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F-38402 Saint-Martin-d’Hères Cédex, France

~Received 19 March 1997; accepted 24 November 1997!

We propose a semiclassical wave packet propagation method relying on classical trajectories in a
complex phase space. It is based on the Schro¨dinger wave equation and the usual expansion with
respect to\, except that the amplitude of the wave packet is taken into account at the very zeroth
order, unlike in the usual WKB method where it is treated as a corrective or first order term.
Formally, it amounts to making both the wavelength and the width of the wave packet tend to zero
with \. The action and consequently the classical trajectories derived are complex. This method is
tested successfully in many cases, analytically or numerically, including the bounce and even the
splitting of the wave packet. Our method appears to be much more accurate than the WKB method
while less computationally demanding than the Van-Vleck formula. Moreover, it has a particularly
interesting property: the singularities~caustics! of the usual semiclassical theories do not appear in
this formalism in all cases tested. ©1998 American Institute of Physics.
@S0021-9606~98!00309-2#

I. INTRODUCTION: THE SEMICLASSICAL
APPROXIMATION IN TIME-DEPENDENT PROBLEMS

Quantum cross-section calculations in collisions involv-
ing atoms or molecules can be carried out in two different
frameworks: a time-independent framework or time-
dependent framework. The early means of calculation was to
use the time-independent scheme, that is the so-called
‘‘close-coupling’’ method. Its numerical cost is high, propor-
tional toN3 whereN is the number of rovibrational channels
included in the simulated model. Current computer power
limits this number to a few thousand. To go further, time-
dependent or wave packet propagation methods were later
adopted. Their numerical cost is less since they allow calcu-
lations to be made on a restricted portion of theN channels
at a time. These methods rely on some discretization of the
initial partial differential equation of propagation. The cost is
then directly related to the size of the grid required. This size
~number of points! depends on many factors that subse-
quently are limitations to numerical simulations.

~1! The number of electronic levels. In this paper we will
only deal with elastic processes so one surface of poten-
tial is assumed.

~2! The numberd of degrees of freedom: The grid size is a
function of the power ofd.

~3! The average kinetic energyK. Since the order of mag-
nitude of the wavelength is given by the de Broglie re-
lation lDB5\/p, the steps of the grid, of orderlDB ,
shall thus be smaller the larger the average momentum.
Consequently, the grid size increases asAK.

A compromise between these factors should be made in or-
der to fit the numerical task to computer possibilities. Cur-
rent achievements of wave packet propagation show that the
number of degrees of freedom is limited to 3 if the process
involves a ‘‘high’’ ~few eV! vibrational energy such as in

O3
1 or the H1O2 reaction;2 or 6 ~4 atoms! if the simulation

is restricted to the lowest lying states, that isn50,1 vibra-
tional quantum initially.3,4

Besides these ‘‘brute-force’’ methods,approximate
methods were developed, mainly in order to outstrip previ-
ously mentioned bounds and to give a simplified image of
the process by avoiding the exclusive use of quantum me-
chanics theory. Most of these approximate methods rely en-
tirely or partially on classical mechanics. The reasons for this
are obvious: Classical mechanics provides a handy view of
processes and technically the equations of classical mechan-
ics ~canonical equations of Hamilton! are ordinary differen-
tial equations, not partial differential equations such as the
Schrödinger equation; they are thus far more easy to inte-
grate numerically.

We can distinguish three stages of approximation:

~1! Purely classical. The original quantal problem is re-
placed by a classical problem: The motion of the nuclei
belongs to classical trajectories.5 Possible nonadiabatic
transitions are taken into account by the Landau–Zener
formula.6

~2! Hemiquantal. The degrees of freedom are divided into
two sets: one treated classically as previously, and the
other quantally.7,8

~3! Semiclassical. The physical concepts used are those of
quantum mechanics: wave functions or propagator, but
they are calculated by means of classical trajectories.9

The most simple example of this is the WKB approxi-
mation of a one-dimensional time independent wave
function.10

Let us now describe the existing semiclassical theories,
and discuss their advantages and drawbacks.

The first of them starts with the differential point of view
of quantum mechanics~Schrödinger equation! and the re-
writing of the wave function as an envelope times a purely
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oscillating function:11 Ae iS. At the semiclassical limit, the
envelopeA, the local de Broglie wavelengthl5h/i¹Si and
the potential vary slowly on the scale of the de Broglie wave-
length itself. This allows one the derivation of two decoupled
equations: The first is the classical Hamilton–Jacobi equa-
tion that is satisfied byS, the second is a continuity equation
satisfied byA. Solving these equations is much less demand-
ing than solving the original Schro¨dinger equation sinceS
5*Ldt and A5A(0)exp(2*¹2S/2mdt) along classical tra-
jectories (L is the classical Lagrangian!. Moreover, only one
trajectory calculation is required to compute the propagated
wave function at one point. However, the accuracy of this
approximation is very poor: In the most simple case of a
Gaussian wave packet moving in a flat potential, it is easy to
show that this method gives a constant width wave packet
whereas the quantum wave packet spreads with time. Con-
sidering general potentials, the semiclassical limit obtained
by such a procedure entails singularities~caustic curves!
which cause the divergence of¹2S, stopping the integration
of A at a finite time. An extension of this method12 is ob-
tained through the\-expansion of the functionsS or A, giv-
ing the same result as previously up to first order. These
formalisms will be referred to as the WKB method.

The second widely used semiclassical theory relies on
the Feynman’s formulation of quantum mechanics, based on
path integrals for the propagator. By retaining virtual trajec-
tories nearby to classical ones, it is possible to derive an
approximate form for the propagator, known as the Van-
Vleck-Gutzwiller formula.13 While this method is more ac-
curate than the previous one — it is exact for polynomial
potentials up to second degree — it can hardly be used to
propagate wave packets numerically because of the integra-
tions required. Many classical trajectories have to be deter-
mined by a root searching procedure in order to compute the
amplitude of the propagated wave packet at one point. These
calculations shall be repeated for every point where the am-
plitude is needed. Within this framework difficulties due to
caustics arise too, they can be partially overcome by the use
of Morse’s indices.

The subject of wave packet propagation at the semiclas-
sical limit has been extensively studied by E. J. Heller and
co-workers since 1975, whose early method is the well-
known Gaussian wave packet propagation.14 Heller showed15

that it is a consequence of the Van-Vleck formula in the case
where the action can be approximated as a second order ex-
pansion with respect to the end points of the classical trajec-
tories needed to compute the propagated wave packet. As-
suming the initial wave packet to be Gaussian, it is then
possible to compute analytically the propagated wave packet
that remains Gaussian with time, getting rid of singularities.
Improvements of this basic method were made,16 which are
called nonlinear methods.17

As a conclusion, we have on one hand the simple but
inaccurate semiclassical WKB method, and on the other
hand, the Van-Vleck formula, more accurate but computa-
tionally more demanding. The approximations, i.e., the semi-
classical limits both these methods provide, entail singulari-
ties ~caustics!.

In this paper, we propose and test a method devoted to

the propagation of wave packets at the semiclassical limit. It
is based on a WKB-like procedure of an expansion with
respect to a small parameter. We will focus here on the
Schrödinger equation, for which\ is the right ordering pa-
rameter in the expansion, even if the method is general. The
essential difference with the usual WKB method is that the
procedure we propose treats on equal footing phase and am-
plitude of the wave function, that is, at the very zeroth order,
whereas the usual WKB method deals with the amplitude as
a first order or corrective term to the zeroth order approxi-
mation which concerns the phase only. From a formal point
of view, we will show that it amounts to making not only the
wavelength tend to zero with the expansion parameter but
the spatial extension of the wave packet as well, unlike the
WKB method. A prominent consequence of this is the ne-
cessity to take into account classical trajectories in a phase
space made of complex numbers, hence the name of ‘‘com-
plex trajectory method.’’ In return, while remaining in the
simple WKB-like framework of the semiclassical approxi-
mation of the wave function itself, with the advantages
quoted before, a large increase in accuracy of the semiclas-
sical approximation is obtained compared to the usual WKB
method. An unexpected and particularly appealing property
of our formalism is observed: In the examples detailed later,
no caustics were encountered whereas all other real semi-
classical theories give rise to such singularities.

This paper is divided as follows: Section II is devoted to
an explanation of the general procedure leading to the com-
putation of the semiclassical limit by means of complex tra-
jectories. The following sections are devoted to comparison
in many potentials between exact propagated quantum wave
packets and semiclassical wave packets obtained by the
method stated previously. Section III is devoted to the study
of analytically soluble potentials, where the trajectories,
hence the semiclassical wave packets, can be formally ex-
actly calculated as well as the quantum wave packet. In Sec-
tion IV numerical trajectory calculations are carried out as
well as numerical resolutions of the Schro¨dinger equation.

II. PRINCIPLE

A. General procedure

The method we propose can be applied to any single
linear partial differential equation~PDE! in a multidimen-
sional space. Since the illustrating examples given below
will concern quantum wave packet propagation only, we re-
strict the statement of the method to the time-dependent
Schrödinger equation. Thus, we look for an approximate so-
lution of the equation:

i\
]

]t
c~x,t !5Ĥc~x,t !5S 2

\2

2m
¹2

1V~x! Dc~x,t !. ~1!

wherec(x,t) is the unknown wave function of the position
variablesx5(x1 , . . . ,xd) — d is the number of degrees of
freedom — and timet. The operatorĤ is the quantum ana-
log of the classical HamiltonianH reading:

H~x,p!5
p2

2m
1V~x!. ~2!
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The initial condition of Eq.~1! is given at the initial timet
50, that is,

c~x,0!5c init~x!, ~3!

wherec init is assumed to be a localized wave function. We
pose for convenience:

c init~x!5̺~x!e iw~x!
5e iF~x!, ~4!

where the modulus̺ and the phasew are real values
whereasF is a complex value.

Like in the usual WKB method, we write the wave func-
tion as an expansion with respect to\ under the form of the
‘‘Ansatz’’:

c~x,t !5exp~ i~S0~x,t !1\S1~x,t !1\2S2~x,t !1••• !/\ !.
~5!

Combining this expression with the Schro¨dinger equation~1!
and equating each coefficient of the resulting\ expansion
leads to equations satisfied by theS j functions. Before deriv-
ing them, we first look at the initial condition that these
functions shall satisfy. They are obviously related to the ini-
tial condition of the original wave equation~3!.

In the WKB method, following the physical idea that, at
the semiclassical limit, the amplitude of the wave function is
a slowly varying envelope with respect to its oscillations,
one imposes the first order corrective term to be identified
with the amplitude of the wave packet at the starting time,
i.e.,

S0~x,0!/\5w~x!, ~6!

exp~ iS1~x,0!!5̺~x!, ~7!

S j~x,0!50, ; j>2. ~8!

In doing this, one shows then thatS0 satisfies the Hamilton–
Jacobi equation of the classical Hamiltonian associated with
the Schro¨dinger equation~1!.

In our method, instead of the above, we do not make a
distinction between phase and amplitude, consequently, we
identify the whole initial wave functionc init(x) with e iS0 /\

at the starting time, putting the other terms equal to zero, i.e.,

S0~x,0!/\5F~x!, ~9!

S j~x,0!50, ; j>1. ~10!

Our study focuses on wave packet propagation, as a conse-
quencec(x,t) is a localized wave function ofx. It is then
clear that the functionF contains both a real and an imagi-
nary part, at starting time and later. The real part is a phase
term, typically of the linear formk–x, giving the approxi-
mate spatial frequencyk/2p. The imaginary part provides
the necessary limitation of the width of the wave packet in
space. Propagating wave packets at the semiclassical limit,
by means of the expansion~5! and the new conditions~9!–
~10! leads us thus to introduce a complex generalized action
S0(x,t). The originality of our method is thus clear at this
stage: not only the phase but also the amplitude are treated at
the zeroth order. The consequence of this on the formal way
of taking the semiclassical limit that this method implies will
be examined later, as well as its remarkable accuracy prop-
erty. In particular, taking Eqs.~9! and ~10! instead of Eqs.

~6!–~8! has much more profound consequences than a mere
shift of quantities among the terms of the expansion.

We now carry out the expansion in\ of the wave equa-
tion ~1! with its wave function rewritten as Eq.~5!.

B. Zeroth order: complex trajectories

The zeroth order in\ gives the usual Hamilton–Jacobi
equation~HJE! associated with the classical HamiltonianH,
as expected:

J~x,]xS0 ,t,] tS0!5
1

2m
~]xS0!2

1V~x!1] tS0

5H~x,]xS0!1] tS050. ~11!

At this order, the consequence of the semiclassical approxi-
mation is to replace the original second order PDE~1! by the
Hamilton–Jacobi equation~11! that has the crucial property
of being asingle first order PDE. This is, in our sense, the
essential property a semiclassical theory should lead with
~when starting from the Schro¨dinger equation, not the propa-
gator!. Indeed, problems expressed in terms of PDEs can be
recast under the form of a set ofordinary differential equa-
tions~ODEs! only in the particular case of a single first order
PDE. In this case, it is possible to solve the Cauchy’s prob-
lem by means of characteristic curves, see the clear reference
of Arnold18 upon which this work is based. To be brief, let us
say that these curves satisfy a particular set of ODEs, the
characteristic equations~CEs! derived from the first order
PDE, and they make a set covering the entire space of the
variables of the unknown function. On each of these curves
or 1D subspaces, the unknown function satisfies an ODE too.
Then the original PDE can be exactly reformulated in terms
of a set of ODEs. As ODEs are the equations of classical
mechanics, we can say that the preceding transformation re-
casts the initial wave problem into a mechanical problem,
possibly in a generalized sense. In the WKB theory, the char-
acteristic curves exhibited are the classical trajectories of the
corresponding classical Hamiltonian or the light rays when
applied to optics. Note that the original wave equation is
linear whereas the resulting HJE is nonlinear.

The peculiarity of our approach is that the ‘‘general-
ized’’ action S0 is complex at the starting time. Because of
the continuity ofS0 relatively to time,S0(x,t) is a complex-
valued function. Now the Hamilton–Jacobi equation~11!
shall be considered as acomplex equation. A natural starting
point to solve it would be to separate the unknown function
S0 into its real and imaginary parts, in order to derive two
real equations. This would lead to two coupled equations that
would prevent one from using the theory of characteristics to
solve them since this theory can be applied only to single
equations. It is thus necessary to keep Equation~11! as a
single complex scalar equation and extend formally the
theory of characteristics to complex functions. As a conse-
quence which we will make clear soon, this requires taking
the derivative with respect to complex variables, that is deal-
ing with a generalized configuration space extended to com-
plex values. ThenS0 and J shall be analytical functions of
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multiple complex variables. We assume in the following that
these conditions are fulfilled. We will return to that question
later.

The usual~real! theory of characteristics requires the
propagation of trajectories in a space in which the natural
space of the variables of the first order PDE~the HJE! is
embedded: the complete phase space. It is made of the con-
figuration space and time~i.e. the variables of the HJE!, and
the following associated variablespk andt, defined as

pk5
]S0

]xk
, ~12!

t5p05
]S0

]t
. ~13!

These variables are the~generalized! momenta associated re-
spectively with position and time. This set of variables, usu-
ally taken as real, is now considered as complex sinceS0 is
complex.

Solving the HJE ~11! by means of the theory of
characteristics18 enables us to write the following ODEs:

dxk

ds
5

]J

]pk
5

]H

]pk
5

pk

m
, ~14!

dpk

ds
52

]J

]xk
52

]H

]xk
52

]V

]xk
, ~15!

dt

ds
5

]J

]t
51, ~16!

dt

ds
52

]J

]t
50, ~17!

dS0

ds
5(

k
pk

]J

]pk
1t

]J

]t
. ~18!

The first equations~first two columns! of each line result
from the theory of characteristics, the following ones from
the peculiar form of the functionJ ~11!. The first four lines
~14!–~17! are the equations of the characteristic curves in the
complete phase space, whose parameter iss. Equation~18!
gives the value of the unknown functionS0 along these
curves. Note that although the momenta variables are taken
as independent, the solutions given by the preceding equa-
tions satisfy the definition relations~12!–~13!.

Since t is the variable propagated in the original wave
equation~1!, it is better to substitutes by t. This can be done
provided thatdt/dsÞ0, whatever the value ofs and the
characteristics considered,19 which is here trivially fulfilled,
cf. Eq. ~16!. The previous equations read, in vectorial nota-
tion:

dx

dt
5

p

m
, ~19!

dp

dt
52¹V~x!, ~20!

dS0

dt
5

p2

m
2E0 , ~21!

whereE052t5constant along a trajectory because of Eq.
~17!. We recognize then the canonical equations of Hamilton
associated with the classical HamiltonianH ~2!, hence the
same notationp used for the conjugate variables ofx and for
]xS0 ~which are exactly equal to the momenta in the WKB
theory!.

Let us note that the natural set of variables ofS0 is (x,t).
The method of characteristics, through ODEs~19!–~21!, sub-
stitutes temporarily this set by (x0 ,t), wherex0 is the start-
ing point of the curve at the initial timet50. To illustrate; If
the set of characteristics are viewed as a flow, the first vari-
ables are Lagrangian whereas the second are Eulerian. Fur-
ther in the paper, no specific notation will be used, the vari-
ables being obvious by context.

We need the initial conditions of the CEs~19!–~21!, they
are naturally derived from the initial value ofS0 given by Eq.
~9! and the relations~12!–~13!. Let x0 be a starting position
of a characteristics at timet50, then the corresponding mo-
menta are

pk~x0,0!5S ]S0~x,0!

]xk
D

x0

. ~22!

The HJE~11!, taken at timet50, allows the derivation of the
initial value t(x0 ,0), as a function ofx0 andpk(x0 ,0), here
it reads simply:

2t~x0,0!5E0~x0!5H~x0 ,p~x0,0!!. ~23!

SinceS0(x0,0) is complex,pk(x0 ,0) andE0(x0) are neces-
sarily complex, even for real values ofx0 . Let us stress the
fact that the complex nature of these quantities results from
the fact that the amplitude is included in the ‘‘action’’S0 . It
does not result, as in some variant of the WKB theory10,
from the analytical extension of the action which remains
real anyway for real values of the position.

From the initial conditions~22!–~23!, it is obvious that
the CEs~19!–~20! lead the position componentx of the char-
acteristics to be in the complex phase space sincepk(x0,0) is
complex, even if the initial positionx0 and the Hamilton–
Jacobi functionJ are real. Hence the name ‘‘complex trajec-
tory method’’ attributed to this semiclassical theory. As a
consequence, the equation of propagation~21! gives the
value of S0 for uninteresting complexx positions. The hy-
pothesis of analyticity of the functionx°S0(x,t), ;t allows
one to show that the propagation of the CEs gives the solu-
tion of the HJE. Two procedures will be described and dis-
cussed from a practical~numerical! point of view. For the
sake of easy understanding, one can assume one is first deal-
ing with the one-dimensional (d51) case.

~1! Let us suppose thatx0 is a real vector belonging to
the real spaceg of dimensiond. The image ofg through the
propagation of the CEs~19!–~20! is a complex spaceg(t) of
the same dimensiond, see Fig. 1~a! in the cased51. The
property just mentioned allows one to extend analytically
x°S0(x,t) from g(t) to the entire spaceCd, generalized
position space, in order to recoverS0(x,t) with realx values.
From a formal point of view, this means the following: once
the system of CEs~19!–~21! is solved, the initial positionx0

is eliminated between the equation of the trajectoriesx(x0 ,t)
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and the solutionS0(x0 ,t), the resulting functionS0(x,t) is
the solution of the HJE~11! compatible with the initial con-
dition ~9!, for all values ofx and t, not only for xPg(t).
Practically, the analytical extension can be made through an
extrapolation scheme from complexg(t) to R

d. This is a
feasible way, not reported here.

~2! The alternative procedure is to use the extension
theorem at the initial time, that is, to consider complex start-
ing positionsx0 for the complex trajectories. It amounts to
extend analyticallyS0(x0,0) into the complex domain. The
relations~22!–~23! are still valid, taken as complex identi-
ties. It is necessary then to find out the starting pointx0 such
that the trajectoryx(x0 ,t) crosses the surfaceI(x)50 for a
given timet, see Fig. 1~b! in the cased51. The correspond-
ing value ofS0 will provide S0(x,t) with real x as looked
for. This is the practical way we have adopted to sample the
function S0(x,t), the exact procedure will be given later.

As a partial conclusion, let us say that the different
points discussed previously cover essentially the originality
and the necessary concepts of the semiclassical method of
complex trajectories that we propose.

C. Gaussian initial wave packet

The simplest choice of an initially localized wave packet
with a corresponding analyticF function @cf. Eq. ~9!# is the
Gaussian wave packet reading:

c init~x!5expS ikc•~x2xc!2
~x2xc!2

a2 D . ~24!

xc is the average value of position,kc is the average wave
number,a is the width of the wave packet. Following our
peculiar scheme~9!–~10!, we have

S0~x,0!5pc•~x2xc!1i
~x2xc!2

ã 2
, ~25!

where pc5\kc and ã 5a/A\. The final expression of the
semiclassical initial wave function is

expS i
S0~x,0!

\
D5expS i

pc

\
•~x2xc!2

~x2xc!2

\ ã 2 D , ~26!

wherepc and ã are kept constant while\→0. If x0 is the
complex initial integration point, the initial conditions for the
CEs, derived from Eq.~25! and Eqs.~22!–~23!, read:

p~x0,0!5pc12i
x02xc

ã 2
~27!

E0~x0!5H~x0 ,p~x0,0!!

5
1

2m S pc12i
x02xc

ã 2 D 2

1V~x0!. ~28!

One can notice that ifx05xc , then:

S0~xc,0!50,

p~xc,0!5pc is real,

E0~xc!5
pc

2

2m
1V~xc! is real.

The initial conditions are thus real and since the CEs~19!–
~20! are real too, the corresponding complex trajectory is
itself entirely real. Ifx0Þxc , this is no longer the case. We
will call this peculiar trajectory thereal trajectory associated
with the initial wave packet~24!, it will be noted subse-
quently (x t ,p t).

Let us make now an important remark about the formal
way our formalism leads to the semiclassical limit. Consid-
ering the initial wave function~26!, we note that:

~1! As in the WKB method, the limit\→0 causes the local
wave length 2p/(ipci /\) to tend to zero as\. The clas-
sical momentumpc5\kc is a conserved quantity at the
semiclassical limit.

~2! Unlike in the WKB method, the spatial extension of the
wave packet is also bound to go to zero~in this case as
A\) becauseã 5a/A\ is the conserved quantity at the
semiclassical limit, not the widtha itself as in the WKB
formalism.

D. First order

The first order of the\-expansion gives the equation
satisfied byS1 :

FIG. 1. ~a! Some characteristic curves in the configuration/time space (x
PC, tPR) starting from a real coordinate point. The complex curveC (T)
is the intersection of these trajectories with the planet5T. Stated otherwise,
C (T) is the image of the real line through the Hamiltonian flow.~b! The
complex trajectories start from the curveD(T) belonging to the complex
plane t50. This curve is chosen such that all trajectories cross the plane
I(x)50 at the same timeT.
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1

m
]xS0•]xS11] tS15

i

2m
¹2S0 . ~29!

Thus, again, the PDE satisfied byS1 is a single first order
equation whereS0 , previously determined, enters. The
theory of characteristics can be used to solve this equation, in
a simplified version, restricted to the configuration space,
since Eq.~29! is linear inS1 . The CEs parametrized by time
are the following:

dxk

dt
5

pk~x,t !

m
, ~30!

dS1

dt
5

i

2m
¹2S0~x,t !. ~31!

Since the functionspk(x,t) are calculated through the CEs
~19!–~20! and Eq.~30! is the same as Eq.~20!, the charac-
teristics of S1 are the canonical projection of the complex
trajectories associated withS0 on the configuration space
~they remain nevertheless complex!. This property will be of
great help later. Notice finally that the arguments given in
Section II B can be applied toS1 , provided it is analytic.

To conclude up to this point, let us say that we achieve
the approximate solution, by means of a complex semiclas-
sical theory, including the zeroth and first orders, of the
problem of quantum wave packet propagation. The set of
ODEs we have to consider is thus~19!–~20! to propagate the
trajectories,~21! and ~31! to derive the wave function, with
the initial conditions~9!–~10! and ~22!–~23!, reading Eqs.
~25! and~27!–~28! for an initial Gaussian wave. Let us note
that an arbitrarynth order expansion can be carried out, lead-
ing to the following first order PDEs satisfied by each func-
tion Sn :

1

m
]xS0•]xSn1] tSn5

i

2m
¹2Sn212

1

2m (
k51

n21

]xSk•]xSn2k .

~32!

These will be considered in Section III. Before describing
examples, let us derive a new set of ODEs in order to propa-
gate the second derivative of the action, a convenient tool for
numerical calculations.

E. Propagation of the second derivatives of the
action

We need to solve Eq.~29! satisfied byS1 . S0 and its first
order derivatives are calculated at the previous order by the
HJE ~11!, solved by means of CEs. Nevertheless the Laplac-
ian itself ofS0 does not result from these calculations if they
are carried out numerically. A trick would consist of calcu-
lating it by means of a finite difference scheme~or a more
sophisticated method derived from it!, but this is tedious and
does not offer sufficient accuracy. Rather, we would wish to
propagate the quantity¹2S0 along the complex trajectories
as well, in order to have at our disposal a value of¹2S0 at
the same point as the other quantities and with the same
accuracy.

Let us derive the set of equations satisfied by the second
derivatives ofS0 . As we shall see, we need to assume thatS0

is a well-defined function of (x,t), that is the characteristic

curves do not cross caustics. The main idea is the following:
the second derivatives ofS0 are]kp l , then, considering two
neighboring trajectories, the infinitesimal difference of the
momenta at the same time gives the matrix]kp l whose trace
is the Laplacian looked for.

Let us write these trajectories asx(x0 ,t) and x(x0

1dx0 ,t)5x(x0 ,t)1dx(t). Their canonical equations are the
following, written as a first order expansion with respect to
time:

x~ t1dt !5x~ t !1
p~x~ t !!

m
dt, ~33!

p l~x~ t1dt !!5p l~x~ t !!2¹V~x~ t !!dt, ~34!

~x1dx!~ t1dt !5x~ t !1dx~ t !1
p~~x1dx!~ t !!

m
dt, ~35!

p l~~x1dx!~ t1dt !!

5p l~~x1dx!~ t !!2¹V~~x1dx!~ t !!dt. ~36!

Expanding Eq.~36! with respect todx and taking the differ-
ence with Eq.~34!, one has:

]p l

]xk
~x~ t1dt !!dxk~ t1dt !

5
]p l

]xk
~x~ t !!dxk~ t !2

]2V

]x l]xk
~x~ t !!dxk~ t !dt, ~37!

where summation over repeated indices is assumed. The dif-
ference between Eqs.~33! and ~35! leads to :

dxk~ t1dt !5dxk~ t !1
]pk

]xq
~x~ t !!

dxq~ t !

m
dt. ~38!

By substituting Eq.~38! into Eq. ~37! and discarding third
order terms, we derive a set of ODEs for the total time de-
rivative — the derivative along the complex trajectories —
of the quantities]kp l :

d

dtS ]p l

]xk
D52

1

mS ]p l

]xq
D S ]pq

]xk
D2

]2V

]x l]xk
. ~39!

This equation is satisfied by the Jacobian of the function
x°p(x,t) whose trace gives the Laplacian¹2S0 entering in
the CE~31!. In fact, it is not particular to the CTM, it can be
derived to calculate the usual first order correction.20

Now, the set of ODEs~19!–~21!, ~31! and~39! makes a
complete set of equations from a numerical point of view, in
the sense that no extra operation is needed to integrate them.
The total number of scalar equations is (d11)2

11 whered
is the number of degrees of freedom.

At this point, we have all the tools to compute analyti-
cally and numerically a propagated wave packet in the semi-
classical theory of complex trajectories provided that the
functions involved have analytical dependence with the po-
sition. This is the aim of the next subsection.

F. Analyticity, caustics, unitarity and comparison with
the Gaussian wave packet propagation theory

As stressed before, previous derivations make sense only
if the functions S0 and S1 , from which the semiclassical
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wave function is built, depend analytically on the position
variables for every time. We can show easily in the case of
the 1D Schro¨dinger equation, which condition is required for
this analycity property to be valid.

Let us call G(z,t), any of the functionsS0(z,t) and
S1(z,t) of the complex variablez and the real time variable
t. AssumingG analytical inz at some timet, an equivalent
property is the following: ifG is any closed contour in the
complex plane, we have

;G, I~ t !5 R
G

G~z,t !dz50. ~40!

We calculate then such a contour integral at timet1dt. Ex-
panding with respect to time and applying Equation~40!, we
get

I~ t1dt !5dt R
G

]G

]t
~z,t !dz. ~41!

In the caseG5S0 , from Eq. ~11!, we have

I~ t1dt !52dtS R
G

1

2mS ]S0

]z
~z,t ! D 2

dz1 R
G

V~z !dz D .

~42!

S0(z,t) analytic implies (]S0/]z)(z,t) is too, and so the con-
dition of analyticity ofS0(z,t1dt) reads:

;G, I~ t1dt !52dt R
G

V~z !dz50, ~43!

that is, the potentialV(z) is analytic. In the caseG5S1 ,
from Eq. ~29!, we have

I~ t1dt !5dtS R
G

i

2mS ]2S0

]z2
~z,t !D dz

2 R
G

1

mS ]S0

]z
~z,t ! D S ]S1

]z
~z,t ! D dz D . ~44!

Thus S1(z,t1dt) is analytic sinceS0(z,t) and S1(z,t) are,
from the hypothesis~40!. Finally, provided that the potential
V(z) is analytic as well as the initial functionS0(z,0)
(S1(z,0) is as it is equal to zero!, the functions of interest
S0(z,t) andS1(z,t) are analytic for every time.

The theory stated previously, like any other semiclassi-
cal theories, can entail singularities~caustics!. These are
caused geometrically due to the fact that the set of points
described by the characteristics in the complete phase space
~a Lagrangian manifold of dimensiond11) does not have a
one-to-one canonical projection onto the complete configu-
ration space~position and time!. Whereas theS0 function is
a well-defined function on this Lagrangian manifold, it is no
more uniquely defined on the initial complete configuration
space. From an analytical point of view,21 it causes the di-
vergence of one or more matrix elements of the Jacobian of
the functionp(x,t). In the one dimensional case, and if the
HJE is the usual one~11!, ]p/]x diverges at the intersection
with a caustic. Numerically, it causes the failure of the inte-

gration algorithm and thus provides a way of detecting these
intersections. This property will be exploited further on nu-
merical examples.

Another question that can be asked about our complex
method is whether it is unitary or not. The WKB method
restricted to the first order is. In our case, by writing the
semiclassical wave function~5! restricted to the first order
approximation, we can show

d

dtE uc~x,t !u2dx

5
\2

2mE S ¹2S S1

\
D1i\S ¹S1

\
D 2

1c.c.D uc~x,t !u2dx, ~45!

denoting ‘‘complex conjugate’’ as ‘‘c.c.’’ This shows that
our method is approximately unitary, consistent with the or-
der of the approximation considered, that is the error is of
one order higher in\ than the order of the last term taken
into account~the form of Eq.~45! suggests that it might be
true at all orders!. The last equation results from the follow-
ing identity, that can be easily derived from the HJE~11! and
Eq. ~29!:

]

]t
exp~ i~S02S0* !/\1i~S12S1* !!

52
1

2m
¹•@~¹S01¹S0* 1\~¹S11¹S1* !!

3exp~ i~S02S0* !/\1i~S12S1* !!#

1
\

2m
~¹2S11i~¹S1!2

1c.c.!

3exp~ i~S02S0* !/\1i~S12S1* !!, ~46!

and under the hypothesis that the wave function is vanish-
ingly small at infinity.

As a last remark, we can compare the formalism of the
Gaussian wave packet propagation method15 ~GWPPM! of
E. J. Heller to ours. It is easy to show that by expanding the
generalized actionS0 as a second order expansion in position
around the pointx t reached by the real trajectory at timet,
restricting the expansion to the first order and using the equa-
tions of propagation derived before, our method is equivalent
to the GWPPM. IfS0 is not restricted to the preceding ex-
pansion, we will see in the numerical examples given after-
wards that the complex trajectory method isnot equivalent to
the GWPPM.

We have now entirely described the principle of the
complex trajectory method~CTM!, we will now apply it to
several potentials. In each case, the comparison between the
exact and the approximated wave packets is made. The re-
sults given by the WKB method or the GWPPM will also be
mentioned.

III. SOLUBLE PROBLEMS

This section is devoted to the analytical propagation of
one dimensional quantum wave packets at the semiclassical
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limit by means of the complex trajectory method. Three po-
tentials will be reviewed: the flat, linear and harmonic poten-
tials, the first two being treated together.

A. Linear and flat potentials

The potential we consider here is

V~x !5ax, ~47!

wherea is a constant,a50 giving the case of the flat po-
tential. The Hamilton–Jacobi equation~11! reads

J5
1

2m
~]xS0!2

1ax1] tS0 . ~48!

It is solved by means of the corresponding characteristic
equations~19!–~21!, reading here as

dx

dt
5

p

m
, ~49!

dp

dt
52a, ~50!

dS0

dt
5

p2

m
2E0 . ~51!

The initial wave packet is taken as a one dimensional Gauss-
ian centered around zero:

c~x,0!5expS i
pcx

\
2

x2

a2D 5exp~ iS0~x,0!/\ !. ~52!

From Eqs.~25!, ~27!–~28! and denotingx0 as a complex
starting point, the initial conditions are

S0~x0,0!5pcx01i
x0

2

ã 2
, ~53!

p~x0,0!5S ]S0~x,0!

]x D
x0

5pc12i
x0

ã 2
, ~54!

E0~x0!5
~p~x0,0!!2

2m
1ax05

1

2m S pc12i
x0

ã 2D
2

1ax0 .

~55!

The set of equations~49!–~55! is all that is required to com-
puteS0(x,t).

From Eqs.~50! and ~54!, we have the value of the mo-
mentump at time t along the trajectory starting atx0 :

p~x0 ,t !52at1pc1
2ix0

ã 2
. ~56!

This allows the immediate integration of Eq.~49!, giving the
positionx along the same trajectory at the same time:

x~x0 ,t !5
2at2

2m
1

pct

m
1x0S 11

2it

m ã 2D . ~57!

From Eq.~51!, substitutingp by Eq. ~56! and using initial
condition ~55!, we derive the value ofS0 along the trajec-
tory:

S0~x0 ,t !5
a2t3

3m
2

at2pc

m
1

pc
2t

2m
x0~pc2at !S 11

2it

m ã 2D
1

ix0
2

ã 2 S 11
2it

m ã 2D . ~58!

The elimination of the starting pointx0 betweenx(x0 ,t) ~57!
andS0(x0 ,t) ~58! allows the actionS0(x,t) to be derived as
a function of its natural variables (x,t):

S0~x,t !5S a2t3

3m
2

at2pc

m
1

pc
2t

2m D 1p t~x2x t!

1i
~x2x t!

2

ã 2
1

2it

m

, ~59!

(x t ,p t) is the real trajectory at timet associated with the
initial wave packet~52!, for whichx0 is equal to its center, 0.
It reads:

x t5
2at2

2m
1

pct

m
, p t5pc2at. ~60!

From Eq.~29! the first order correction satisfies:

1

m
]xS0]xS11] tS15

i

2m
]x2

2 S0 . ~61!

The resulting characteristic equations are

dx

dt
5

p

m
, ~62!

dS1

dt
5

i

2m
]x2

2 S0 . ~63!

Since]x2
2 S0 , calculated from Eq.~59!, is independent ofx:

]x2
2 S0~x,t !5

2i

ã 2
1

2it

m

, ~64!

Eq. ~62! is not needed.S1(x,t) is simply calculated by inte-
gration of Eq.~63!. Using Eq.~64!, we have

S1~x,t !5
i

2
lnS 11

2it

m ã 2D . ~65!

Finally, e i(S0 /\1S1) gives the semiclassical wave func-
tion obtained by the CTM up to first order. Restoring the\s,
we obtain:

ccl~x,t !5
1

S 11
2it\

ma2 D
1/2 expS iS a2t3

3m\
2

at2pc

m\
1

pc
2t

2m\
D

1i
p t

\
~x2x t!2

~x2x t!
2

a2
1

2it\

m
D . ~66!

We can recognize here theexact solution of the Schro¨dinger
equation with the initial condition~52! in the casesa5022
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andaÞ023 that is, in the cases of the flat and linear poten-
tials. In these cases, the WKB approximation would have led
to a fixed width wave packet. Here, the spreading of the
wave packet is exactly predicted. One notices that, in the
CTM, the preexponential factor appears as the quantum cor-
rection to the purely classical, i.e., zeroth order approxima-
tion, unlike with the WKB method. Considering Eq.~32! of
the higher order terms, it is easy to show thatS1 independent
of x implies that all otherS j are equal to zero, the previous
result is thus the approximation of the CTM for all orders.

In the case of the flat potential, makinga50, we have
the wave function

ccl5

e i
pcx2Et

\

A11

2it\

ma2

expS 2

~x2x t!
2

a2
1

2it\

m
D , ~67!

whereE5pc
2/2m andx t5pct/m. Let us make the following

comments:
~1! Making \→0 in the exact expression of the propa-

gated wave packet~67! with a constant, gives a different
expression from the exact one which is the result of the
WKB method restricted to the first order~a fixed width wave
packet!. On the contrary, making\→0 with ã 5a/A\ re-
maining constant, i.e., the widtha going to zero asA\,
leaves the expression of the wave packet~67! formally unal-
tered. As stated in Section II C, this is precisely what is done
in the CTM, explaining its success in this case. The same
remark is true for all other analytical results, cf. Eqs.~66!
and ~79!.

~2! Here, the WKB wave function can be explicitly com-
puted to all orders in\, expanding the amplitudeA as a
power series in\. The result is a series which is the Taylor
expansion of the exact result~67! with respect to the dimen-
sionless parameter 2i\t/ma2, with a radius of convergence
equal to 1 due to the singularity of the wave function~67!.
This gives a finite time limitma2/2\ for the convergence.
Straight time integration and summation of the series even at
all orders cannot break this time barrier: an analytic continu-
ation is needed. Using the CTM we derive an exact finite
order expansion, that is, with an infinite radius of conver-
gence. This clearly means then that adopting the unusual
initial conditions~9! and ~10! instead of Eqs.~6!–~8! has a
very important consequence on the expansion itself.

B. Harmonic potential

We now consider the harmonic potential:

V~x !5
1
2 mv2x2. ~68!

If the initial wave packet is taken as previously~52!, then the
previous initial conditions~53! and~54! hold. The character-
istic equations derived from the HJE read here as:

d

dt
~vx !5v

p

m
, ~69!

d

dt S p

m D52v~vx !, ~70!

dS0

dt
5

p2

m
2E0 . ~71!

With the same initial conditions as previously~53!–~55!, the
resolution of Eqs.~69! and~70! of the harmonic oscillator in
the complex phase space leads to

x~x0 ,t !5x0cos~vt !1
p~x0,0!

mv
sin~vt !

5x0S cos~vt !1
2i

mv ã 2
sin~vt !D

1
pc

mv
sin~vt !, ~72!

p~x0 ,t !5p~x0,0!cos~vt !2mvx0 sin~vt !

5x0S 2i

ã 2
cos~vt !2mv sin~vt !D 1pc cos~vt !.

~73!

The usual procedure would consist of substituting Eq.~73!
into Eq. ~71!, then integrating and eliminatingx0 between
the result and Eq.~72!. We prefer here to eliminatex0 be-
tween Eq.~72! and Eq.~73!, yielding the momentum as a
function of its natural variables (x,t), and to integrate with
respect tox, using the definitionp5]xS0 . This leads to:

S0~x,t !5
mv

2 S 2sin~vt !1
2i

mv ã 2
cos~vt !

cos~vt !1
2i

mv ã 2
sin~vt !

D ~x2x t!
2

1p t~x2x t!1K~ t !, ~74!

where the real trajectory (x t ,p t) is

x t5
pc

mv
sin~vt !, p t5pc cos~vt !, ~75!

K(t) being an unknown function of time. To determine
K(t), we integrate Eq.~71! along the real trajectory starting
at x050. We have then

K~ t !5S0~x t ,t !5
pc

2

2mv
sin~vt !cos~vt !. ~76!

The first order correction satisfies Eqs.~62!–~63! giving:

dS1

dt
5

i

2m

]2

]x2
S05

iv

2 S 2sin~vt !1
2i

mv ã 2
cos~vt !

cos~vt !1
2i

mv ã 2
sin~vt !

D .

~77!

This equation beingx independent, its straightforward inte-
gration gives the functionS1(x,t):
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S1~x,t !5
i

2
lnS cos~vt !1

2i

mv ã 2
sin~vt !D . ~78!

From Eqs.~74!, ~76! and~78!, we obtain the semiclassi-
cal wave function by means of the CTM:

ccl5
1

AR~ t !
expS im

2\

R8~ t !

R~ t !
~x2x t!

2
1

ip t

\
~x2x t!

1
ipc

2

2mv\
sin~vt !cos~vt ! D , ~79!

whereR(t)5cos(vt)1 (2i\/mva2)sin(vt) and R8 is its time
derivative. One can check thatccl is exactly the quantum
wave packet propagated in the harmonic potential that is
initially given by Eq. ~52!.22 For the same reason as in the
previous case, this result is the prediction of the CTM for all
orders.

The comparison with the WKB method is interesting
from the point of view of the study of caustics. The result of
this method can be obtained from the previous calculations
by taking the limita→` in trajectory Equations~72!–~73!,
making the complex contributions equal to zero. It is easy to
show then that the initial condition~52! makes the point (t f

5p/2v,x f5pc /mv) a focal point — the property of isoch-
ronism in the permuted variables (p,x) — causing the diver-
gence of]xp52ivtan(vt)/2 @from Eq. ~77!# at that point.
In the complex trajectory treatment, no such annoying fea-
ture is encountered. Geometrically, no trajectory crosses any
other in the complete complex configuration space because
x0 can be eliminated for any real timest between Eqs.~72!

and ~73! ~in the WKB approach,i/ ã 2
50 prevents such

elimination!. Analytically, from Eq.~77!, we can easily con-
clude that]xp never diverges for any real timest.

Note that here a divergence occurs in the Van-Vleck
propagator formula too because it contains the WKB value
of ]xp; this is formally removed by the integration with an
initial Gaussian wave packet.

As a partial conclusion, the following points can be
noted from the analytical calculations carried out within the
framework of the complex trajectory method:

~1! The CTM is as accurate as the Van-Vleck propagator
and much more accurate than the WKB method.

~2! No caustics are encountered, unlike for the real semiclas-
sical theories.

These points will be reexamined and discussed on nu-
merical examples. Notice that, in the three previous cases,
since the propagated wave packets remain Gaussian, the
GWPPM15 gives the exact result too.

IV. NUMERICAL PROPAGATIONS

A. Methodology

In the soluble examples, the complex nature of the tra-
jectories underneath is, in a way, nearly hidden because the
algebraic properties of complex or real numbers are the
same, so the analytical extension on which the calculations
rely is automatically made. Stated otherwise, the formalism

can be used blindly without caring about each of the trajec-
tories. This is no longer the case in classically nonsoluble
potentials where numerical trajectory calculations are re-
quired. We have used the second procedure described in Sec-
tion II B. It consists in starting from a complex position in
order to reach a real position, obtaining directly a physical
value ofS0 andS1 . It requires the determination of the start-
ing position x0 of the complex trajectory reaching a given
real positionq for a given timet. This is a two-point bound-
ary value problem that amounts to finding the zero of the
following function:

x0°x~x0 ,t !2q, ~80!

where x(x0 ,t) is the complex trajectory starting fromx0 .
The Newton’s method will be used, evaluating numerically
the Jacobian of the function~80!. The real trajectory corre-
sponding to the initial Gaussian wave packet gives the zero,
i.e.,xc , of the function~80! if q is chosen asxt , which is the
position reached by the real trajectory at timet. Then, for the
same timet and a neighboring positionq of xt , xc can be
chosen as the starting point in the Newton’s procedure. Such
a scheme is repeated step by step to calculate the entire wave
packet at timet.

The quantum or exact propagated wave packet is simply
calculated by means of the time and space discretization of
the time translation operator under the well-known Cayley’s
form.24

B. Wall of potential

Here we will study numerically by means of the com-
plex trajectory method the propagation of a wave packet in a
potential chosen in order that the corresponding classical
particle bounces against a wall. The potential considered is
quartic:

V~x !5~x4
2400x2!1.2531024, ~81!

with units such as\5m51. The initial wave function is

c~x,0!5expS ikx2
x2

a2D , ~82!

where the average wave number and the width of the poten-
tial are, respectively,k55 anda51. In Fig. 2~a!, the poten-
tial is plotted as a function ofx, the average energy of the
wave packet is shown by a dotted line. In Fig. 2~b!, the real
trajectory associated with the initial wave packet~82! is plot-
ted as a function of time, indicating roughly the mean posi-
tion of the propagated wave packet.

The wave packets have been computed by means of the
complex trajectory method and quantally, at successive
times, and compared. The square modulus of the wave func-
tion is plotted as a function ofx for different times, see Fig.
3~a!, for times before the bounce and, Fig. 3~b!, for times
afterwards.

Figure 3~a! shows the excellent accuracy of the CTM for
the entire wave packet, as long as it has not touched the
potential wall. The wave packet at timet54, very well ap-
proximated semiclassically, is clearly not Gaussian. The
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GWPPM would have predicted a Gaussian wave packet.
This proves thus that the CTM is not equivalent to the GW-
PPM.

When the wave packet reaches the turning point, its
mean momentum goes toward zero, that is, the classical re-
gime condition is no longer valid. A natural discrepancy is
thus observed between the semiclassical wave packet and the
exact wave packet which displays oscillations due to inter-
ference between the forward and backward parts of the wave
packet, cf. Figs. 3~a! and 3~b!.

Figure 3~b! shows nevertheless two interesting facts:

~1! As the wave packet leaves the neighborhood of the turn-
ing point, the semiclassical predictionrecovers its accu-
racy for the entire wave packet.

~2! No singularity ~caustic! has been encountered during the
integration of the equations of the CTM whereas the
usual real theories entail such a singularity due to the
turning point.

We think that these appealing features, that can be noticed on
the soluble examples too, give the complex trajectory
method its main interest. We can sketch the following expla-
nations.

~1! Despite the fact that the trajectories involved to build
the wave packet after the bounce are ‘‘singular’’ from the
semiclassical point of view, i.e., the momentum approaches
zero around the turning point, the semiclassical prediction
remains accurate. Particularly, the real trajectory runs exactly
through the turning point and reaches the center of the wave
packet. The integration with respect to time of the character-
istic equations ofS0 andS1 along a peculiar trajectory in the
phase space, is an integral on the time line that can be ex-
tended in the complex domain. As such, it can be carried out
along any deformed path, assuming analyticity with respect
to time, avoiding the turning point. This works thus only
once the wave packet has been entirely reflected backwards,
not when it is concentrated near the turning point. This is
coherent then with the error observed here and the recovery
of the accuracy afterward.

~2! Unlike in the WKB treatment, no singularity stops
the integration of the set of characteristic equations in the
CTM, proving that no caustics are crossed. This means that
the poles of the functions of time (]xp)21(x(x0 ,t),t) that
are isolated points, are not on the real axis but in the complex
domain whereas in the WKB treatment, they lie on the real
axis. We can interpret this fact by noticing that we work
within a wider configuration space since it is complex~di-
mension 2!. We can thus expect that this increase of avail-
able space might allow us to avoid the emergence of caus-
tics, at least in the cases studied, and to reduce them in
general. Using the Van-Vleck formula, the crossing with the
caustics leads to the addition of a phase shift and prevents

FIG. 2. On the left~a!, the potentielV(x) ~solid! of Section IV B is plotted with the mean energy of the wave packet, or the energy of its real trajectory
~dashed line!. On the right~b!, the position~solid! and the momentum~dashed! of the real trajectory, are plotted as a function of time.

FIG. 3. The result of the quantum~solid! and semiclassical CTM~circles!
propagations in the potential of Section IV B, at several times, indicated
near the corresponding curve.~a! and ~b! correspond respectively to times
before and after the real trajectory reaches the turning point. Notice the
remarkable accuracy of the CTM even after the wave packet has been re-
flected by the wall of potential.
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one from calculating the Van-Vleck-Pauli-Morette determi-
nant by propagation, forcing one to use a numerical deriva-
tive.

We can conclude that the very complex nature of the work-
ing space in the CTM seems to be responsible for the appeal-
ing property of reducing the singularities of our semiclassical
treatment.

As final remarks, let us add that the comparison was
made at timest54 and t59 between the real parts of the
semiclassical and the exact wave functions on one hand, and
between the imaginary ones, on the other hand. This leads to
a very accurate approximation, similar to the ones observed
on moduli. From Fig. 3, it is clear that the CTM works in the
region not allowed classically, that is, there are complex tra-
jectories reaching this region. Anyway, the analytical exten-
sion theorem would allow one to find the value of the wave
function predicted by the CTM anywhere from the image of
any segment of the complex domain, cf. Section II B. The
bounce of a wave packet has been studied for other polyno-
mial potentials as well as an exp(x)-type potential. In these
cases, as in the previous one, the same regularity and accu-
racy of the CTM is observed, except when the wave packet is
in the neighborhood of the turning point.

C. Crossing a potential barrier

In this section, we will study the wave packet propaga-
tion in a more ‘‘difficult’’ case from the semiclassical point
of view, in the sense that a wave packet splitting is expected
to occur. To do this, we will consider wave packets ‘‘collid-
ing’’ with a potential barrier, see Figure 4, that is potential
curves bent toward negative energies.

The wave packet, in energy representation, is dispatched
around the energyEb maximum of the barrier. Two cases
may be then distinguished:

~t! transmit, the mean value of the energy of the wave
packetEm is above the barrier maximumEb . Classically, a
particle of initial energyEm or the real trajectory associated
with the initial wave packet, goes above the barrier. Quanta-
lly, the wave packet is essentially transmitted, but a reflected
wave packet is expected to appear.

~r! reflect, the mean value of the energy of the wave
packetEm is below the barrier maximumEb . In this case,

the real trajectory encounters a turning point while the quan-
tum wave packet is expected to split.

In both these situations, two phenomena of a quantal nature
arise:

~1! the tunneling effect for energies below the energy barrier
Eb ,

~2! a less well-known effect: the bounce over a potential
barrier9,10 for energies just above the energy barrierEb .

We will study the complex trajectory method in this context
on two examples.

1. Quadratic potential
Our aim is to study the semiclassical propagation on the

potentialV(x)52
1
2mvx2, in the~t! and~r! cases. This is the

‘‘reversed’’ harmonic potential, so that, in fact, an analytical
solution of this problem can be given. The exact solution
given by the CTM can be found in Section III B, formula
~79! replacing trigonometric functions ‘‘sin’’ and ‘‘cos’’ by
their hyperbolic counterparts ‘‘sinh’’ and ‘‘cosh’’, respec-
tively, and by replacing the minus sign preceding the ‘‘sin’’
functions by a plus sign. We can check that we get in this
way the exact solution of the Schro¨dinger equation.

The position of the maximum follows the real trajecto-
ries associated with the initial wave packet, that is, it crosses
the barrier in the~t! case and is reflected backward in the~r!
case. The splitting of the wave packet is not observed but a
fast exponential spreading of the wave packets occurs, as
exp(vt/2), accounting for the transmitted and reflected parts
of the wave packets.

2. Quasi-quartic potential
The following potential is considered:

V~x !5S 2
x4

104
1x D e2~x25!2/1000, ~83!

and is plotted in Fig. 5~a!. It as been constructed so as to
have a linear slope around zero cut by a steep part in order to
observe the splitting of the wave packet. The exponential
factor allows the avoidance of the infinite decrease of the
potential that would prevent one from making a quantum
simulation. The initial wave packet is chosen as

c5exp~ ik~x2xc!2~x2xc!2! ~84!

with xc55. Two simulations were carried out for the~t! and
~r! cases mentioned before.

~1! ~t!: k53.2, Em.k2/21V(xc)510.06.Eb59.52,
~2! ~r!: k52.8, Em.k2/21V(xc)58.86,Eb59.52.

The corresponding real trajectories are plotted in Fig. 5~b!.
The mean energiesEm are chosen quite close to the barrier
energyEb in order that, in the~t! case, the reflected wave is
not negligible relative to the transmitted one, and vice versa
in the ~r! case.

The results are represented in Figures 6~a! and 6~b!, cor-
responding to the~t! and ~r! cases, respectively. The prob-
ability density is plotted as a function of the position at sev-
eral times. As long as the wave packet remains Gaussian, the
semiclassical prediction using the CTM is very accurate, as
in the case treated before. Only one wave packet of this type

FIG. 4. The potential barrier is plotted as a function of the position and the
wave packet, in energy representation, is plotted as a probability density as
a function of the energy. Two cases are distinguished,~t! and~r!, depending
on whether the mean energy of the wave packet is respectively above or
below the top of the barrier. In all the cases considered, we assume that the
initial energy is quantally distributed above and belowEb .
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is represented in Figures 6~a! and 6~b!, corresponding to time
t54. It is remarkable that, at this time@see Fig. 5~b!#, the
classical particle following the real trajectory is either very
near the top of the barrier, case~t!, or in the vicinity of the
turning point, case~r!. The accuracy observed is thus quite
surprising since, from the previous case and particularly in
the ~r! case, we would have expected the failure of the CTM
prediction around that singular point.

The following wave packets plotted show the beginning
of the splitting. The CTM prediction remains very accurate
even at this time. Note that the maxima observed do not
correspond to the position of the classical particle associated
with the wave packet at this time.

As time elapses, the splitting of the wave packets in two
counter-propagative packets becomes more and more clear.
The complex trajectory method achieves a very accurate pre-
diction of the quantum wave packet, in a situation far from
the ones that are usually relevant to semiclassical methods.
At times t520 andt518 for the Figures 6~a! and 6~b!, the
comparison has been made between the real parts of the ex-
act wave packet and the approximated one on one hand, and
the imaginary parts on the other hand, the accuracy observed
of the CTM is good as well. In Figs. 6~a! and 6~b!, the wave
packet calculated by means of the CTM restricted to the
zeroth order~divided by a factor 10! is plotted at two times.
This allows us to realize the importance of the first order
correction relative to the zeroth one. In particular, it is easy
to show that the maximum of the zeroth order probability
density is located at the point reached by the real trajectory at
the corresponding time. The real trajectory is thus always
late relative to the position of the maximum of the transmit-
ted wave packet. We can add that this example confirms very
clearly the nonlinear nature of the CTM~i.e., it is not equiva-
lent to the GWPPM! since a linear method of wave packet
propagation would have predicted simply either the entire
transmission or the entire reflection, in the~t! and ~r! cases,
respectively.

V. CONCLUSION

We shall stress again the main feature of the principle of
the complex trajectory method as a semiclassical formalism,
aimed at wave packet propagation. The amplitude of the
wave packet is not treated as a corrective or first order term
as it is done usually; instead it is included at the very begin-
ning of the semiclassical expansion or at the zeroth order
term. As a consequence, both the wavelength and the width
of the wave packet tend to zero at the semiclassical limit,
unlike in the WKB method.

FIG. 5. On the left~a!, the potentielV(x) ~solid! of Section IV C 2 is plotted in the vicinity of the top of the barrier, together with the mean energy of the
wave packet, or the energy of its real trajectory, in a dashed line. Both~t! and~r! cases are shown, corresponding to the two different initial wave packets, see
the text. On the right~b!, the position~solid! and the momentum~dashed! of the real trajectories, are plotted as a function of time, in the~t! and ~r! cases.

FIG. 6. The result of the quantum~solid! and semiclassical CTM~circles!
propagations in the potential of Section IV C 2, at several times, indicated
near the corresponding curve.~a! and ~b! correspond respectively to the~t!
and~r! cases, see Fig. 5~b!. Notice the remarkable accuracy with which the
CTM predicts the quantum wave packet for all times, in a situation far from
a usual semiclassical regime. Dashed lines represent the results for the ze-
roth order only (/10) of the CTM.
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The examples reviewed, particularly the numerical ones,
highlight the remarkable properties of the complex trajectory
method. Not only is the accuracy of the WKB wave packet
propagation method greatly improved but another unex-
pected and appealing property emerges: the disappearance of
the singularities~caustics! that the real~WKB and Van-
Vleck! semiclassical methods bring in, at least in the case of
the potentials considered here. As stressed along these lines,
the CTM is not a linear~GWPPM! theory of wave propaga-
tion. Thus, the complex trajectory method is a semiclassical
theory that appears to be as accurate as the most accurate
semiclassical theory known~the Van-Vleck formula! while
being nearly as computationally simple as the most simple
known one, the WKB.

Many approaches to semiclassical approximations in-
cluding complex aspects rely on the analytical extension of
the usual~real! semiclassical theory, as insisted before, the
CTM is not of this type. W. H. Miller made classical trajec-
tory calculations in the classically forbidden region of con-
figuration space by means of complex numbers, in order to
compute tunneling effect contribution to collision cross
section.25 More recently, the introduction of trace formulas
has allowed one to relate at the semiclassical limit the energy
spectrum of a Hamiltonian to closed orbits of the phase
space, in the integrable26 as in the chaotic case.13 The inclu-
sion of complex classical trajectories leads to a better con-
vergence of the trace formulae, in the regular case27 and in
the irregular case.28

Consideration of the complex phase space to propagate
Gaussian wave packets at the semiclassical limit has already
been used by Heller and coworkers.29,30 Let us note at first
that their method, denoted as GGWPPM, relies on a totally
different principle to ours. It consists of extending the usual
GWPPM to the complex phase space by noticing that the
initial Gaussian wave function is not changed if its average
position and momentum are transformed to complex values.
A situation where the methods can be compared is the case
of the bounce of a wave packet against a wall, when the
packet is near the turning point. It shows oscillations in its
probability density, due to interference of the two counter-
propagative waves, and exponential decrease in the classi-
cally forbidden region, see Fig. 3 in this paper and Fig. 4 in
Ref. 29. Huber and Heller consider double contributions, or
double paths, to compute the propagated wave packet, hence,
they are able to predict part of the oscillations of the wave
packet. In this application of the CTM, we use the root-
searching procedure explained in Section IV A, excluding de
facto such double contributions. The wave packet around the
turning point is therefore not accurately predicted. Neverthe-
less, it appears that in the GGWPPM, all contributions to the
wave packet diverge in the classically forbidden region31

whereas the CTM predicts its nearly zero value.
Whereas the GGWPPM relies on a complex GWPPM

and a root-searching procedure, in our method, the property
of analyticity of the computed wave packet can be used to
extrapolate on the real line the wave function at the final

time, avoiding the root-searching procedure, cf. Section II B.
Moreover, when computing an overlap with another state or
a matrix element in order to compute observable quantities,
one can deform the original path of integration made up of
the real line, to a complex line which interpolates the points
reached by the trajectories, and extend easily the other ana-
lytical function involved in the integral to the same complex
line. This allows us to make direct use of the computed val-
ues at complex points and even to avoid the extrapolation
procedure itself in the computation of the integral. To end,
let us add that two-dimensional wave packet propagations by
means of the complex trajectory method have already been
carried out. They are currently being studied and will be
compared with numerical quantum calculations. The CTM
can be generalized to any single linear partial differential
equation, particularly time-dependent Hamiltonians can be
considered. Note that the CTM can be used as easily within
a discrete energy spectrum as within a continuum.
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