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Abstract— In this paper, a subspace identification algorithm The proposed identification method is based on two key
for a class of Hammerstein systems is developed. We consider jdea: (1) A specific input sequence is design in order to
dynamical systems subject to input backlash or switch nonfi- 515,y 5 linear parameterization of the identification pestl
earities. The idea is to use a specific input signal allowinghe . . . o .
estimation of the nonlinear part and the estimation of a sta¢ and in ordgr to §{?1t|sf.y the persistent excitation Cond't@)' .
space model for the linear part. The identification algorithm is ~ Subspace identification methods are used for the estimation
a subspace type algorithm. A simulation example is given to The use of such methods is mainly motivated by a set of
illustrate the performances of the present method. interesting properties: the simplicity, the intrinsic nemcal

robustness and their straightforward application to MIMO
. INTRODUCTION systems ([26], [29], [30], [10], [18], [23], [24], [2]). Soen

The Hammerstein systems are the nonlinear systems caubspace methods adapted to Hammerstein systems have
sisting of a nonlinearity block followed by a linear dynamicbeen introduced ([15], [14], [3], [33], [28], [17], [21]) bu
system. The identification of such systems has received the best of our knowledge, these methods aren’t adapted
much interest for the last decades as evidenced by the manythe case of backlash or switch nonlinearity.
following references: [22], [6], [1], [7], [34], [12], [32][35], The outline of this paper is as follows: in section Il the
[2], [11], [25], [31], [8], [13], [20], [16] and the four seBms model structure is presented and the specific input signal is
devoted to block oriented nonlinear identification at SYSIQiesigned. In section Il the subspace identification atbari
2012. This interest is justify by the fact that these systemis applied. Some simulation results are given in section IV.
take into account nonlinearities commonly encountered iRinally, section V concludes the paper.
practice, generated by the technological limitations ssaegy
for the proper functioning of the system (saturation, thatli II. PROBLEM STATEMENT AND
stops, etc.). In this paper we consider the identification in PARAMETRIZATION

presence of some particular input nonlinearities: batklas In this section we first state the identification problem.

and switch nonlinearities. Then we described the design of the excitation signal. The

[Few contributions deal with the identification of systemyggqciation of that signal with a parametrization of the
with input backlash or switch nonlinearity. The approaCheﬁonlinearity yields a linear identification problem.
developed in [1], [4], [12] and [5] are devoted to nonlinear-

ities bordered by straight lines. The method introduced i |dentification problem statement
[25] is adapted to nonlinearities with more general borders . . e .
however the proposed method is a two experiments metho _Cons!der .the identification of the Hammerstgln system
Moreover it uses Least Squares algorithm coupled to asgmwn in Fig. 1 wheraxt) and y(t) are respectively th?
overparameterization, which leads to the need for a hidﬁpUt and the output of the plant which is expressed as:
number of data_. An other_ method is also depicted in [13_]. y(t) = G(q)H[u(t)] + v(t) (1)
Nevertheless this method is only adapted to backlash nonlin
earity and it is a two stages method using two independe®q) is the proper transfer function of the deterministic linear
experiments. part in the Hammerstein system and) is an additive noise

In this paper, we propose an approach which alleviatem the outputv(t) is wide sense stationary zero mean process
some of the issues present in the previous methods. Firsfjcorrelated withu(t). The nonlinear part in the Hammer-
our method is devoted to backlash and switch nonlinearitietein system is described ty[.]. This function can be a
with general borders. Second, our method is a single stagwitch or a backlash element. Its borders are characterized
method which allows to estimate both the linear subsysteby the descendant and ascendent continuous botdgrs
and the nonlinearity. Let us notice that the borders of thendH,[.]. These two nonlinearities are illustrated on Fig. 2
nonlinearities are nonparametric, they will be piecewisand Fig. 3.
parameterized as in [27].
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Fig. 1. Considered Hammerstein system J//H [] U( )

Fig. 3. Switch nonlinearity

Hd[-l/ [ Input design procedure

/ u(t) « The initial value isu(0) = umin

/Ha[.] » Fort>1, follow the following cycle:

‘—/ step 1 u(t) equal to a random value ifUmin; Umay (we
take the ascending path) thea-t+1;

step 2 u(t) = umax (We continue the ascending path until

Fig. 2. Backlash nonlinearity Unay thent =t+1;

step 3 u(t) equal to a random value iumin; Umax (we
take the descending path) thee-t +1;

step 4 u(t) = umin (We continue the descending path until
Umin) thent =t + 1 and go back to step 1.

The identification problem treated in this paper is stated
as: based on the input-output measurements, find the minimal
ordern of the system, a realization of state space matrices
(A,B,C,D) for G(g) and a nonparametric description of TABLE |
the descendant and ascendent bord&yis] and Ha[.]. The

identification of the nonlinearity will be performed on a S
working interval: u(t) € [Umin; Umax.- ascendant and descendant paths. Such an excitation is illus

trated on Fig. 4 and table | presents its design procedure.

So as to be able to solve the identification problem we

make some assumptions throughout the paper: This excitation signal has two key properties. Firstly it

) . _ produces persistent excitation on the input of the system
Al In the case of the switch nonlinearity we havep,nys to the random value one sample on two. Secondly
Ha[Umin] = H[Umin[; u(t) browses continuously in their entirety the ascending
A.2 The static gain of3(q) is unitary: G(1) = 1; and descending paths. Such an excitation ensures cycles
described on Figs. 2 and 3 to be driven always in the same
Remark 1:The assumptiorfA.2] is necessary so as to manner betweenmin andUmayx If Umin andumax are constant
satisfy the identifiability condition. Without this assutigm  (we assume they are), these paths are unique for the backlash
we are not able to distinguish the solutiGig)H [u(t)] from  nonlinearity and the switch nonlinearity.
the solution(aG(q))(Hu(t)]) with a+# 0.
Remark 2:In order to characterize homogeneously func-
tionsHa[.] andHg[.] on [Umin; Umax, We recommend choosing

B. Design of the excitation signal and parametrization & th 3 random value uniformly distributed over this interval.
identification problem

In this subsection first we describe the suggested exaitatio Let us denote respectiveljs[.] and Py[.] the ascending
signal, then we use it with a piecewise parameterization @nd descending path i.e. the extension of the bortigfs
the nonlinearity. andHg[.] in the following manner:

o if u(t) is increasing them [u(t)] = Pa[u(t)];

The design of the input signalt) is the corner stone of  « if u(t) is decreasing thehl[u(t)] = Py[u(t)].
the identification method proposed in this paper. A major
difficulty is to select an excitation satisfying the persigt At any timet it is possible to know which path uses
excitation condition and allowing a characterization oé th H[u(t)]. To this end, let define a direction sign&(t) which
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Fig. 5.  The functionP?(u(t)) for the approximation on the segment
[N 15nf)

Fig. 4. The excitation signal is divided into two phases: fingt [1] in . . . ]
which we take the ascending path, the second [2] for which ake the and according assumptioghl whatever the nonlinearity we

descending path. haveug‘ _ ug, this gives

HIU) = -+ 5 WERF)3(0)-+ 5 WERE(u(0) (1 8(0)

indicates ifu(t) is increasing or decreasing:

1if u(t) > u(t—1) and then .
St)=1{ &(t—1)if u(t)=u(t—1) H{u(t)] = pz(t) + K 4)
0if ut) <u(t—1) with PA(U)5(0
3(u(t))o(t
From this definitionH[u(t)] can be formulated as follows B(u(t))3(1)
HIU(t)] = S(t)Palu(t)] + (1 — 3(t))Ry[u(t)] ) :
| | R I (T
So as to characterize the functid®gu(t)] andPy[u(t)], we 2t) = PA(u(t))(1-5(t))
approximate them by continuous piecewise linear functions pd( u(t))(1—3(t))
as in [27]. These approximations consist in a sum of func- )
tions {P?(.)} for the ascending path and a sum of functions g :
{P9(.)} for the descending path in the following manner: P (U(t))(1—3(1))
{ Pa[U(t)]:u8+u'i‘F’f(U(t))+u2Pa(U<t))+ +uﬁp P2 HU0) (g and
Pa[u(t)] =4+ PE (U()) + KPS (U(t) ) ++-+ G PR, (ult)) p=( e o opd o pd)
with ug = Pa(Umin), IJg = Py(Umin) and
0 if u(t) <nd, From assumptioné.2 and making use previous notations
— |_ . .
PA(u(t)) = { ut) —nfy ity < ut) <nf in (1) yields
m-nty ifni<u() y(t) — 1§ = G(a)uz(t) + V(1) (5)

Fig. 5 illustrates such functioR?(u(t)). np+ 1 represents | ot consider here a minimal state space modelda), this
the number of nodes betweeRin andumax NP+ 1 is a user ives

defined index which depends on the application considered

as the distributions of the nodeg8?} and {n}. Theses { X(H‘l)a = AX(t)+Bpz(t) 6)
nodes can be arbitrarily selected by the user on the interval y(t)—Hg = CX(t)+Duz(t) +v(t)
[Umin; Umax - wherex(t) € R" is the state vector with the minimal order,

AeR™M BeR", CeR"andD € R. (A,C) is assumed to
Remark 3:For ease of notations we have chosen the sang observable an@A, B) is assumed to be controllable.
number of knots for the ascending path and the descending
path, however they could be different. From (6) it is possible to define an over-parameterized

state space model in the following manner:
From (2) and (3) we get { Xt+1) = AXt)+Bzt)
y(

t)—pd = CX(t)+Dz(t)+v(t) )

H{U()]=H§3(0)+pS (1-3(1)+ 3Py HEPA(u(t)3(1)+3 Py ulPA(u(t)) (1-5(1))



with B =By andD = Du. This corresponds to a linear stateis defined by
space model with the inputt) € R?" and the outpuy(t) —

2 . . . . D o - 0
u§. In the next section this over-parameterized model is used CB D 0 ..
in the identification step of the approach. cr=

f-2
Ill. SUBSPACE IDENTIFICATION ALGORITHM cA™B .- CB D

As in [33], we use here standard subspace algorithms f8fd it corresponds to a lower triangular Toeplitz matrix
the identification of the state space matrix of (7). Input angontaining the firstf Markov parameters of (7).
output are respectivelg(t) andy(t) — u§, consequentlyud
is supposed to be known. To this end we recommend the
application of an input sequence equal ugj, for a few Yi=LzZs +szZp+FprXt,p+Vf
moments before the application of the excitation sequence
described in subsection II-B. The mean of the correspondir’(&Jt

From (8),Y; can be rewritten as

output givesu§. In the following, let us denotg(t) = y(t) — Ef ; Efpr
a =
o This becomes
Standard subspace algorithms split the available data into Vi =L+ {APX_p+V 9)
block matrices: output Hankel matriceé, and Y¢ are
defined as with .
yit—p)  Vit—p+1) ... Y{t—p+j-1) L=(Llz Lz ) ©= ( Z? ) (10)
yt—p+1) ylt—p+2) ... y(t—p+ij)
_ Most of classical subspace identification methods are
(ﬁ) _ yit=1) y(t) e YtH-2) based on the estimation of the extended observability matri
Yi ¥t O () I+ ([26]). This can be done making use the projection of
VD) ) e D) YT (¢07) '@ onto the orthogonal complement of the
rowspaceozf:
y(t+f-1) y(t+f) e Yt+f+j-2)

V.7 T lpnl
Similar definitions hold forVs, Z¢ and Z,. Subscriptsf Or =Y (007) "o, (11)
and p respectively stand for "future” and "past” and areywith N4 —I;—z7 (Z¢Z]) 1Z.
user-defined indexes. is the number of columns in the !
Hankel matrices. In the subspace identification framework |n [26] it is shown that if f,p > n, if the input z(t)

it is commonly assumed that there are long time serig§ uncorrelated with the additive noisét) and if z(t) is
available i.e.j > 1. persistently exciting of orde(f + p)2np then the singular

values decomposition (SVD) of lim_,. & is given by
Using these Hankel matrices, the over-parameterized state

-
space model (7) can be represented by the following basic  |im ¢; = (U Uy) < S1 0 > < V3 ) (12)

i
subspace equations: j—eo 0 0 \Z:
H _ T
X = APXep+BoZp @®) i, 01 = Ui
Yi = [iX+Z1Zs + Vi

whereS; € R™", It follows that the (unknown) order of the
whereX;_p andX; are respectively the past and future statgystem is equal to the number of singular values different

vectors of the plant: from zero and the observability matri can be taken equal
. to
X-p=( Xxt—p) xt—p+1) ... x(t—p+j-1)) M= UT (13)
X=(xt) xt+1) ... x(t+j-1)) whereT is a similarity transformation.

c Remark 4:Some weighting matrices are often added in
CA (11) in order to include some well known subspace methods

Me= such that N4SID, PO-MOESP, PI-MOESP, CVA, IVM, etc..

CAf-1 Here (11) corresponds to the PI-MOESP method ([29], [30]).

and Ap=( A"1B - AB B) Once the order and the extended observability matrix

estimated (with (13)), we have to find the state matrices
are respectively the extended observability matrix and réA,B,C,D) and the parameterg?} and {u}. The follow-
versed extended controllability matrix of the model (Bs. ing three steps procedure can be considered:



be used here.

v(t) is such thatv(t) = Gy(q)e(t) wheree(t) is a gaussian
1) From (13), the system matricésandC are obtained White noise and the noise model is given by
as follows?

1+0.5q1
C=r¢(1) Cvl(a) = TBE?q*l
-
A= (CiC¢) [Ty The identification method is applied on the basis of Monte

Carlo simulation of 100 experiments. The variance@j is
chosen such that signal to noise ratioSBIR= 10dB. The

. . . . _number of columns in Hankel matrices jis= 4000.
2) B andD are determined using the following equation J

Yid' (q:qu)’lqaz LD+ T (AP p®T (q;q;T)*lq) A. Case 1: a switch nonlinearity
In this first case the nonlinear paH|[.] is a switch

with T =T¢(1:f—1:) andlT; =T¢(2:f,:).

which gives nonlinearity characterized by the following functiohty|.]
(M) Yo" (@0") ‘o= ()" =¢(B,D)Zs andHgl.]:
Then the procedure given in [26] is used to obtBin -1 if u(t) <-2
andD. Hglu(t)] =< arctanu(t)+1)—Hp if —2<u(t)<2
1 if 2 <u(t)
3) B andpu are extracted fronB using a second SVD: and
T
o= (a0 (5 9)(5) ae " ) < 2
2 Ha[u(t)] = { arctan(u(t)—1)+Ho if —2<u(t) <2
This gives 1 if 2<u(t)
B=yis , ) ,
with Hp = 3(arctan(3) — arctan(1)). These functions are
(o - )= }V’T approximated on the intervét3;3] and we choose a low
; y ! number of nodesp = 7. These nodes are uniformly dis-

yis a parameter adjusted so as to ensure a unitary stafittuted on[—3;3 and they are the same for the descendant
gain (assumptior.2). and ascendent paths.

The estimated poles are shown in Fig. 6, the crosses
d’ndicate the true pole locations. This figure shows that the
proposed method gives good estimation: no bias and low
standard-deviation. Such good estimation quality is con-
firmed by Fig. 7 which shows the frequency response of

Remark 6:1n this paper only the deterministic part of the true system and the average of the estimated frequency

the plant is identified. It is possible to consider a statl"SPONses. The estimated average nonlinearity is demeted

space model with noise model which can be rewritten i%'g' 8. The same conclusion as for Fig. 7 holds.

Remark 5:To improve the numerical robustness, orke
andC are known, a method is proposed in [33] in order t
estimate the matriceB and u separately. This method could

an innovation form as

B. Case 2: a backlash nonlinearity

{ X(t+1) = Ax(t)+BHu(t)] +Ke(t) _ _ _
y(t) Cx(t) + DH[u(t)] + e(t) In this second case the nonlinear pHitt] is a backlash

nonlinearity characterized by the following functiohly].]
The stochastic part is described by the maltiz R" and the gng Hal.]:

covariances? = & {e(t)z}. These parameters could easily be _
estimated using a method proposed in [19]. Ha[u(t)] = arctan(u(t) +1)

IV. SIMULATION RESULTS and

To investigate the interest of the method, two numerical

example are proposed. On these examples we consideffgese functions are again approximated on the interval
plant whose linear part is described by the following tWg_3; 3 with the same number of nodes = 7.

Ha[u(t)] = arctan(u(t) — 1)

order transfert function:

1 0.1994-0.1804y7* The results are given in Figs. 9, 10 and 11. They confirm
G(a)=q 1—1.8858] 1+ 0.9048] 2 the previous conclusion: the proposed method works well. It
allows an approximation of the nonlinearity and an unbiased
LMATLAB (© notations estimation of the linear part.
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