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Complex trajectory method in semiclassical propagation of wave packets

Marc Boiron and Maurice Lombardi
Laboratoire de Spectrométrie Physique, Universite Joseph-Fourier-Grenoble, BP87,
F-38402 Saint-Martin-d' Heres Cedex, France

(Received 19 March 1997; accepted 24 November 1997

We propose a semiclassical wave packet propagation method relying on classical trajectories in a
complex phase space. It is based on the Stihger wave equation and the usual expansion with
respect tai, except that the amplitude of the wave packet is taken into account at the very zeroth
order, unlike in the usual WKB method where it is treated as a corrective or first order term.
Formally, it amounts to making both the wavelength and the width of the wave packet tend to zero
with . The action and consequently the classical trajectories derived are complex. This method is
tested successfully in many cases, analytically or numerically, including the bounce and even the
splitting of the wave packet. Our method appears to be much more accurate than the WKB method
while less computationally demanding than the Van-Vleck formula. Moreover, it has a particularly
interesting property: the singularitiésaustic$ of the usual semiclassical theories do not appear in
this formalism in all cases tested. €998 American Ingtitute of Physics.

[S0021-960808)00309-3

I. INTRODUCTION: THE SEMICLASSICAL 05! or the H+0O, reaction? or 6 (4 atoms if the simulation
APPROXIMATION IN TIME-DEPENDENT PROBLEMS is restricted to the lowest lying states, thatvis 0,1 vibra-

, o S tional quantum initially>*
Quantum cross-section calculations in collisions involv- Besides these ‘“brute-force” methodsapproximate

ing atoms or molecules can be carried out in two differentyethods were developed, mainly in order to outstrip previ-
frameworks: a time-independent framework or time-qysly mentioned bounds and to give a simplified image of
dependent'fran'wework. The early means of cglculatlon was tghe process by avoiding the exclusive use of quantum me-
use the tlme-lzldependent scheme, that is the so-calleghanics theory. Most of these approximate methods rely en-
‘close-coupling” method. Its numerical cost is high, propor- tirely or partially on classical mechanics. The reasons for this
tional toN® whereN is the number of rovibrational channels are obvious: Classical mechanics provides a handy view of
included in the simulated model. Current computer powemrocesses and technically the equations of classical mechan-
limits this number to a few thousand. To go further, time-jcs (canonical equations of Hamiltprare ordinary differen-
dependent or wave packet propagation methods were latgg| equations, not partial differential equations such as the

adopted. Their numerical cost is less since they allow calcuschralinger equation; they are thus far more easy to inte-
lations to be made on a restricted portion of thehannels grate numerically.

at a time. These methods rely on some discretization of the e can distinguish three stages of approximation:
initial partial differential equation of propagation. The cost is

then directly related to the size of the grid required. This sizd
(number of points depends on many factors that subse-

guently are limitations to numerical simulations.

1) Purely classical. The original quantal problem is re-
placed by a classical problem: The motion of the nuclei
belongs to classical trajectorig€?ossible nonadiabatic
transitions are taken into account by the Landau—Zener

(1) The number of electronic levels. In this paper we will formula®
only deal with elastic processes so one surface of poten2) Hemiquantal. The degrees of freedom are divided into
tial is assumed. two sets: one treated classically as previously, and the
(2) The numbed of degrees of freedom: The grid size isa  other quantally:®
function of the power ofl. (3) Semiclassical. The physical concepts used are those of
(3) The average kinetic enerdy. Since the order of mag- quantum mechanics: wave functions or propagator, but
nitude of the wavelength is given by the de Broglie re-  they are calculated by means of classical trajectdries.
lation A\pg=7/p, the steps of the grid, of ordexrpg, The most simple example of this is the WKB approxi-
shall thus be smaller the larger the average momentum. mation of a one-dimensional time independent wave
Consequently, the grid size increasesy#s function®

A compromise between these factors should be made in or- Let us now describe the existing semiclassical theories,
der to fit the numerical task to computer possibilities. Cur-and discuss their advantages and drawbacks.

rent achievements of wave packet propagation show that the The first of them starts with the differential point of view
number of degrees of freedom is limited to 3 if the procesof quantum mechanicéSchralinger equation and the re-
involves a “high” (few eV) vibrational energy such as in writing of the wave function as an envelope times a purely
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oscillating function*! Ae'S. At the semiclassical limit, the the propagation of wave packets at the semiclassical limit. It
envelopeA, the local de Broglie wavelength=h/|VS| and is based on a WKB-like procedure of an expansion with
the potential vary slowly on the scale of the de Broglie waverespect to a small parameter. We will focus here on the
length itself. This allows one the derivation of two decoupledSchralinger equation, for whiclk is the right ordering pa-
equations: The first is the classical Hamilton—Jacobi equarameter in the expansion, even if the method is general. The
tion that is satisfied b, the second is a continuity equation essential difference with the usual WKB method is that the
satisfied byA. Solving these equations is much less demandprocedure we propose treats on equal footing phase and am-
ing than solving the original Schdinger equation sinc&  plitude of the wave function, that is, at the very zeroth order,
= [Ldt and A=A(0)exp(fV2S2mdt) along classical tra- whereas the usual WKB method deals with the amplitude as
jectories ( is the classical LagrangiarMoreover, only one a first order or corrective term to the zeroth order approxi-
trajectory calculation is required to compute the propagatedhation which concerns the phase only. From a formal point
wave function at one point. However, the accuracy of thisof view, we will show that it amounts to making not only the
approximation is very poor: In the most simple case of awavelength tend to zero with the expansion parameter but
Gaussian wave packet moving in a flat potential, it is easy téhe spatial extension of the wave packet as well, unlike the
show that this method gives a constant width wave packe?VKB method. A prominent consequence of this is the ne-
whereas the quantum wave packet spreads with time. Corgessity to take into account classical trajectories in a phase
sidering general potentials, the semiclassical limit obtainegpace made of complex numbers, hence the name of “com-
by such a procedure entails singularitiésaustic curves  plex trajectory method.” In return, while remaining in the
which cause the divergence B£S, stopping the integration Simple WKB-like framework of the semiclassical approxi-
of A at a finite time. An extension of this methdds ob- mation of the wave function itself, with the advantages
tained through thé -expansion of the functionS or A, giv-  quoted before, a large increase in accuracy of the semiclas-
ing the same result as previously up to first order. Thes&ical approximation is obtained compared to the usual WKB
formalisms will be referred to as the WKB method. method. An unexpected and particularly appealing property

The second widely used semiclassical theory relies Oﬁ)f our formalism is observed: In the examples detailed later,
the Feynman’s formulation of quantum mechanics, based oR0 caustics were encountered whereas all other real semi-
path integrals for the propagator. By retaining virtual trajec-classical theories give rise to such singularities.
tories nearby to classical ones, it is possible to derive an  This paper is divided as follows: Section Il is devoted to
approximate form for the propagator, known as the Van2n explanation of the general procedure leading to the com-
Vleck-Gutzwiller formulal® While this method is more ac- Putation of the semiclassical limit by means of complex tra-
curate than the previous one — it is exact for po|ynomiauectories. The following sections are devoted to comparison
potentials up to second degree — it can hardly be used ! many potentials between exact propagated quantum wave
propagate wave packets numerically because of the integrRackets and semiclassical wave packets obtained by the
tions required. Many classical trajectories have to be detefMethod stated previously. Section Il is devoted to the study
mined by a root searching procedure in order to compute thef analytically _solub!e potentials, where the trajectories,
amplitude of the propagated wave packet at one point. Thedeence the semiclassical wave packets, can be formally ex-
calculations shall be repeated for every point where the an2ctly calculated as well as the quantum wave packet. In Sec-
plitude is needed. Within this framework difficulties due to ion IV numerical trajectory calculations are carried out as
caustics arise too, they can be partially overcome by the us@eéll as numerical resolutions of the Sctinager equation.
of Morse’s indices.

The subject of wave packet propagation at the semiclas; prINCIPLE
sical limit has been extensively studied by E. J. Heller and
co-workers since 1975, whose early method is the well/- General procedure
known Gaussian wave packet propagatibHeller showed The method we propose can be applied to any single
that it is a consequence of the Van-Vleck formula in the casdinear partial differential equatioPDE) in a multidimen-
where the action can be approximated as a second order esional space. Since the illustrating examples given below
pansion with respect to the end points of the classical trajeawill concern quantum wave packet propagation only, we re-
tories needed to compute the propagated wave packet. Astrict the statement of the method to the time-dependent
suming the initial wave packet to be Gaussian, it is therSchralinger equation. Thus, we look for an approximate so-
possible to compute analytically the propagated wave packétition of the equation:
that remains Gaussian with time, getting rid of singularities. 52
Improvements of this basic method were m&teshich are iﬁ—lp(x,t):ﬂw(x,t):( — 5= VZHV(X) | g(x,). (1)
called nonlinear methods. at 2m

As a conclusion, we have on one hand the simple buivhere y(x,t) is the unknown wave function of the position
inaccurate semiclassical WKB method, and on the othegariablesx=(x;, ... xgq) — d is the number of degrees of
hand, the Van-Vleck formula, more accurate but computageedom — and time. The operatofi is the quantum ana-
tlonaI.Iy more demanding. The appromma_tlons, ie., the SeMifog of the classical Hamiltoniadl reading:
classical limits both these methods provide, entail singulari-
ties (caustics.

In this paper, we propose and test a method devoted to

2

H(x,p)=2p—m+V(x). (2
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The initial condition of Eq.(1) is given at the initial timet (6)—(8) has much more profound consequences than a mere
=0, that is, shift of quantities among the terms of the expansion.
We now carry out the expansion #nof the wave equa-
P(X0) = inie(X), (3) Y P a

tion (1) with its wave function rewritten as E@5).
where i, is assumed to be a localized wave function. We
pose for convenience:

Pinit(X) =0 (x)e' ¢ =g P (4)  B. Zeroth order: complex trajectories
where the modulusp and the phasep are real values The zeroth order irk gives the usual Hamilton—Jacobi
whereasd is a complex value. equation(HJE) associated with the classical Hamiltonikn

Like in the usual WKB method, we write the wave func- as expected:
tion as an expansion with respectftaunder the form of the
“Ansatz”:

1
(%, 0xS0,t, 34S0) = 5= (9xS0) *+V(X) + 1S
Y1) =exp(i (Sp(X,t) + S (X,t) + A2Sy(X,t) + - ) /A).
) =H (X, 9xSo) + ,So=0. (11)

Combining this expression with the Schinger equatiorgl) ] . . ]
and equating each coefficient of the resultiagexpansion At this order, the consequence of the semiclassical approxi-
leads to equations satisfied by tBgfunctions. Before deriv- Mation is to replace the original second order REvy the
ing them, we first look at the initial condition that these Hamilton—Jacobi equatiofi1) that has the crucial property
functions shall satisfy. They are obviously related to the ini-Of P&ing asingle first order PDE. This is, in our sense, the
tial condition of the original wave equatia@). essential property a semiclassical theory should lead with

In the WKB method, following the physical idea that, at (When starting from the Schdinger equation, not the propa-
the semiclassical limit, the amplitude of the wave function is3atoy. Indeed, problems expressed in terms of PDEs can be
a slowly varying envelope with respect to its oscillations, €cast under the form of a set ofdinary differential equa-
one imposes the first order corrective term to be identifiedions (ODES only in the particular case of a single first order

with the amplitude of the wave packet at the starting time,"DE- In this case, it is possible to solve the Cauchy’s prob-

ie. lem by means of characteristic curves, see the clear reference
’ of Arnold® upon which this work is based. To be brief, let us
So(X,0/7: = @(X), (6)  say that these curves satisfy a particular set of ODEs, the
exp(i Sy(x,0)) = 0(x), @ characteristic equation€CE9 deriv_ed from th_e first order
PDE, and they make a set covering the entire space of the
S(x,00=0, Vj=2. (8 variables of the unknown function. On each of these curves

or 1D subspaces, the unknown function satisfies an ODE too.
H’hen the original PDE can be exactly reformulated in terms
of a set of ODEs. As ODEs are the equations of classical
énechanics, we can say that the preceding transformation re-

distinction between phase and amplitude, consequently, w astg thg initial wave problem into a mechanical problem,
identify the whole initial wave functiony,(x) with e'S/% poss[bly ina general!zgd sense. In the WKB thgory, 'the char-
at the starting time, putting the other terms equal to zero, i.e.aCterIStIC curves eXh.'b'ted are the_classwal trgjectorles of the
¢orresponding classical Hamiltonian or the light rays when
So(X,0)/f=D(x), (9) applied to optics. Note that the original wave equation is
. linear whereas the resulting HJE is nonlinear.
S(x0=0, Vj=1. (10 The peculiarity of our approach is that the “general-
Our study focuses on wave packet propagation, as a consiged” action S; is complex at the starting time. Because of
quencey(x,t) is a localized wave function of. It is then  the continuity ofS, relatively to time,Sy(x,t) is a complex-
clear that the functiod contains both a real and an imagi- valued function. Now the Hamilton—Jacobi equatigii)
nary part, at starting time and later. The real part is a phasghall be considered ascamplex equation. A natural starting
term, typically of the linear fornk-x, giving the approxi- point to solve it would be to separate the unknown function
mate spatial frequenck/27. The imaginary part provides S, into its real and imaginary parts, in order to derive two
the necessary limitation of the width of the wave packet inreal equations. This would lead to two coupled equations that
space. Propagating wave packets at the semiclassical limiyyould prevent one from using the theory of characteristics to
by means of the expansigb) and the new condition@)—  solve them since this theory can be applied only to single
(10) leads us thus to introduce a complex generalized actiorquations. It is thus necessary to keep Equafthl) as a
So(x,t). The originality of our method is thus clear at this single complex scalar equation and extend formally the
stage: not only the phase but also the amplitude are treated tteory of characteristics to complex functions. As a conse-
the zeroth order. The consequence of this on the formal waguence which we will make clear soon, this requires taking
of taking the semiclassical limit that this method implies will the derivative with respect to complex variables, that is deal-
be examined later, as well as its remarkable accuracy propng with a generalized configuration space extended to com-
erty. In particular, taking Eq99) and (10) instead of Egs. plex values. Ther§, andJ shall be analytical functions of

In doing this, one shows then th8} satisfies the Hamilton—
Jacobi equation of the classical Hamiltonian associated witl
the Schrdinger equatior(1).

In our method, instead of the above, we do not make
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multiple complex variables. We assume in the following thatwhere Eo= — 7= constant along a trajectory because of Eq.

these conditions are fulfilled. We will return to that question(17). We recognize then the canonical equations of Hamilton

later. associated with the classical Hamiltonigh (2), hence the
The usual(rea) theory of characteristics requires the same notatiop used for the conjugate variables>oaind for

propagation of trajectories in a space in which the naturab,S, (which are exactly equal to the momenta in the WKB

space of the variables of the first order PBe HJB is  theory.

embedded: the complete phase space. It is made of the con- Let us note that the natural set of variableSgis (x,t).

figuration space and timg@.e. the variables of the HJEand  The method of characteristics, through OOES)—(21), sub-

the following associated variablgg and 7, defined as stitutes temporarily this set by{,t), wherex, is the start-

ing point of the curve at the initial time=0. To illustrate; If

pk:@, (12)  the set of characteristics are viewed as a flow, the first vari-
Xy ables are Lagrangian whereas the second are Eulerian. Fur-
P ther in the paper, no specific notation will be used, the vari-
So , ;
T=Po=r- (13)  ables being obvious by context.

We need the initial conditions of the CEE9)—(21), they
These variables are tligeneralizelmomenta associated re- are naturally derived from the initial value 8§ given by Eq.
spectively with position and time. This set of variables, usu{9) and the relation12)—(13). Let x, be a starting position
ally taken as real, is now considered as complex sfces  of a characteristics at time=0, then the corresponding mo-
complex. menta are
Solving the HJE(11) by means of the theory of

characteristic$ enables us to write the following ODEs:

Pk(X0,0) = (22)

dS(%,0) )

Xy
0

ka _ A . oH . Pk (14)
ds dpx dpx m’ The HJE(11), taken at tima =0, allows the derivation of the
do 23 M v initial value 7(xy,0), as a function ok, and p,(X%g,0), here

(15 it reads simply:

ds N (?Xk N an N &Xk '

dt 93 — 7(X0,0) = Eg(Xo) = H(Xg,p(X0,0)). 23

as- o b (16) Since Sy(xq,0) is complex,py(xq,0) andEy(x,) are neces-
sarily complex, even for real values rf. Let us stress the

dT_ _ 9J ~0 1 fact that the complex nature of these quantities results from

ds ot A7 the fact that the amplitude is included in the “actio;. It
does not result, as in some variant of the WKB théQry

ds, 0 4l

(18) from the analytical extension of the action which remains
real anyway for real values of the position.

From the initial conditiong22)—(23), it is obvious that
the CES(19)—(20) lead the position componertof the char-
acteristics to be in the complex phase space sinte,,0) is
complex, even if the initial positiox, and the Hamilton—
complete phase space, whose parameter Bquation(18) Sacobi functiory are real. Hence the name “complex trajec-

' tory method” attributed to this semiclassical theory. As a

gives the value of the unknown functio®, along these . .
: consequence, the equation of propagati@d) gives the
curves. Note that although the momenta variables are taken ; . "
. : . . value of Sy for uninteresting complex positions. The hy-
as independent, the solutions given by the preceding equa-

tions satisfy the definition relationd2)—(13) pothesis of analyticity of the functioxn— Sy(x,t), Vt allows
Sincet is the variable propagated in t.he original wave one to show that the propagation of the CEs gives the solu-

equation(1), it is better to substituts by t. This can be done tion of the HIJE. Two procedures will be described and dis-

provided thatdt/ds#0, whatever the value of and the cussed from a practica(h'umerica] point of view. Fpr Fhe
characteristics considerédwhich is here trivially fulfilled, sake of easy understanding, one can assume one is first deal-

. . . . _ing with the one-dimensionald=1) case.
cf. Eq. (16). The previous equations read, in vectorial nota (1) Let us suppose that, is a real vector belonging to

ds ~ % Pap, " Tar

The first equationgfirst two column$ of each line result
from the theory of characteristics, the following ones from
the peculiar form of the functiod (11). The first four lines

(14)—(17) are the equations of the characteristic curves in th

tion: the real space of dimensiond. The image ofy through the
dx p propagation of the CEQL9)—(20) is a complex spaceg(t) of
g m (19 the same dimensiod, see Fig. a) in the cased=1. The
property just mentioned allows one to extend analytically
dp x—So(x,t) from y(t) to the entire spac&’, generalized
dat - —VV(x), (20 position space, in order to recovgg(x,t) with realx values.
From a formal point of view, this means the following: once
d_So _ p_z_ E 21) the system of CE£19)—(21) is solved, the initial positiox,
dt m 0 is eliminated between the equation of the trajectoxies,t)
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A Im(x) . (X_XC)Z
Pinit(X) =exp| iK¢: (X—X) — T (24
Re X; is the average value of positiok, is the average wave
A number,a is the width of the wave packet. Following our
peculiar schemé9)—(10), we have
t
T . (X_Xc)2
) So(X,0) =Pe (X x0) +i ==, (25
where p,=7ik, anda=a/\%. The final expression of the
semiclassical initial wave function is
me - So(x,0) Pe (X—Xc)?
exp i =exp | 7 (X—X)— —=—], 26
b D(,L D<ﬁ(c) pe (26)
e wherep, anda are kept constant whilé —0. If x, is the
complex initial integration point, the initial conditions for the
CEs, derived from Eq(25) and Eqs(22)—(23), read:
T t
- . Xo— Xc
P(X0.0)=pe+ 21 == 27
Eo(Xo) =H(Xg,p(X0,0))
1 Xo—X¢ 2
FIG. 1. (a) Some characteristic curves in the configuration/time space ( = om Pct2i ? +V(Xo). (28)

e C, teR) starting from a real coordinate point. The complex cur/erl)
is the intersection of these trajectories with the plead. Stated otherwise, One can notice that k.= Xx.. then:
Z(T) is the image of the real line through the Hamiltonian flg). The 0™ %es ’

complex trajectories start from the curgg(T) belonging to the complex SO(X ,00=0,
planet=0. This curve is chosen such that all trajectories cross the plane ¢
J(x)=0 at the same timé&. p(XC,O) =P, is real,
p2
. . . . C .
and the solutiorSy(xg,t), the resulting functiorSy(x,t) is Eq(Xo) = ﬁ+V(xc) is real.

the solution of the HIE11) compatible with the initial con-

dition (9), for all values ofx andt, not only for xe y(t). The initial conditions are thus real and since the CE%—

Practically, the analytical extension can be made through afR0) are real too, the corresponding complex trajectory is

extrapolation scheme from complex(t) to RY. This is a itself entirely real. Ifx,#x., this is no longer the case. We

feasible way, not reported here. will call this peculiar trajectory theeal trajectory associated
(2) The alternative procedure is to use the extensiorwith the initial wave packe{24), it will be noted subse-

theorem at the initial time, that is, to consider complex start-quently ;,py).

ing positionsx, for the complex trajectories. It amounts to Let us make now an important remark about the formal

extend analyticallySy(Xg,0) into the complex domain. The way our formalism leads to the semiclassical limit. Consid-

relations(22)—(23) are still valid, taken as complex identi- ering the initial wave functiori26), we note that:

:'r?:t' :;ést?:.(éif;ar{;h?; ;?Ofégisl:;éh:u?ft::%ng E%H‘fourcg (1) As in the WKB method, the limit. —0 causes the local
) XX, wave length Zr/(||p|/#) to tend to zero aé. The clas-

given timet, see Fig. 1) in the casal=1. The correspond- . « . .
. . . . sical momentunp.=7Kk. is a conserved quantity at the
ing value of Sy will provide Sy(x,t) with real x as looked . : L

semiclassical limit.

for. This Is the practical way we have qdopted_ to sample the(‘Z) Unlike in the WKB method, the spatial extension of the
function Sy(x,t), the exact procedure will be given later. wave packet is also bound, 10 go to zdio this case as

_As a partial conc_lusion, let us say .that the diffgrept JR) becausea=al/\/% is the conserved quantity at the
points discussed previously cover essentially the originality  gomiclassical limit, not the width itself as in the WKB
and the necessary concepts of the semiclassical method of ¢4 alism.

complex trajectories that we propose.

C. Gaussian initial wave packet

The simplest choice of an initially localized wave packetD‘ First order

with a corresponding analyti® function[cf. Eq. (9)] is the The first order of thefi-expansion gives the equation
Gaussian wave packet reading: satisfied byS; :
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i ) curves do not cross caustics. The main idea is the following:
S0 xS S =5 -V S (290 the second derivatives &, aredyp, , then, considering two
neighboring trajectories, the infinitesimal difference of the

ThUS, again, the PDE satisfied @ is a Single first order momenta at the same time gives the mampl whose trace
equation whereS,, previously determined, enters. The js the Laplacian looked for.

theory of characteristics can be used to solve this equation, in | et us write these trajectories agxy,t) and x(xo
a simplified version, restricted to the configuration space.; sx,,t)=x(x,,t) + 6x(t). Their canonical equations are the
since Eq(29) is linear inS;. The CEs parametrized by time following, written as a first order expansion with respect to

are the following: time:
dxk pk(xat) X(t
da - m (30) X(t+dt)=X(t)+p( ())dt, (33
ds i - _
B vk, (3p  PIOX(tHD)=py(x(t) ~ VV(x(D)dt, (34)
P((x+6X)(1))
Since the functiong,(x,t) are calculated through the CEs (X+dX)(t+dt)=x(t)+ ox(t) + —— —dt, (39
(19-(20) and Eq.(30) is the same as Edq20), the charac-
teristics of S, are the canonical projection of the complex p;((X+ éx)(t+dt))
trajectories associated witf, on the configuration space — b (X4 8%) (1) = VV((x-+ d%)(D))dt. (36)

(they remain nevertheless compleXhis property will be of
great help later. Notice finally that the arguments given inExpanding Eq(36) with respect todx and taking the differ-
Section Il B can be applied t8,, provided it is analytic. ence with Eq.(34), one has:

To conclude up to this point, let us say that we achieve
the approximate solution, by means of a complex semiclas-—'(x(t+dt))gxk(Hdt)
sical theory, including the zeroth and first orders, of the?*«
problem of quantum wave packet propagation. The set of ap, 92
ODEs we have to consider is th(s9)—(20) to propagate the = W(X(t))ﬁxk(t)— vy (x(t)) &%, (t)dt, (37
trajectories(21) and (31) to derive the wave function, with k 177k
the initial conditions(9)—(10) and (22)—(23), reading Egs. Wwhere summation over repeated indices is assumed. The dif-
(25) and(27)—(28) for an initial Gaussian wave. Let us note ference between Eqé33) and(35) leads to :
that an arbitrarynth order expansion can be carried out, lead- q( )

ing to the following first order PDEs satisfied by each func-  8x,(t+dt)= éx,(t) + —( (1) (38)

tion S,:

1 i n—1 By substituting Eq.(38) into Eg. (37) and discarding _third

Z 9,8y 9,8+ S ==—V2S, 1— —> 3,5 S« order terms, we derive a set of ODEs for the total time de-

m 2m 2mg=1 rivative — the derivative along the complex trajectories —

(32)  of the quantities?,p; :

These will be considered in Section lll. B_efore describing d{ ap, apy\ [ 9pq 92V

examples, let us derive a new set of ODEs in order to propa- a( 5) - —( X )(W) vt (39

gate the second derivative of the action, a convenient tool for k a k 197

numerical calculations. This equation is satisfied by the Jacobian of the function
x—p(x,t) whose trace gives the Laplaci&itS, entering in

E. Propagation of the second derivatives of the the CE(31). In fact, it is not particular to the CTM, it can be

action derived to calculate the usual first order correction.

Now, the set of ODE$19)—(21), (31) and(39) makes a

complete set of equations from a numerical point of view, in

e sense that no extra operation is needed to integrate them.
The total number of scalar equations @+ 1)?+ 1 whered
is the number of degrees of freedom.

At this point, we have all the tools to compute analyti-
cally and numerically a propagated wave packet in the semi-
classical theory of complex trajectories provided that the
functlons involved have analytical dependence with the po-
sition. This is the aim of the next subsection.

We need to solve Eq29) satisfied byS; . Sy and its first
order derivatives are calculated at the previous order by th
HJE (11), solved by means of CEs. Nevertheless the Laplac:
ian itself of Sy does not result from these calculations if they .
are carried out numerically. A trick would consist of calcu-
lating it by means of a finite difference scherfar a more
sophisticated method derived from), ibut this is tedious and
does not offer sufficient accuracy Rather, we would wish tg
propagate the quantity2S, along the complex trajectories
as well, in order to have at our disposal a valuevés, at

the same point as the other quantities and with the same
F. Analyticity, caustics, unitarity and comparison with

aceuracy. e Gaussian wave packet propagation theor
Let us derive the set of equations satisfied by the secontci.' P propag y
derivatives ofS,. As we shall see, we need to assume Hat As stressed before, previous derivations make sense only

is a well-defined function ofxt), that is the characteristic if the functionsS, and S;, from which the semiclassical
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wave function is built, depend analytically on the position gration algorithm and thus provides a way of detecting these

variables for every time. We can show easily in the case ointersections. This property will be exploited further on nu-

the 1D Schrdinger equation, which condition is required for merical examples.

this analycity property to be valid. Another question that can be asked about our complex
Let us call G(zt), any of the functionsSy(z,t) and method is whether it is unitary or not. The WKB method

Si(z,t) of the complex variable and the real time variable restricted to the first order is. In our case, by writing the

t. AssumingG analytical inz at some time, an equivalent semiclassical wave functiofb) restricted to the first order

property is the following: ifl" is any closed contour in the approximation, we can show

complex plane, we have

d
af |p(x,t)|%dx

vr, I(t)= %G(z,t)dz:o. (40
r h? A )
_ =-—| | V?| 5| +ik| —5—]| +c.c|ly(x,t)|°dx, (45
We calculate then such a contour integral at timedt. Ex- 2m h fi
panding with respect to time and applying Equatié), we  yenoting “complex conjugate” as “c.c.” This shows that
get our method is approximately unitary, consistent with the or-
9G der of the approximation considered, that is the error is of
I(t+dt)=dt fﬁ —(z,t)dz. (41 one order higher irk than the order of the last term taken
rot into account(the form of Eq.(45) suggests that it might be
_ true at all orders The last equation results from the follow-
In the caseG=S;, from Eqg.(11), we have o ; . .
S a-(11, w v ing identity, that can be easily derived from the HI1#) and
Lt4dt = —d % 1 [0S 2d jg Vizd Eq. (29):
(t+ t)=—dt rﬁ E(Z,t) z+ - (Z) Z|.

J

L EXRi (So— S§)/A+i(S,—S7))
(42)

So(z,t) analytic implies ¢Sy/dz)(z,t) is too, and so the con- _ i " "

dition of analyticity of Sy(z,t+dt) reads: N 2mV'[(VS°JFVSO TA(VSTVS]))

VT, 1(t+dt)=—dt ﬁV(z)dz:o, (43) X exp(So=Sp)/Ai+1(5,-51))]

h
_ _ _ _ +5—=(V2S,+i(VS))?+c.c)
that is, the potentiaV(z) is analytic. In the cas& =S, 2m

from Eq.(29), we have

Xexpi(So—Sp)/fi+i(S;-7)), (46)
i [9°Sy and under the hypothesis that the wave function is vanish-
I(Hdt):dt( fﬁrﬁ( 972 (Z’t)) dz ingly small at infinity.

As a last remark, we can compare the formalism of the
1(9S, 9S, Gaussian wave packet propagation methdGWPPM of
- fﬁrﬁ(g(zi)) (E(Zi) dz|. (44  E. J. Heller to ours. It is easy to show that by expanding the
generalized actiofs, as a second order expansion in position
Thus S;(z,t+dt) is analytic sinceSy(z,t) and S;(z,t) are,  around the poink; reached by the real trajectory at tirhe
from the hypothesi¢40). Finally, provided that the potential restricting the expansion to the first order and using the equa-
V(z) is analytic as well as the initial functior$,(z,0) tions of propagation derived before, our method is equivalent
(S1(z,0) is as it is equal to zejpthe functions of interest to the GWPPM. IfS, is not restricted to the preceding ex-
So(z,t) andS;(z,t) are analytic for every time. pansion, we will see in the numerical examples given after-
The theory stated previously, like any other semiclassiwards that the complex trajectory methoda equivalent to
cal theories, can entail singularitigsaustics. These are the GWPPM.
caused geometrically due to the fact that the set of points We have now entirely described the principle of the
described by the characteristics in the complete phase spagemplex trajectory methodCTM), we will now apply it to
(a Lagrangian manifold of dimensiah+ 1) does not have a Several potentials. In each case, the comparison between the
one-to-one canonical projection onto the complete configuexact and the approximated wave packets is made. The re-
ration spaceposition and timg Whereas thé, function is  sults given by the WKB method or the GWPPM will also be
a well-defined function on this Lagrangian manifold, it is no mentioned.
more uniquely defined on the initial complete configuration
space. From an analytical point of viéWijt causes the di-
vergence of one or more matrix_ elemt_ants of the Jacol_)ian 9fI. SOLUBLE PROBLEMS
the functionp(x,t). In the one dimensional case, and if the
HJE is the usual onéll), dp/dx diverges at the intersection This section is devoted to the analytical propagation of
with a caustic. Numerically, it causes the failure of the inte-one dimensional quantum wave packets at the semiclassical
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limit by means of the complex trajectory method. Three po-
tentials will be reviewed: the flat, linear and harmonic poten-

tials, the first two being treated together.
A. Linear and flat potentials
The potential we consider here is
V(X)= aXx, (47

wherea is a constant@g=0 giving the case of the flat po-
tential. The Hamilton—Jacobi equatiéhl) reads

M. Boiron and M. Lombardi

a’t3 atzpc pC 2it
So(Xo.)= 3~~~ gy Xo(Pe—at) 1+@
ix3 . 2it 59
a2 ma?/’

The elimination of the starting poing betweernx(x,,t) (57)
and Sy(xg,t) (58) allows the actior5y(x,t) to be derived as
a function of its natural variablex(t):

1 )= a?t3 atzpc p N
3= 5 (80> ax+ Sy, (48) SD= g~ T T gm) TROX)
_ 2
It is solved by means of the corresponding characteristic +i (X=x) (59)
equationg19)—(21), reading here as 22+ ﬂ
m
dx p
dam (49) (X¢,py) is the real trajectory at timé associated with the
initial wave packet52), for whichx, is equal to its center, O.
dp It reads:
i (50
dt —at?  pgt
= =, p=pc— 60)
ds, p? Xt 2m+m’ Pt=Pc (
= ——E;,. 51
dt m 0 6 From Eq.(29) the first order correction satisfies:
The initial wave packet is taken as a one dimensional Gauss- 1
ian centered around zero: 0 xSodxS1+ kS = X250 (61)
PX X2 The resulting characteristic equations are
P(x,0)=ex IT__ =exp(iSy(x,0)/#%). (52
d_x _P (62
From Egs.(25), (27)—(28) and denotingx, as a complex dt m’
starting point, the initial conditions are ds i
1o
0ot o O ®3
X0,YU) = PcX | =,
0 cro a’ Sinceﬁizso, calculated from Eq(59), is independent ox:
9Sy(X,0) X
p(XO,O):(%) —pet2iL, (54) So(x )= —— (64)
X a 2 it’
XO + —
m
0))2 1 X0’ - o -
Eqo(Xo)= (P(Xo, + axg= pc+2| +axg. Eq. (62) is not needed_Sl(x,t) is simply calculated by inte-
2m 2m gration of Eq.(63). Using Eq.(64), we have
(55

The set of equationgl9)—(55) is all that is required to com-
pute Sy(x,1).

From Egs.(50) and (54), we have the value of the mo-
mentump at timet along the trajectory starting a:

2iXg

p(Xo,t)I—at+pC+ ? (56)

This allows the immediate integration of E49), giving the
positionx along the same trajectory at the same time:

2it
p° 1+—I .
ma?

X(XO!t)

>m (57)
From Eg.(51), substitutingp by Eg. (56) and using initial
condition (55), we derive the value 0§, along the trajec-
tory:

2it
1+ —

Si(x, t)— —In =
ma

(65

Finally, e'(%/"*S0 gives the semiclassical wave func-
tion obtained by the CTM up to first order. Restoring e
we obtain:

1 [ a®®  at?p,  pi
Ya(X =7y O 3 ™ T T om
ma?
. Pt (X=X)?
+|g(X—Xt)——2 >ith (66)
+_
m

We can recognize here thegact solution of the Schidinger
equation with the initial conditiori52) in the casesy=0%2
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and a# 0% that is, in the cases of the flat and linear poten- ¢ [ p
tials. In these cases, the WKB approximation would have led _t(ﬁ) =~ o(wX), (70
to a fixed width wave packet. Here, the spreading of the

wave packet is exactly predicted. One notices that, in the dS, p?

CTM, the preexponential factor appears as the quantum cor- gt ~ 'm Eo. (71)
rection to the purely classical, i.e., zeroth order approxima-

tion, unlike with the WKB method. Considering E@2) of ~ With the same initial conditions as previoug§8—(55), the
the higher order terms, it is easy to show tBaindependent ~ resolution of Eqgs(69) and(70) of the harmonic oscillator in
of x implies that all otherS; are equal to zero, the previous the complex phase space leads to

result is thus the approximation of the CTM for all orders. D(X0,0)
In the case of the flat potential, makirg=0, we have X(Xg,t) =Xocog wt) + o sin( wt)
the wave function mao
_ch7Et _ 2| .
eI 7 (X_Xt)z =Xo COS(wt)-l— mw,é,z S|n((l)t)

expl ———— |- (67)

ho= -
2ith 2, 2 e _
1+ — S — +— sin(wt), (72)
ma? me

whereE = pZ/2m andx,= p.t/m. Let us make the following P(Xo.t) =P(Xp,0)cOS wl) =MawXo SiN(wt)

comments: 2i

(1) Making —0 in the exact expression of the propa- =xo<:2 coy wt) —Mw sin(wt)) +p. coq wt).
gated wave packef67) with a constant, gives a different a
expression from the exact one which is the result of the (73

WKB method restricted to the first ordé& fixed width wave

packel. On the contrary, making —0 with a=a/\% re-
maining constant, i.e., the width going to zero as%,

The usual procedure would consist of substituting &®)
into Eq. (71), then integrating and eliminating, between

. the result and Eq(72). We prefer here to eliminate, be-
leaves the expression of the wave padiéd) formally unal- tween Eq.(72) and Eq.(73), yielding the momentum as a

tered. As stated in Section Il C, this is precisely what is dom?unction of its natural variablesx(t), and to integrate with

in the CTM, explaining its success in this case. The same : - ; .
L : espect tax, using the definitiomp=4,Sy. This leads to:
remark is true for all other analytical results, cf. E¢86) P g P= xS0

and(79). 2i
(2) Here, the WKB wave function can be explicitly com- —sin(wt) + ——=; cog wt)
puted to all orders i, expanding the amplitudé as a So(X,1) = mw moa (X—X)2
power series irk. The result is a series which is the Taylor 2 2i )
expansion of the exact resti7) with respect to the dimen- codwt) + M2 sin(wt)

sionless parameteri 2t/ma?, with a radius of convergence
equal to 1 due to the singularity of the wave functi@?). +pi(X—X%) +K(t), (74
This gives a finite time limitma?/24 for the convergence.
Straight time integration and summation of the series even
all orders cannot break this time barrier: an analytic continu- Pe .

ation is needed. Using the CTM we derive an exact finite ~ Xt= -~ Sin(wt),  p=pc COSwt), (79
order expansion, that is, with an infinite radius of conver-

gence. This clearly means then that adopting the unusu#(t) being an unknown function of time. To determine
initial conditions(9) and (10) instead of Eqs(6)—(8) has a  K(t), we integrate Eq(71) along the real trajectory starting

a\&/here the real trajectoryx(,p;) is

very important consequence on the expansion itself. atxo=0. We have then
2
Pc
K(t)=Sy(X¢,t)= Mo sin(wt)cog wt). (76)

B. Harmonic potential

) ) ] The first order correction satisfies E82)—(63) giving:
We now consider the harmonic potential:

— L1122 —sin(wt) + ——Coq wt
V(X)= 3maw?x2, (68) is, i #_ o N(wt) =3 qot)
If the initial wave packet is taken as previou$b?), then the dt  2m (9XZS°_ 2 2i
previous initial conditiong53) and(54) hold. The character- cog wt) + —=-sin(wt)
istic equations derived from the HJE read here as: Maa 77
E(wx)=w£ 69) This equation being independent, its straightforward inte-
dt m’ gration gives the functios,(x,t):
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i 2i can be used blindly without caring about each of the trajec-
Si(x,t)= Eln coq wt) + ~2sirl(cot) . (78 tories. This is no longer the case in classically nonsoluble
Mwa potentials where numerical trajectory calculations are re-

From Eqs.(74), (76) and(78), we obtain the semiclassi- quired. We have used the second procedure described in Sec-
cal wave function by means of the CTM: tion Il B. It consists in starting from a complex position in
order to reach a real position, obtaining directly a physical
value of Sy andS; . It requires the determination of the start-
ing positionx, of the complex trajectory reaching a given
real positionq for a given timet. This is a two-point bound-

im R'(t)

1 5 1Pt
lﬂclz—%exr’(ﬁ W(X—Xt) + o (X=x)

P2 . .
c . ary value problem that amounts to finding the zero of the
t ool sm(wt)cos(wt)), (79 following function:
whereR(t) = cost) + (2ii/mwa?)sin(wt) andR’ is its time Xo—>X(Xo,t) — 0, (80)

derivative. One can check that, is exactly the quantum
wave packet propagated in the harmonic potential that i
initially given by Eq.(52).?2 For the same reason as in the
previous case, this result is the prediction of the CTM for all
orders.

The comparison with the WKB method is interesting
from the point of view of the study of caustics. The result of
this method can be obtained from the previous calculation
by taking the limita—« in trajectory Equation$72)—(73),
making the complex contributions equal to zero. It is easy t
show then that the initial conditio(62) makes the pointt¢

where x(Xq,t) is the complex trajectory starting fromx.

She Newton’s method will be used, evaluating numerically
the Jacobian of the functiof80). The real trajectory corre-
sponding to the initial Gaussian wave packet gives the zero,
i.e., X, of the function(80) if q is chosen ag;, which is the
position reached by the real trajectory at timdhen, for the
same timet and a neighboring positiog of x;, X; can be
thosen as the starting point in the Newton'’s procedure. Such
a scheme is repeated step by step to calculate the entire wave
0packet at timd.

. ) The quantum or exact propagated wave packet is simply
= m/20,X;=pc/Mw) a focal point — the property of isoch- ., ateq by means of the time and space discretization of

ronism in the permuted variablep,k) — causing the diver- the time translation operator under the well-known Cayley’s
gence ofd,p= —iwtan(wt)/2 [from Eq. (77)] at that point. formlz“ I P ! W W yiey

In the complex trajectory treatment, no such annoying fea-
ture is encountered. Geometrically, no trajectory crosses any
other in the complete complex configuration space because
Xo can be eliminated for any real tim¢detween Eqs(72)  B. Wall of potential

and (73) (in the WKB approachi la?=0 prevents such Here we will study numerically by means of the com-
elimination). Analytically, from Eq.(77), we can easily con-  plex trajectory method the propagation of a wave packet in a
clude thatd,p never diverges for any real timés potential chosen in order that the corresponding classical

Note that here a divergence occurs in the Van-Vleckparticle bounces against a wall. The potential considered is
propagator formula too because it contains the WKB valugyuartic:
of d,p; this is formally removed by the integration with an o ) L,
initial Gaussian wave packet. V(x)=(x"—400x%)1.25<10"%, (81)

As a partial conclusion, the following points can be with units such ag =m=1. The initial wave function is
noted from the analytical calculations carried out within the

H . X2
framework of the complex trajectory method: w(x,0)=exp< ix— | 82)
(1) The CTM is as accurate as the Van-Vleck propagator a
and much more accurate than the WKB method. where the average wave number and the width of the poten-
(2) No caustics are encountered, unlike for the real semiclasja| are, respectivelyk=5 anda=1. In Fig. 2a), the poten-

sical theories. tial is plotted as a function of, the average energy of the

These points will be reexamined and discussed on nuave packet is shown by a dotted line. In FigbR the real
merical examples. Notice that, in the three previous cased/@jectory associated with the initial wave pact&d) is plot-
since the propagated wave packets remain Gaussian, tigd @s @ function of time, indicating roughly the mean posi-

GWPPM? gives the exact result too. tion of the propagated wave packet.
The wave packets have been computed by means of the

complex trajectory method and quantally, at successive
IV. NUMERICAL PROPAGATIONS times, and compared. The square modulus of the wave func-
tion is plotted as a function of for different times, see Fig.
3(a), for times before the bounce and, Figbg for times

In the soluble examples, the complex nature of the traafterwards.

jectories underneath is, in a way, nearly hidden because the Figure 3a) shows the excellent accuracy of the CTM for
algebraic properties of complex or real numbers are thé¢he entire wave packet, as long as it has not touched the
same, so the analytical extension on which the calculationpotential wall. The wave packet at tinte=4, very well ap-
rely is automatically made. Stated otherwise, the formalisnproximated semiclassically, is clearly not Gaussian. The

A. Methodology
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FIG. 2. On the left(a), the potentieM(x) (solid) of Section IV B is plotted with the mean energy of the wave packet, or the energy of its real trajectory
(dashed ling On the right(b), the position(solid) and the momenturfdashedl of the real trajectory, are plotted as a function of time.

GWPPM would have predicted a Gaussian wave packet. Figure 3b) shows nevertheless two interesting facts:
This proves thus that the CTM is not equivalent to the GW-
PPM.

When the wave packet reaches the turning point, its
mean momentum goes toward zero, that is, the classical r?é)
gime condition is no longer valid. A natural discrepancy is
thus observed between the semiclassical wave packet and the
exact wave packet which displays oscillations due to inter-
ference between the forward and backward parts of the wave
packet, cf. Figs. @ and 3b). We think that these appealing features, that can be noticed on
the soluble examples too, give the complex trajectory
method its main interest. We can sketch the following expla-
nations.

(1) Despite the fact that the trajectories involved to build
the wave packet after the bounce are “singular” from the
semiclassical point of view, i.e., the momentum approaches
zero around the turning point, the semiclassical prediction
remains accurate. Particularly, the real trajectory runs exactly
through the turning point and reaches the center of the wave
packet. The integration with respect to time of the character-
istic equations o5, andS,; along a peculiar trajectory in the
phase space, is an integral on the time line that can be ex-
0 6 12 18 2 tended in the complex domain. As such, it can be carried out
(a) Position along any deformed path, assuming analyticity with respect
to time, avoiding the turning point. This works thus only
once the wave packet has been entirely reflected backwards,
not when it is concentrated near the turning point. This is
coherent then with the error observed here and the recovery
of the accuracy afterward.

(2) Unlike in the WKB treatment, no singularity stops
the integration of the set of characteristic equations in the
CTM, proving that no caustics are crossed. This means that
the poles of the functions of timedgp) ~1(x(xq,t),t) that
are isolated points, are not on the real axis but in the complex
domain whereas in the WKB treatment, they lie on the real

0 6 12 18 24 axis. We can interpret this fact by noticing that we work

b) Position within a wider configuration space since it is compl@-

FIG. 3. The result of the quantufsolid) and semiclassical CTMcircles ~ mension 2. We can thus expect that this increase of avail-
propagations in the potential of Section IV B, at several times, indicatedable space might allow us to avoid the emergence of caus-
near the corresponding curv@ and (b) correspond respectively to imes jos 4t |east in the cases studied, and to reduce them in
before and after the real trajectory reaches the turning point. Notice the ~ ' . ' . .
remarkable accuracy of the CTM even after the wave packet has been rgeneral- Using the Van-Vleck formula, the crossing with the
flected by the wall of potential. caustics leads to the addition of a phase shift and prevents

(1) As the wave packet leaves the neighborhood of the turn-
ing point, the semiclassical predictioacovers its accu-
racy for the entire wave packet.

No singularity (causti¢ has been encountered during the
integration of the equations of the CTM whereas the
usual real theories entail such a singularity due to the
turning point.

Probability density y*y
o
'S

0.0

Probablity density y"y
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Enerey ) Enersy the real trajectory encounters a turning point while the quan-
Probability Probability . .
—— tum wave packet is expected to split.

In both these situations, two phenomena of a quantal nature
arise:
(1) the tunneling effect for energies below the energy barrier

Ep,
— — .
® postion ® poston (2) a less well-known effect: the bounce over a potential

barrie?'% for energies just above the energy barigy.

FIG. 4. The potential barrier is plotted as a function of the position and the

wave packet, in energy representation, is plotted as a probability density ag/e il study the complex trajectory method in this context
a function of the energy. Two cases are distinguiski@@nd(r), depending oqn two examples.

on whether the mean energy of the wave packet is respectively above
below the top of the barrier. In all the cases considered, we assume that ttf Quadratic potential

initial energy is quantally distributed above and belBy. Our aim is to study the semiclassical propagation on the

potentialV(x) = — mwx?, in the(t) and(r) cases. This is the

_ _ . “reversed” harmonic potential, so that, in fact, an analytical
one from calculating the Van-Vleck-Pauli-Morette determi- go\ution of this problem can be given. The exact solution

tr}ant by propagation, forcing one to use a numerical derivagiven by the CTM can be found in Section Il B, formula
ive.

(79) replacing trigonometric functions “sin” and “cos” by
We can conclude that the very complex nature of the worktheir hyperbolic counterparts “sinh” and “cosh”, respec-
ing space in the CTM seems to be responsible for the appedtively, and by replacing the minus sign preceding the “sin”
ing property of reducing the singularities of our semiclassicafunctions by a plus sign. We can check that we get in this
treatment. way the exact solution of the Schiiager equation.

As final remarks, let us add that the comparison was The position of the maximum follows the real trajecto-
made at times=4 andt=9 between the real parts of the ries associated with the initial wave packet, that is, it crosses
semiclassical and the exact wave functions on one hand, aride barrier in thet) case and is reflected backward in g
between the imaginary ones, on the other hand. This leads ttase. The splitting of the wave packet is not observed but a
a very accurate approximation, similar to the ones observethst exponential spreading of the wave packets occurs, as
on moduli. From Fig. 3, it is clear that the CTM works in the exp(wt/2), accounting for the transmitted and reflected parts
region not allowed classically, that is, there are complex traof the wave packets.
chtorles reaching this region. Anyyvay, the analytical exten-zl Quasi-quartic potential
sion theorem would allow one to find the value of the wave . - .
function predicted by the CTM anywhere from the image of The following potential is considered:
any segment of the complex domain, cf. Section Il B. The X
bounce of a wave packet has been studied for other polyno- V(X)Z( - X

: i : 10*

mial potentials as well as an exp{type potential. In these

cases, as in the previous one, the same regularity and accand is plotted in Fig. &). It as been constructed so as to

racy of the CTM is observed, except when the wave packet iave a linear slope around zero cut by a steep part in order to

in the neighborhood of the turning point. observe the splitting of the wave packet. The exponential
factor allows the avoidance of the infinite decrease of the
potential that would prevent one from making a quantum

C. Crossing a potential barrier simulation. The initial wave packet is chosen as

4
e (x= 5)2/1000’ (83)

In this section, we will study the wave packet propaga- ¥ =€XHi K(X=X¢) = (X—Xc)?) (84)
tion in a more “difficult” case from the semiclassical point with x.=5. Two simulations were carried out for tkig and
of view, in the sense that a wave packet splitting is expectedr) cases mentioned before.

e e o 1) (0 k=32, B2+ V(x)=10.06- E, =5
Y . ' (2) (r): k=2.8, E,=k?/2+V(x.) =8.86<E,=9.52.
curves bent toward negative energies.

The wave packet, in energy representation, is dispatchetlhe corresponding real trajectories are plotted in Fidp).5
around the energ¥, maximum of the barrier. Two cases The mean energieS,, are chosen quite close to the barrier
may be then distinguished: energyE, in order that, in thet) case, the reflected wave is

(t) transmit, the mean value of the energy of the wavenot negligible relative to the transmitted one, and vice versa
packetE,, is above the barrier maximunk, . Classically, a in the(r) case.
particle of initial energyE,, or the real trajectory associated The results are represented in Figurés @nd &b), cor-
with the initial wave packet, goes above the barrier. Quantaresponding to thét) and (r) cases, respectively. The prob-
lly, the wave packet is essentially transmitted, but a reflectedbility density is plotted as a function of the position at sev-
wave packet is expected to appear. eral times. As long as the wave packet remains Gaussian, the

(r) reflect, the mean value of the energy of the wavesemiclassical prediction using the CTM is very accurate, as
packetE,, is below the barrier maximungty . In this case, in the case treated before. Only one wave packet of this type
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FIG. 5. On the left(@), the potentieM(x) (solid) of Section IV C 2 is plotted in the vicinity of the top of the barrier, together with the mean energy of the
wave packet, or the energy of its real trajectory, in a dashed line. @odind(r) cases are shown, corresponding to the two different initial wave packets, see
the text. On the rightb), the position(solid) and the momenturtdashed of the real trajectories, are plotted as a function of time, in(thand(r) cases.

is represented in Figurega and &b), corresponding to time The following wave packets plotted show the beginning
t=4. It is remarkable that, at this timesee Fig. B)], the  of the splitting. The CTM prediction remains very accurate
classical particle following the real trajectory is either very even at this time. Note that the maxima observed do not
near the top of the barrier, cagg, or in the vicinity of the correspond to the position of the classical particle associated
turning point, casdr). The accuracy observed is thus quite with the wave packet at this time.
surprising since, from the previous case and particularly in  As time elapses, the splitting of the wave packets in two
the (r) case, we would have expected the failure of the CTMcounter-propagative packets becomes more and more clear.
prediction around that singular point. The complex trajectory method achieves a very accurate pre-
diction of the quantum wave packet, in a situation far from
the ones that are usually relevant to semiclassical methods.

0.10 At times t=20 andt=18 for the Figures @) and @b), the
comparison has been made between the real parts of the ex-
. 0.08 act wave packet and the approximated one on one hand, and
s the imaginary parts on the other hand, the accuracy observed
§ 0.06 of the CTM is good as well. In Figs.(& and &b), the wave
< packet calculated by means of the CTM restricted to the
% 0.04 zeroth orderdivided by a factor 1Dis plotted at two times.
E This allows us to realize the importance of the first order
0.02 correction relative to the zeroth one. In particular, it is easy
to show that the maximum of the zeroth order probability
0.00 k density is located at the point reached by the real trajectory at
. the corresponding time. The real trajectory is thus always
(@ late relative to the position of the maximum of the transmit-
0.10 ted wave packet. We can add that this example confirms very
clearly the nonlinear nature of the CT{¥le., it is not equiva-
0.08 lent to the GWPPM since a linear method of wave packet
Z propagation would have predicted simply either the entire
Z 006 transmission or the entire reflection, in ttt¢ and (r) cases,
3 respectively.
E 0.04
€
" o V. CONCLUSION
w00 Lt We shall stress again the main feature of the principle of
2100 -50 0 50 100 150 the complex trajectory method as a semiclassical formalism,
() Position aimed at wave packet propagation. The amplitude of the

FIG. 6. The result of the quantursolid) and semiclassical CTNkircles wave packet is not tr?ated asa qorrectlve or first order te.rm
propagations in the potential of Section IV C 2, at several times, indicateds it iS done usually; instead it is included at the very begin-

near the corresponding curv@) and (b) correspond respectively to th® ~ ning of the semiclassical expansion or at the zeroth order
and(r) cases, see Fig(B). Notice the remarkabl(_a accuracy Wlth _wh|ch the term. As a consequence, both the Wavelength and the width
CTM predicts the quantum wave packet for all times, in a situation far from . . .
a usual semiclassical regime. Dashed lines represent the results for the Z&f the wave packet tend to zero at the semiclassical limit,

roth order only (/10) of the CTM. unlike in the WKB method.
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The examples reviewed, particularly the numerical onestime, avoiding the root-searching procedure, cf. Section Il B.
highlight the remarkable properties of the complex trajectoryMoreover, when computing an overlap with another state or
method. Not only is the accuracy of the WKB wave packeta matrix element in order to compute observable quantities,
propagation method greatly improved but another unexene can deform the original path of integration made up of
pected and appealing property emerges: the disappearancetbé real line, to a complex line which interpolates the points
the singularities(caustic$ that the real(WKB and Van- reached by the trajectories, and extend easily the other ana-
Vleck) semiclassical methods bring in, at least in the case olytical function involved in the integral to the same complex
the potentials considered here. As stressed along these lindisie. This allows us to make direct use of the computed val-
the CTM is not a lineatGWPPM theory of wave propaga- ues at complex points and even to avoid the extrapolation
tion. Thus, the complex trajectory method is a semiclassicgbrocedure itself in the computation of the integral. To end,
theory that appears to be as accurate as the most accurddtus add that two-dimensional wave packet propagations by
semiclassical theory knowtthe Van-Vleck formulawhile  means of the complex trajectory method have already been
being nearly as computationally simple as the most simplearried out. They are currently being studied and will be
known one, the WKB. compared with numerical quantum calculations. The CTM

Many approaches to semiclassical approximations in€ean be generalized to any single linear partial differential
cluding complex aspects rely on the analytical extension oéquation, particularly time-dependent Hamiltonians can be
the usual(rea) semiclassical theory, as insisted before, theconsidered. Note that the CTM can be used as easily within
CTM is not of this type. W. H. Miller made classical trajec- a discrete energy spectrum as within a continuum.
tory calculations in the classically forbidden region of con- | . i
figuration space by means of complex numbers, in order ta F. Le Queeand C. Leforestier, J. Chem. Py, 1118(1991.

. oo 1 D. H. Zhang and J. Z. H. Zhang, J. Chem. PHi@l, 3671(1994.
compute tunneling effect contribution to collision cross ®p. H. zhang and J. Z. H. Zhang, J. Chem. PH@1, 1146(1994).
section® More recently, the introduction of trace formulas ‘5‘3 Olveléhausdeiy chhemf- Ejhﬂgr]{ 921{2(1?;4-271 106
has allowed one to re]atel at the semlclassmgl limit the energy, 1p af‘m'aa:nd 1. thS:Vn; J_’Ché’f,{_ pivﬁ, '1146E1993:
spectrum of a Hamiltonian to closed orbits of the phaser| | "paicomb and D. J. Diestler, J. Chem. Phgs, 3130(1986.
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