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Abstract— In this paper, a subspace identification algorithm
for a class of Hammerstein systems is developed. We consider
dynamical systems subject to input backlash or switch nonlin-
earities. The idea is to use a specific input signal allowing the
estimation of the nonlinear part and the estimation of a state
space model for the linear part. The identification algorithm is
a subspace type algorithm. A simulation example is given to
illustrate the performances of the present method.

I. INTRODUCTION

The Hammerstein systems are the nonlinear systems con-
sisting of a nonlinearity block followed by a linear dynamic
system. The identification of such systems has received
much interest for the last decades as evidenced by the many
following references: [22], [6], [1], [7], [34], [12], [32], [35],
[2], [11], [25], [31], [8], [13], [20], [16] and the four sessions
devoted to block oriented nonlinear identification at SYSID
2012. This interest is justify by the fact that these systems
take into account nonlinearities commonly encountered in
practice, generated by the technological limitations necessary
for the proper functioning of the system (saturation, the limit
stops, etc.). In this paper we consider the identification in
presence of some particular input nonlinearities: backlash
and switch nonlinearities.

Few contributions deal with the identification of system
with input backlash or switch nonlinearity. The approaches
developed in [1], [4], [12] and [5] are devoted to nonlinear-
ities bordered by straight lines. The method introduced in
[25] is adapted to nonlinearities with more general borders
however the proposed method is a two experiments method.
Moreover it uses Least Squares algorithm coupled to an
overparameterization, which leads to the need for a high
number of data. An other method is also depicted in [13].
Nevertheless this method is only adapted to backlash nonlin-
earity and it is a two stages method using two independent
experiments.

In this paper, we propose an approach which alleviates
some of the issues present in the previous methods. First,
our method is devoted to backlash and switch nonlinearities
with general borders. Second, our method is a single stage
method which allows to estimate both the linear subsystem
and the nonlinearity. Let us notice that the borders of the
nonlinearities are nonparametric, they will be piecewise
parameterized as in [27].

The proposed identification method is based on two key
idea: (1) A specific input sequence is design in order to
allow a linear parameterization of the identification problem
and in order to satisfy the persistent excitation condition. (2)
Subspace identification methods are used for the estimation.
The use of such methods is mainly motivated by a set of
interesting properties: the simplicity, the intrinsic numerical
robustness and their straightforward application to MIMO
systems ([26], [29], [30], [10], [18], [23], [24], [9]). Some
subspace methods adapted to Hammerstein systems have
been introduced ([15], [14], [3], [33], [28], [17], [21]) but,
to the best of our knowledge, these methods aren’t adapted
to the case of backlash or switch nonlinearity.

The outline of this paper is as follows: in section II the
model structure is presented and the specific input signal is
designed. In section III the subspace identification algorithm
is applied. Some simulation results are given in section IV.
Finally, section V concludes the paper.

II. PROBLEM STATEMENT AND
PARAMETRIZATION

In this section we first state the identification problem.
Then we described the design of the excitation signal. The
association of that signal with a parametrization of the
nonlinearity yields a linear identification problem.

A. Identification problem statement

Consider the identification of the Hammerstein system
shown in Fig. 1 whereu(t) and y(t) are respectively the
input and the output of the plant which is expressed as:

y(t) = G(q)H[u(t)]+ v(t) (1)

G(q) is the proper transfer function of the deterministic linear
part in the Hammerstein system andv(t) is an additive noise
on the output.v(t) is wide sense stationary zero mean process
uncorrelated withu(t). The nonlinear part in the Hammer-
stein system is described byH[.]. This function can be a
switch or a backlash element. Its borders are characterized
by the descendant and ascendent continuous bordersHd[.]
andHa[.]. These two nonlinearities are illustrated on Fig. 2
and Fig. 3.
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Fig. 2. Backlash nonlinearity

The identification problem treated in this paper is stated
as: based on the input-output measurements, find the minimal
order n of the system, a realization of state space matrices
(A,B,C,D) for G(q) and a nonparametric description of
the descendant and ascendent bordersHd[.] and Ha[.]. The
identification of the nonlinearity will be performed on a
working interval:u(t) ∈ [umin;umax].

So as to be able to solve the identification problem we
make some assumptions throughout the paper:

A.1 In the case of the switch nonlinearity we have
Ha[umin] = Hd[umin];

A.2 The static gain ofG(q) is unitary:G(1) = 1;

Remark 1:The assumption[A.2] is necessary so as to
satisfy the identifiability condition. Without this assumption
we are not able to distinguish the solutionG(q)H[u(t)] from
the solution(aG(q))(1

aH[u(t)]) with a 6= 0.

B. Design of the excitation signal and parametrization of the
identification problem

In this subsection first we describe the suggested excitation
signal, then we use it with a piecewise parameterization of
the nonlinearity.

The design of the input signalu(t) is the corner stone of
the identification method proposed in this paper. A major
difficulty is to select an excitation satisfying the persistent
excitation condition and allowing a characterization of the
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Fig. 3. Switch nonlinearity

Input design procedure

• The initial value isu(0) = umin

• For t ≥ 1, follow the following cycle:

step 1 u(t) equal to a random value in]umin;umax[ (we
take the ascending path) thent = t +1;

step 2 u(t) = umax (we continue the ascending path until
umax) then t = t +1;

step 3 u(t) equal to a random value in]umin;umax[ (we
take the descending path) thent = t +1;

step 4 u(t) = umin (we continue the descending path until
umin) then t = t +1 and go back to step 1.

TABLE I

ascendant and descendant paths. Such an excitation is illus-
trated on Fig. 4 and table I presents its design procedure.

This excitation signal has two key properties. Firstly it
produces persistent excitation on the input of the system
thanks to the random value one sample on two. Secondly
u(t) browses continuously in their entirety the ascending
and descending paths. Such an excitation ensures cycles
described on Figs. 2 and 3 to be driven always in the same
manner betweenumin andumax. If umin andumax are constant
(we assume they are), these paths are unique for the backlash
nonlinearity and the switch nonlinearity.

Remark 2: In order to characterize homogeneously func-
tionsHa[.] andHd[.] on [umin;umax], we recommend choosing
a random value uniformly distributed over this interval.

Let us denote respectivelyPa[.] and Pd[.] the ascending
and descending path i.e. the extension of the bordersHa[.]
andHd[.] in the following manner:

• if u(t) is increasing thenH[u(t)] = Pa[u(t)];
• if u(t) is decreasing thenH[u(t)] = Pd[u(t)].

At any time t it is possible to know which path uses
H[u(t)]. To this end, let define a direction signalδ(t) which
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Fig. 4. The excitation signal is divided into two phases: thefirst [1] in
which we take the ascending path, the second [2] for which we take the
descending path.

indicates ifu(t) is increasing or decreasing:

δ(t) =







1 if u(t)> u(t −1)
δ(t −1) if u(t) = u(t −1)
0 if u(t)< u(t −1)

From this definition,H[u(t)] can be formulated as follows

H[u(t)] = δ(t)Pa[u(t)]+ (1−δ(t))Pd[u(t)] (2)

So as to characterize the functionsPa[u(t)] andPd[u(t)], we
approximate them by continuous piecewise linear functions
as in [27]. These approximations consist in a sum of func-
tions {Pa

i (.)} for the ascending path and a sum of functions
{Pd

i (.)} for the descending path in the following manner:
{

Pa[u(t)]=µa
0+µa

1Pa
1 (u(t))+µa

2Pa
2 (u(t))+···+µa

nP
Pa

nP
(u(t))

Pd[u(t)]=µd
0+µd

1 Pd
1 (u(t))+µd

2 Pd
2 (u(t))+···+µd

nP
Pd

nP
(u(t))

(3)

with µa
0 = Pa(umin), µd

0 = Pd(umin) and

Pa
i (u(t)) =







0 if u(t)≤ na
i−1

u(t)−na
i−1 if na

i−1 ≤ u(t)≤ na
i

na
i −na

i−1 if na
i ≤ u(t)

Fig. 5 illustrates such functionPa
i (u(t)). nP+ 1 represents

the number of nodes betweenumin andumax. nP+1 is a user
defined index which depends on the application considered
as the distributions of the nodes{na

i } and {nd
i }. Theses

nodes can be arbitrarily selected by the user on the interval
[umin;umax].

Remark 3:For ease of notations we have chosen the same
number of knots for the ascending path and the descending
path, however they could be different.

From (2) and (3) we get

H[u(t)]=µa
0δ(t)+µd

0 (1−δ(t))+∑
nP
i=1 µa

i Pa
i (u(t))δ(t)+∑

nP
i=1 µd

i Pd
i (u(t))(1−δ(t))

✻
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Fig. 5. The functionPa
i (u(t)) for the approximation on the segment

[na
i−1;na

i ]

and according assumptionA.1 whatever the nonlinearity we
haveµa

0 = µd
0 , this gives

H[u(t)] = µa
0 +

nP

∑
i=1

µa
i Pa

i (u(t))δ(t)+
nP

∑
i=1

µd
i Pd

i (u(t))(1−δ(t))

and then
H[u(t)] = µz(t)+ µa

0 (4)

with

z(t) =

















Pa
1 (u(t))δ(t)

Pa
2 (u(t))δ(t)

...
Pa

nP
(u(t))δ(t)

Pd
1 (u(t))(1−δ(t))

Pd
2 (u(t))(1−δ(t))

...
Pd

nP
(u(t))(1−δ(t))

















and

µ =
(

µa
1 µa

2 · · · µa
nP

µd
1 µd

2 · · · µd
nP

)

From assumptionsA.2 and making use previous notations
in (1) yields

y(t)− µa
0 = G(q)µz(t)+ v(t) (5)

Let consider here a minimal state space model forG(q), this
gives

{
x(t +1) = Ax(t)+Bµz(t)

y(t)− µa
0 = Cx(t)+Dµz(t)+ v(t)

(6)

wherex(t) ∈R
n is the state vector withn the minimal order,

A∈ Rn×n, B∈ Rn, C∈ Rn andD ∈ R. (A,C) is assumed to
be observable and(A,B) is assumed to be controllable.

From (6) it is possible to define an over-parameterized
state space model in the following manner:

{
x(t +1) = Ax(t)+Bz(t)

y(t)− µa
0 = Cx(t)+Dz(t)+ v(t)

(7)



with B = Bµ andD = Dµ . This corresponds to a linear state
space model with the inputz(t)∈R2nP and the outputy(t)−
µa

0 . In the next section this over-parameterized model is used
in the identification step of the approach.

III. SUBSPACE IDENTIFICATION ALGORITHM

As in [33], we use here standard subspace algorithms for
the identification of the state space matrix of (7). Input and
output are respectivelyz(t) and y(t)− µa

0, consequentlyµa
0

is supposed to be known. To this end we recommend the
application of an input sequence equal toumin for a few
moments before the application of the excitation sequence
described in subsection II-B. The mean of the corresponding
output givesµa

0 . In the following, let us denote ¯y(t) = y(t)−
µa

0 .

Standard subspace algorithms split the available data into
block matrices: output Hankel matricesYp and Y f are
defined as

(
Yp

Y f

)

=















ȳ(t−p) ȳ(t−p+1) . . . ȳ(t−p+ j−1)

ȳ(t−p+1) ȳ(t−p+2) . . . ȳ(t−p+ j)

. . . . . . . . . . . .

ȳ(t−1) ȳ(t) . . . ȳ(t+ j−2)

ȳ(t) ȳ(t+1) . . . ȳ(t+ j−1)

ȳ(t+1) ȳ(t+2) . . . ȳ(t+ j)

. . . . . . . . . . . .

ȳ(t+ f−1) ȳ(t+ f ) . . . ȳ(t+ f+ j−2)















Similar definitions hold forVf , Zf and Zp. Subscripts f
and p respectively stand for ”future” and ”past” and are
user-defined indexes.j is the number of columns in the
Hankel matrices. In the subspace identification framework
it is commonly assumed that there are long time series
available i.e.j ≫ 1.

Using these Hankel matrices, the over-parameterized state
space model (7) can be represented by the following basic
subspace equations:

{
Xt = ApXt−p+∆pZp

Y f = Γ f Xt +Ξ f Zf +Vf
(8)

whereXt−p andXt are respectively the past and future state
vectors of the plant:

Xt−p =
(

x(t − p) x(t − p+1) . . . x(t − p+ j −1)
)

Xt =
(

x(t) x(t +1) . . . x(t + j −1)
)

Γ f =







C
CA
· · ·

CAf−1







and ∆p =
(

Ap−1B · · · AB B
)

are respectively the extended observability matrix and re-
versed extended controllability matrix of the model (7) .Ξ f

is defined by

Ξ f =







D 0 · · · 0
CB D 0 · · ·
· · · · · · · · · · · ·

CAf−2B · · · CB D







and it corresponds to a lower triangular Toeplitz matrix
containing the firstf Markov parameters of (7).

From (8),Y f can be rewritten as

Y f = LZf Zf +LZpZp+Γ f A
pXt−p+Vf

with
LZp = Γ f ∆p

LZf = Ξ f

This becomes

Y f = LΦ+Γ f A
pXt−p+Vf (9)

with

L =
(

LZp LZf

)
Φ=

(
Zp

Zf

)

(10)

Most of classical subspace identification methods are
based on the estimation of the extended observability matrix
Γ f ([26]). This can be done making use the projection of
Y f ΦT

(
ΦΦT

)−1Φ onto the orthogonal complement of the
row space ofZf :

O f =Y f ΦT (ΦΦT)−1ΦΠ⊥
Zf

(11)

with Π⊥
Zf

= I j −ZT
f (Zf ZT

f )
−1Zf .

In [26] it is shown that if f , p > n, if the input z(t)
is uncorrelated with the additive noisev(t) and if z(t) is
persistently exciting of order( f + p)2nP then the singular
values decomposition (SVD) of limj−→∞ O f is given by

lim
j−→∞

O f =
(
U1 U2

)
(

S1 0
0 0

)(
VT

1
VT

2

)

(12)

lim
j−→∞

O f = U1S1V
T
1

whereS1 ∈Rn×n. It follows that the (unknown) order of the
system is equal to the number of singular values different
from zero and the observability matrixΓ f can be taken equal
to

Γ f = U1T (13)

whereT is a similarity transformation.

Remark 4:Some weighting matrices are often added in
(11) in order to include some well known subspace methods
such that N4SID, PO-MOESP, PI-MOESP, CVA, IVM, etc..
Here (11) corresponds to the PI-MOESP method ([29], [30]).

Once the order and the extended observability matrix
estimated (with (13)), we have to find the state matrices
(A,B,C,D) and the parameters{µa

i } and{µd
i }. The follow-

ing three steps procedure can be considered:



1) From (13), the system matricesA andC are obtained
as follows1

C= Γ f (1, :)

A=
(
ΓT

f Γ f

)−1ΓT
f Γ f

with Γ f = Γ f (1 : f −1, :) andΓ f = Γ f (2 : f , :).

2) B andD are determined using the following equation

Y f ΦT (ΦΦT)−1Φ= LΦ+Γ f A
pXt−pΦT (ΦΦT)−1Φ

which gives
(
Γ f

)⊥
Yf ΦT (ΦΦT)−1Φ=

(
Γ f

)⊥Ξ f (B,D)Zf

Then the procedure given in [26] is used to obtainB
andD.

3) B and µ are extracted fromB using a second SVD:

B =
(

u′1 U′
2

)
(

s′1 0
0 0

)(
v
′T
1

V′T
2

)

(14)

This gives
B= γu′1s′1

(
µ1 µ2 · · · µnP

)
=

1
γ

v
′T
1

γ is a parameter adjusted so as to ensure a unitary static
gain (assumptionA.2).

Remark 5:To improve the numerical robustness, onceA
andC are known, a method is proposed in [33] in order to
estimate the matricesB andµ separately. This method could
be used here.

Remark 6: In this paper only the deterministic part of
the plant is identified. It is possible to consider a state
space model with noise model which can be rewritten in
an innovation form as

{
x(t +1) = Ax(t)+BH[u(t)]+Ke(t)

y(t) = Cx(t)+DH[u(t)]+e(t)

The stochastic part is described by the matrixK ∈R
n and the

covarianceσ2
e = E

{
e(t)2

}
. These parameters could easily be

estimated using a method proposed in [19].

IV. SIMULATION RESULTS

To investigate the interest of the method, two numerical
example are proposed. On these examples we consider a
plant whose linear part is described by the following two
order transfert function:

G(q) = q−1 0.1994−0.1804q−1

1−1.8858q−1+0.9048q−2

1MATLAB c© notations

v(t) is such thatv(t) = Gv(q)e(t) wheree(t) is a gaussian
white noise and the noise model is given by

Gv(q) =
1+0.5q−1

1−0.85q−1

The identification method is applied on the basis of Monte
Carlo simulation of 100 experiments. The variance ofe(t) is
chosen such that signal to noise ratio isSNR= 10dB. The
number of columns in Hankel matrices isj = 4000.

A. Case 1: a switch nonlinearity

In this first case the nonlinear partH[.] is a switch
nonlinearity characterized by the following functionsHa[.]
andHd[.]:

Hd[u(t)] =







−1 if u(t)≤−2
arctan(u(t)+1)−H0 if −2< u(t)≤ 2
1 if 2 < u(t)

and

Ha[u(t)] =







−1 if u(t)≤−2
arctan(u(t)−1)+H0 if −2< u(t)≤ 2
1 if 2 < u(t)

with H0 = 1
2(arctan(3)− arctan(1)). These functions are

approximated on the interval[−3;3] and we choose a low
number of nodesnP = 7. These nodes are uniformly dis-
tributed on[−3;3] and they are the same for the descendant
and ascendent paths.

The estimated poles are shown in Fig. 6, the crosses
indicate the true pole locations. This figure shows that the
proposed method gives good estimation: no bias and low
standard-deviation. Such good estimation quality is con-
firmed by Fig. 7 which shows the frequency response of
the true system and the average of the estimated frequency
responses. The estimated average nonlinearity is depictedon
Fig. 8. The same conclusion as for Fig. 7 holds.

B. Case 2: a backlash nonlinearity

In this second case the nonlinear partH[.] is a backlash
nonlinearity characterized by the following functionsHa[.]
andHd[.]:

Hd[u(t)] = arctan(u(t)+1)

and

Ha[u(t)] = arctan(u(t)−1)

These functions are again approximated on the interval
[−3;3] with the same number of nodes:nP = 7.

The results are given in Figs. 9, 10 and 11. They confirm
the previous conclusion: the proposed method works well. It
allows an approximation of the nonlinearity and an unbiased
estimation of the linear part.
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Fig. 9. Backlash nonlinearity: the eigenvalues of estimated A matrix: ∗
estimated pole,+ system pole.
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Fig. 10. Backlash nonlinearity: the Bode magnitude plot of the system and
of the estimated average model
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V. CONCLUSION

In this paper, an identification method is proposed for
the identification of linear systems with input switch or
backlash nonlinearity. The key step of the algorithm is the
design of a specific excitation signal allowing a suitable
parametrization of the identification problem. This choice
allows the use of subspace identification methods and then
the estimation of a model for both the linear part and the non
linear part. A numerical example shows the effectiveness of
the proposed algorithm. In this paper only the open loop
identification problem is considered, we believe that the
method developed here can be extended to the closed loop
identification problem.
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