accuracy is between moderate to strong. Without being a
silver bullet, XTic provides a support for those who want to
identify experts in an automated manner.
As a further work, we first think about overcoming some

of the limits of XTic. In particular, we are working on im-
proving the parsers we rely on and on adding time windows
in the extracting process. We also think about integrating
XTic with other approaches that are also based on syntac-
tical analysis but that target software artefacts other than
source code, such as mails or bug reports for instance. Also,
our filter-based approach only targets atomic file changes
included in commits on software repositories. A perspective
is to extend this language so that it can apply on higher level
of granularities, such as a commit, i.e. a set of atomic file
changes. It would allow to observe developers that perform
tasks on two different files for instance. We could go even
further by defining patterns that apply on a project history,
i.e. a set of commits.

7. REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix

this bug? In Proceedings of the 28th international
conference on Software engineering, ICSE ’06, page
361–370, New York, NY, USA, 2006. ACM.

[2] A. Begel, K. Y. Phang, and T. Zimmermann. Codebook:
Discovering and Exploiting Relationships in Software
Repositories. 2010.

[3] J. Cohen. A coefficient of agreement for nominal scales.
Educational and Psychological Measurement,
20(1):37–46, Apr. 1960.

[4] N. Craswell, I. Soboroff, and A. P. Vries. Overview of
the TREC 2005 enterprise track. 2005.

[5] D. Cubranic, G. Murphy, J. Singer, and K. Booth.
Hipikat: a project memory for software development.



Software Engineering, IEEE Transactions on,
31(6):446–465, 2005.

[6] R. De War and D. Neal. WEKA machine learning
project: Cow culling. Technical report, The University
of Waikato, Computer Science Department, Hamilton,
New Zealand, 1994.

[7] G. Demartini. Finding experts using wikipedia. In
Proceedings of the Workshop on Finding Experts on the
Web with Semantics (FEWS2007) at
ISWC/ASWC2007, Busan, South Korea, page 33–41,
2007.

[8] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification (2nd Edition). Wiley-Interscience, 2000.

[9] J.-R. Falleri, C. Teyton, M. Foucault, M. Palyart,
F. Morandat, and X. Blanc. The harmony platform.
Technical report, Univ. Bordeaux, LaBRI, UMR 5800,
Sept. 2013.

[10] H. Fang and C. Zhai. Probabilistic models for expert
finding. In Proceedings of the 29th European conference
on IR research, ECIR’07, page 418–430, Berlin,
Heidelberg, 2007. Springer-Verlag.

[11] B. Fluri, M. Würsch, M. Pinzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source code
change extraction. IEEE Trans. Software Eng.,
33(11):725–743, 2007.

[12] M. Goeminne and T. Mens. A comparison of identity
merge algorithms for software repositories. Science of
Computer Programming, (0):–, 2011.

[13] A. Guzzi and A. Begel. Facilitating communication
between engineers with CARES. In Proceedings of the
2012 International Conference on Software Engineering,
ICSE 2012, page 1367–1370, Piscataway, NJ, USA,
2012. IEEE Press.

[14] H. Kagdi, M. Hammad, and J. Maletic. Who can help
me with this source code change? In Software
Maintenance, 2008. ICSM 2008. IEEE International
Conference on, pages 157–166, 2008.

[15] C. Macdonald, D. Hannah, and I. Ounis. High quality
expertise evidence for expert search. In Proceedings of

the IR research, 30th European conference on Advances
in information retrieval, ECIR’08, page 283–295, Berlin,
Heidelberg, 2008. Springer-Verlag.

[16] D. W. McDonald and M. S. Ackerman. Expertise
recommender: a flexible recommendation system and
architecture. In Proceedings of the 2000 ACM
conference on Computer supported cooperative work,
CSCW ’00, page 231–240, New York, NY, USA, 2000.
ACM.

[17] S. Minto and G. Murphy. Recommending emergent
teams. In Fourth International Workshop on Mining
Software Repositories, 2007. ICSE Workshops MSR ’07,
pages 5–5, 2007.

[18] A. Mockus and J. D. Herbsleb. Expertise browser: A
quantitative approach to identifying expertise. In In
proceedings of International Conference on Software
Engineering (ICSE 2002, page 503–512, 2002.

[19] A. Moraes, E. Silva, C. da Trindade, Y. Barbosa, and
S. Meira. Recommending experts using communication
history. In Proceedings of the 2nd International
Workshop on Recommendation Systems for Software
Engineering, RSSE ’10, page 41–45, New York, NY,
USA, 2010. ACM.

[20] D. Schuler and T. Zimmermann. Mining usage
expertise from version archives. In Proceedings of the
2008 international working conference on Mining
software repositories, MSR ’08, page 121–124, New
York, NY, USA, 2008. ACM.

[21] R. Sindhgatta. Identifying domain expertise of
developers from source code. In Proceedings of the 14th
ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’08, page 981–989,
New York, NY, USA, 2008. ACM.

[22] Y. Ye, K. Nakakoji, and Y. Yamamoto. Reducing the
cost of communication and coordination in distributed
software development. In B. Meyer and M. Joseph,
editors, Software Engineering Approaches for Offshore
and Outsourced Development, number 4716 in Lecture
Notes in Computer Science, pages 152–169. Springer
Berlin Heidelberg, Jan. 2007.


