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Gravitropism, the slow reorientation of plant growth in response
to gravity, is a key determinant of the form and posture of land
plants. Shoot gravitropism is triggered when statocysts sense the
local angle of the growing organ relative to the gravitational
field. Lateral transport of the hormone auxin to the lower side is
then enhanced, resulting in differential gene expression and cell
elongation causing the organ to bend. However, little is known
about the dynamics, regulation, and diversity of the entire
bending and straightening process. Here, we modeled the bending
and straightening of a rod-like organ and compared it with the
gravitropism kinematics of different organs from 11 angiosperms.
We show that gravitropic straightening shares common traits
across species, organs, and orders of magnitude. The minimal
dynamic model accounting for these traits is not the widely cited
gravisensing law but one that also takes into account the sensing
of local curvature, what we describe here as a graviproprioceptive
law. In our model, the entire dynamics of the bending/straight-
ening response is described by a single dimensionless “bending
number” B that reflects the ratio between graviceptive and pro-
prioceptive sensitivities. The parameter B defines both the final
shape of the organ at equilibrium and the timing of curving and
straightening. B can be estimated from simple experiments, and
the model can then explain most of the diversity observed in
experiments. Proprioceptive sensing is thus as important as grav-
isensing in gravitropic control, and the B ratio can be measured as
phenotype in genetic studies.

perception | signaling | movement | morphogenesis

Plant gravitropism is the growth movement of organs in re-
sponse to gravity that ensures that most shoots grow up and

most roots grow down (1–6). As for all tropisms, a directional
stimulus is sensed (gravity in this case), and the curvature of the
organ changes over time until a set-angle and a steady-state shape
are reached (2, 7, 8). The change in shape is achieved by differ-
ential elongation for organs undergoing primary growth (e.g.,
coleoptiles) or by differential differentiation and shrinkage of re-
action wood for organs undergoing secondary growth (e.g., tree
trunks) (9). Tropisms are complex responses, as unlike other plant
movements (e.g., fast movements) (5, 10) the motor activity gen-
erated is under continuous biological control (e.g., refs. 3, 11, 12).
The biomechanics of plant elongation growth has been ana-

lyzed in some detail (5, 13, 14), but less is known about the bi-
ological control of tropic movements and differential growth (3,
6). Many molecular and genetic processes that occur inside
sensing and motor cells have been described (2, 15). For exam-
ple, statocysts are cells that sense gravity through the complex
motion of small intercellular bodies called statoliths (16). How-
ever, a huge number of sensing and motor cells act together to
produce the growth movements of a multicellular organ. How
are the movements of an organ controlled and coordinated bi-
ologically? This is a key question, as establishing the correct
posture of aerial organs with respect to the rest of the plant has

important physiological and ecological consequences (e.g., ac-
cess to light or long-term mechanical stability) (4).
The gravitropic responses of some plants and even fungi have

similar features (8). In essence, this has been described as a bi-
phasic pattern of general curving followed by basipetal straight-
ening (GC/BS) (4, 17). First, the organ curves up gravitropically,
then a phase of decurving starts at the tip and propagates down-
ward, so that the curvature finally becomes concentrated at the
base of the growth zone and steady (7–9, 18–20). This decurving,
which has also been described as autotropic (i.e., the tendency of
plants to recover straightness in the absence of any external
stimulus) (7, 21), may start before the tip reaches the vertical (4).
It is striking that organs differing in size by up to four orders of
magnitude (e.g., from an hypocotyl to the trunk of an adult tree)
display similar traits, despite great differences in the timing of the
tropic movement and the motor processes involved (3). However,
there are also differences in the gravitropic responses. Depending
on the species and the growth conditions, plants may or may not
oscillate transiently about the stimulus axis or reach a proper
alignment with the direction of the stimulus (e.g., ref. 8).
Currently, the phenotypic variability of the GC/BS biphasic

pattern over a broad sample of species is, however, hard to es-
timate quantitatively, as most studies of gravitropism have only
focused on measuring the tip angle (3). As we shall demonstrate,
it is necessary to specify the local curvature C (or equivalently,
the inclination angle A) over the entire growth zone (Fig. 1) and
how it changes over time. If this is done, it is possible to build up
a minimal dynamic model for tropic movements in space. This
can be combined with dimensional analysis (as is used in fluid
mechanics, for example) to characterize the size and time de-
pendencies and set up dimensionless control parameters. This
then makes it possible to compare experiments with predictions
from the model quantitatively over a broad taxonomical sample
of species with very different sizes and growth velocities and to
reveal universal behaviors and controlling mechanisms.
The gravitropic responses of 12 genotypes from 11 plant

species were studied, representing a broad taxonomical range of
land angiosperms (SI Appendix, Fig. S4), major growth habits
(herbs, shrubs, and trees), as well as different uses (agriculture,
horticulture, and forestry but also major laboratory model plants
for genetics and physiology). Different types of organs were
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studied: coleoptile, hypocotyl, epicotyl, herbaceous and woody
vegetative stems, and inflorescence stems, representing the two
types of tropic motors (differential elongation growth, reaction
woods) and varying by two orders of magnitude in organ size and
in the timing of the tropic movements. Organs were tilted hori-
zontally and the gravitropic growth was recorded through time-
lapse photography.
All of the plant organs studied first curved upwards before

eventually reaching a near vertical steady-state form where the
apical part was straight, as shown for two examples in Fig. 1 and
in Movies S1 and S2. The images were used to generate color
maps of the curvature of the organ in space (along the organ)
and time, as shown for three examples in Fig. 2. Shortly after
plants were placed horizontally, the dominant movement ob-
served was a rapid up-curving (negatively gravitropic) along the
entire organ. However, the apex soon started to straighten and
the straightening gradually moved downward along the organ.
Finally, the curvature tended to concentrate at the base of the
growth zone, becoming fixed there. Such a typical GC/BS be-
havior was observed in all 12 cases studied, despite differences of

around two orders of magnitude in organ sizes and convergence
time, the time Tc taken for the organ to return to a steady state,
ranging from several hours to several months.
Despite the common properties of the response, time lapse

photography showed that plant organs acted differently when
approaching the vertical. The apices of some plant organs never
overshot the vertical (Fig. 1A), whereas others did so several times,
exhibiting transient oscillations with the formation of C- or even S-
shapes (Fig. 1B). Thus, a minimal dynamic model of gravitropism
has to explain both the common biphasic GC/BS pattern and the
diversity in transient oscillation and convergence time.
According to the literature, the current qualitative model

of gravitropism in aerial shoots is based on the following
hypotheses:

H1: Gravisensing is exclusively local; each element along the
length of the organ is able to respond to its current state
(22), since statocysts are found all along the growth zone
(16). Gravisensing by the apex does not have a special in-
fluence (e.g., the final shapes of organs after decapitation
are similar to intact controls) (1, 23).

H2: The local inclination angle A (Fig. 1) is sensed. This sensing
follows a sine law (3, 6) (see below).

H3: In our reference frame, the so-called gravitropic set angle
(GSA) (24) is equal to 0 (Fig. 1) so the motion tends to
bring the organ upward toward the vertical (this corre-
sponds to the botanical term “negative ortho-gravitropism,”
a most common feature in shoots).

H4: The action of the tropic motor is fully driven by the percep-
tion–regulation process and results in a change in the local
curvature through differential growth and/or tissue differ-
entiation. This response can only be expressed where dif-
ferential growth and differentiation occurs, namely in the
“growth zone” of length Lgz (3).

To form a mathematical model, we shall describe the shape of
the organ in terms of its median—that is, its central axis (Fig. 1).
We parameterize the median by the arc length s going from the
base s= 0 to the apex s=L, and the angle Aðs; tÞ describes the
local orientation of the median with respect to the vertical at time t.
The corresponding local curvature Cðs; tÞ is the spatial rate of
change of A along s and from differential geometry we know that:

Cðs; tÞ= ∂Aðs; tÞ=∂s  or  Aðs; tÞ= A0 +
Zs

0

Cðl; tÞdl: [1]

The so-called “sine law” was first defined by Sachs in the 19th
century and has been widely used since (see ref. 3 for a review).
It can be expressed as a relationship between the change in the
local curvature and the local angle as in:

∂Cðs; tÞ=∂t = −β  sin Aðs; tÞ; [2]

where β is the apparent gravisensitivity. Note that Eq. 2 is un-
changed when A changes to −A and C changes to −C, as would
be expected. This model is only valid in the growth zone,
s> ðL−LgzÞ, where L is the total organ length and Lgz is the
length of the effective zone where active curving can be achieved.
Outside this region, the curvature does not change with time.
In this model, changes in the overall length of the organ are

not taken into account. This is quite reasonable in the case of
woody organs, as they undergo curving through relatively small
maturation strains in reaction woods, but it is less applicable to
organs curving through differential elongation (3, 14). In ex-
panding organs, each segment of the organ in the growth zone
“flows” along the organ being pushed by the expansion growth
of distal elements (3, 14) so Eq. 2 would remain valid only in
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Fig. 1. Successive shapes formed by plant organs undergoing gravitropism
and a geometrical description of these shapes. (A) Time-lapse photographs
of the gravitropic response of a wheat coleoptile placed horizontally (Movie
S1). (B) Time-lapse photographs of the gravitropic response of an Arabi-
dopsis inflorescence placed horizontally (Movie S2). White bars, 1 cm. (C)
Geometric description of organ shape. The median line of an organ of total
length L is in a plane defined by coordinates x, y. The arc length s is defined
along the median line, with s = 0 referring to the base and s = L referring to
the apex. In an elongating organ, only the part inside the growth zone of
length Lgz from the apex is able to curve (with Lgz = L at early stages and
Lgz < L later on), whereas the whole length is able to curve in organs un-
dergoing secondary growth (i.e., Lgz = L). AðsÞ is the local orientation of the
organ with respect to the vertical and CðsÞ the local curvature. The two
curves shown have the same apical angle AðLÞ but different shapes, so to
specify the shape we need the form of AðsÞ or CðsÞ along the entire median.
Due to the symmetry of the system around the vertical axis, the angle A is
a zenith angle—that is, it is zero when the organ is vertical and upright.
Thus, an orthotropic organ has a gravitropic set point angle of 0. For sim-
plicity, clockwise angles are considered as positive.
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a “comoving” context. To fully specify the changes in curvature,
we would thus have to introduce local growth velocities into the
model, replacing the derivative in Eq. 2 with the comoving de-
rivative DCðs; tÞ=Dt= ∂Cðs; tÞ=∂t+ vðs; tÞ∂Cðs; tÞ=∂s, where vðs; tÞ
is the local growth velocity. However, in tropic movement, the
growth velocities are generally small compared with tropic
bending velocities (and the length of the organ that has left the
growth zone during the straightening movement is also small)
(14), so DCðs; tÞ=Dt≈∂Cðs; tÞ=∂t. The limits of this approxima-
tion will be discussed.
To obtain a more tractable model, which we shall solve ana-

lytically, we can use the approximation sin  A ≈ A+OðA3Þ and
approximate Eq. 2 by:

∂Cðs; tÞ=∂t = −βAðs; tÞ; [3]

where we note that the A→ −A symmetry is retained. Because
in our experiments jAj did not exceed π=2 and because we are
primarily interested in values near zero, this is a reasonable
approximation (3). It should be noted that Aðs; tÞ and Cðs; tÞ are
not independent, as any further variation in curvature modifies
the apical orientation through the “lever-arm effect” expressed
in Eq. 1. In other words, the effect of changes in curvature on
downstream orientation angles is amplified by the distance along
the organ (3).
The solution of Eq. 3, which we shall call the “A model,” is:

A = A0J0
�
2

ffiffiffiffiffiffi
βts

p �
;      C = A0

ffiffiffiffi
βt
s

r
J1
�
2

ffiffiffiffiffiffi
βts

p �
; [4]

where Jn are Bessel functions of the first kind of order n. It has
interesting properties. Firstly, the angle A does not depend on
space s and time t individually, but only on the combination offfiffiffiffi
ts

p
and

ffiffiffiffiffiffi
t=s

p
and is thus an oscillatory function of

ffiffiffiffi
ts

p
. However,

the dynamics of the A model demonstrates that such a system
cannot reach a vertical steady state when tilted and clamped at
its base (Fig. 3A and Movie S3). Indeed, the only steady state in
Eq. 3 is Aðs; tÞ= 0, but this is forbidden by the basal clamping of
the organ fixing Aðs= 0; tÞ= π=2 for all t. Oscillations therefore
go on indefinitely, whereas their wavelengths decrease with time.
Numerical simulations of Eqs. 3 or 2 displayed the same behav-
ior (SI Appendix Fig. S2). This does not agree with any of the
experimental results. The A model based on the sine law is
therefore not a suitable dynamic model of the gravitropic
straightening movement and has to be rejected. To account for
the steady state attained after tilting, another hypothesis needs to
be introduced:

H5: Each constituent element of the organ perceives its local
deformation, the curvature, and responds in order to restore
local straightness (7, 19). In animal physiology, this type of
sensing is generally called “proprioception,” a self-sensing
of posture or orientiation of body parts relative to the rest of
the organism (25). This is not an unreasonable assumption
as it is known experimentally that (i) plants can sense im-
posed bending (26, 27) and (ii) the curvature of the organ
and subsequent mechanical loads have a direct effect on
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Fig. 2. Kinematics of the entire tropic movement of tilted plant organs shown as color maps plotting the curvature Cðs; tÞwith respect to time t and curvilinear
abscissa s (the arc length along the median measured from the base to apex of the organ; Fig. 1). (A) Wheat coleoptile (Triticum aestivum cv. Recital). The
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cv I4551), reprocessed data from ref. 9.
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tion where the curvature is focused near the base (Movies S4 and S5).
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the orientation of microtubules that may then modify the
rate of differential growth (28, 29).

This hypothesis yields a model called the “graviproprioceptive”
model, or the “AC model”:

∂Cðs; tÞ=∂t = −βAðs; tÞ− γCðs; tÞ; [5]

in the growth zone (i.e., for s>L−Lgz), and 0 elsewhere. Here
the change in curvature is directly related to the local curvature
itself via the parameter γ, the proprioceptive sensitivity. A more
systematic derivation of the A and AC models from symmetry
arguments and rod kinematics is given in SI Appendix. The solu-
tion of the AC model has the form:

Aðs; tÞ = A0e−γt
P∞
n=0

�
βs
γ2t

�−n=2
Jn
�
2

ffiffiffiffiffiffi
βts

p �

=A0e−βs=γ −A0
P∞
n=1

ð−1Þn
�
βs
γ2t

�n=2
Jnð2

ffiffiffiffiffiffi
βts

p Þ;
[6]

where it is seen that the dependence on
ffiffiffiffi
ts

p
and

ffiffiffiffiffiffi
t=s

p
is retained,

but there is now an infinite sequence of Bessel functions. The
first of the two expressions is appropriate for short times. The
latter is appropriate for long times and shows that the oscil-
lations are now dampened toward a final steady state, whose
form is:

Af ðsÞ = A0e−βs=γ = A0e−s=Lc : [7]

The dynamics of the AC model (Fig. 3B and Movies S4 and
S5) is now qualitatively consistent with the experiments: the
oscillations are dampened, and the organ converges to a steady
state where the curvature is focused near the base through a
typical GC/BS biphasic pattern.
The convergence length Lc = γ=β is given by the decay length of

the exponential toward the vertical, and it results from the bal-
ance between graviception and proprioception. The AC model
thus gives a direct explanation of the common BS (autotropic)
phase, where curvature starts to decrease before reaching the
vertical (7, 20). For purely geometrical reasons (lever-arm effect,
Eq. 1), the apical angles decrease faster than the basal angles.
Thus, curvature sensing first takes over gravisensing at the tip and
decurving starts there. It then moves downward together with the
decrease of A without any need for a systemic basipetal propa-
gative signal. Another important scale is Lgz, the effective length
of the growth zone where active curving can be achieved. The
ratio Bl =Lgz=Lc = βLgz=γ is a dimensionless number that controls
important aspects of the dynamics.
To assess whether the organ has time to converge to a steady

state before the apex crosses the vertical, thereby avoiding
overshooting, the time of convergence Tc can be compared with
the time required for the apex to first reach the vertical, Tv.
Using Eq. 5, Tc can be approximated from the proprioceptive
term that dominates when approaching convergence as Tc = 1=γ
and Tv can be approximated as Tv = 1=ðβLgzÞ from the grav-
iceptive term dominating initial dynamics. This gives a “tempo-
ral” dimensionless number Bt =Tc=Tv = βLgz=γ, which is actually
identical to Bl. The fact that Bt =Bl gives a direct link between
convergence timing, transient modes, and steady-state form (i.e.,
a kind of form-movement equivalence). We call this number the
“bending number” denoted by B.
To compare theory and experiments, B, Lgz, and Lc were

measured morphometrically from initial and steady-state images
as shown for Arabidopsis inflorescence in Fig. 4. Because Lgz is
the length of the organ that has curved during the experiment, it
can be directly estimated by comparing the two images. By def-
inition, Lc can be measured directly on the image of the final
shape as the characteristic length of the curved part (Fig. 4). The
bending number B ranged from around 0.9–9.3 displaying broad

intraspecific and interspecific variability over the experiments.
Therefore, the AC model can be assessed from them.
The kinematic data from wheat, Arabidopsis, and poplar was

analyzed in more detail to track the tropic movement after tilting
(Fig. 1). The analytical solution Aacðs; tÞ for the AC model (Eq.
6) was compared with the experimental angle space-time maps,
given the bending number value. Angles were chosen instead of
curvature here, as otherwise the determination of curvature
would involve a derivative, producing more noise. The initial
value of B for parameter estimation was estimated morpho-
metrically. As the AC model does not account for elongation
growth, we trimmed the data for wheat and Arabidopsis to the
length of the growth zone at the beginning of the experiment, as
shown in Fig. 5. Typical results from Arabidopsis infloresences
are shown in Fig. 5, and additional results from Arabidopsis,
wheat, and poplar are provided in SI Appendix, Figs. S6, S7, and
S8, respectively. The AC model was found to capture the com-
mon features of the angle space-time maps over the entire GC/
BS process (compare Fig. 5 A and B). The (dimensionless) mean
slope of comparison of the model vs. data (for the three species
together) was 1.00 ± 0.15, the intercept was 0.07 ± 0.20, and the
coefficient of determination was 0.92 ± 0.05, so the AC model
captured around 90% of the total experimental variance in
Aðs; tÞ and displayed no mean quantitative bias.
The form–movement equivalence predicted by the AC model

was then directly assessed through a simple morphometric anal-
ysis of the tilting experiments on the 12 angiosperm genotypes.
More precisely, we assessed whether the AC model predicted the
discrete transitions between transient oscillatory modes around
the vertical (e.g., Fig. 1 and SI Appendix, Fig. S5) with increasing
values of the bending number B. At a given time t, the current
mode is defined as the number of places below the apex where
the tangent to the central line of the organ is vertical (SI Ap-
pendix, Fig. S5). If there is one vertical tangent more basal than
the apex, then the organ overshoots the vertical once. This is
mode 1, when a C shape is formed. If an S shape develops, then
the transient mode will be mode 2, and a Σ shape is mode 3, and
so on. The mode number M of the whole movement is then given
by the maximal mode of all of the transitory shapes (e.g., in SI
Appendix, Fig. S5, the mode of the movement of the inflorescence
isM = 1 as a transient C shape is seen but not an S shape). In Fig.
6, the modes of 12 plant organ responses were plotted against the
respective estimated bending numbers and compared with the
predictions of the AC model.
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Fig. 4. Morphometric measurement of the bending number B from steady-
state configurations of Arabidopsis inflorescences. (A) Estimation of the ef-
fective length Lgz by superimposing the first and last kinematics images. The
red dotted lines indicate the zone where the organ started to curve. The
effective length of the organ can then be defined as the distance from this
point to the apex of the initial plant on the first image. (B) Estimation of the
convergence length Lc by plotting the local inclination angle Aðs; tÞ along
the organ beginning from the curved zone. To extract the convergence
length Lc , the angle Aðs; tÞ is fitted with the exponential Aðs; tÞ=A0e−s=Lc , n =
28, R2 = 0.99.
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The prediction displays stepwise increases in modes at bending
numbers corresponding to 2.8 for the transition from mode 0 to
mode 1 and 3.9 for the transition from mode 1 to mode 2. No
plant in the experiments displayed mode transitions for smaller
bending numbers than was predicted by the AC model. Many
individual plant responses were found near the transition from
mode 0 to mode 1—that is, between the mode in which they
cannot reach the vertical and the mode where they overshoot the
vertical and oscillate. The transition from mode 2 to mode 3 only
occurs for very large bending numbers (B> 10) and was never
seen in any of the experiments. In two-thirds of the plants, the
prediction of the oscillations by the AC model was correct.
However, about one-third of the plants oscillated less than pre-
dicted. To some extent, this may be due to inaccuracies in the
estimation of bending numbers, but second-order mechanisms
(possibly related to elongation growth) are likely to be involved,
ones that add to the common graviproprioceptive core described
by the AC model.
Nevertheless, the fact that the AC model accounts for the

common GC/BS pattern with no quantitative bias and captures
the transitions between three different modes over one order of
magnitude of bending numbers and a broad taxonomical range is
an indication of its robustness. All this strongly suggests that
hypothesis 5 and its mathematical description by the AC model
captures the universal core of the control over gravitropic dy-
namics. The longstanding sine law for gravitropism (3) should
thus be replaced by the graviproprioceptive dynamic AC model,
which highlights the equal importance of curvature- and grav-
isensing. Doing so has already yielded three major insights.

i) The AC model can achieve distinct steady-state tip angles for
the same vertical GSA. In particular, plants with B< 2:8 can-
not reach their GSA (as specified in the gravitropic term of

the AC model) even in the absence of biomechanical and
physiological limits in their motor bending capacity (3, 10,
12). Therefore, the GSA cannot be measured directly from
experiments and can only be assessed by AC model–assisted
phenotyping.

ii) The fact that most plants display very few oscillations before
converging to the steady state despite destabilization through
lever-arm effects does not actually require the propagation of
long-distance biological signals and complex regulation. The
value of the dimensionless bending number simply has to be
selected in the proper range—that is, graviceptive and pro-
prioceptive sensitivities have to be tuned together as a func-
tion of organ size possibly pointing to molecular mechanisms
yet to be discovered.

iii) The AC model can account for the behavior of actively elon-
gating organs despite neglecting the effects of mean elon-
gation growth. Subapical elongation growth may have desta-
bilizing effects by spreading curvature, convecting, and fixing
it outside the growth zone in mature tissues (14). Our result
means that the values for the time of convergence to the
steady-state Tc were small enough compared with the charac-
teristic times for elongation growth in all of the species studied.
As Tc depends mostly on the proprioceptive sensitivity,
possibly there is natural selection for this trait as a function
of the relative elongation rate (and organ slenderness) and
for fine physiological tuning.

Proprioceptive sensing is thus as important as gravisensing for
gravitropism. The study of molecular sensing mechanisms (2, 15)
can thus now be extended to the cross-talk between gravi- and
propriosensing as a function of organ size. Candidate mechanisms
for the proprioception of the curvature may involve mechanical
strain- or stress-sensing (27, 30) triggering microtubules reor-
ientation (28, 29). Ethylene seems to be involved (17) but not the
lateral transport of auxin (21). Whatever the detailed mechanisms
involved, putative models of molecular networks controlling
graviproprioceptive sensing (31) should be consistent with the AC
model and with the existence of a dimensionless control param-
eter, the bending number. Moreover, the bending number B is a
real quantitative genetic trait (32, 33). It controls the whole dy-
namics of tropic movement and encapsulates both the geometry
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Fig. 6. Mode number M plotted against bending number B= Lgz=Lc for in-
dividual plants (N = 67). The green line shows the same plot for theACmodel.
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and the perception–regulation functions involved (34). The sim-
ple measurement of B is now possible and this may be used for
the high-throughput phenotyping of mutants or variants in many
species. From a more general perspective, it would now be in-
teresting to explore how plants manage to control gravitropism
despite the destabilizing effects of elongation growth. Areas to
investigate are whether there is physiological tuning of B during
growth and whether there is natural selection for proprioceptive
sensitivity as a function of the relative elongation rate and organ
slenderness. For this, it will be necessary to combine noninvasive
kinematics methods to monitor elongation growth at the same
time as curvature (e.g., refs. 32, 33) with a more general model
that explicitly includes the expansion and convection of cells
during growth (3, 14). Finally, this approach can also be used to
study the gravitropism of other plant organs and other growth
movements like phototropism or nutation, which will show
whether this theory of active movement is universal.

Materials and Methods
Experiments were conducted in growth cabinets for etiolated wheat coleoptiles
(Triticum aestivum cv. Recital) or controlled temperature greenhouses for the
nine other types of plant organs—bean hypocotyl (Phaseolus vulgaris), sun-
flower hypocotyl (Helianthus annuus), pea epicotyl (Pisum sativum), tomato
stem (Solanum lycopersicum), chili stem (Capsicum annuum), raspberry cane
(Rubus ideaus), carnation inflorescence (Dianthus caryophyllus), and Arabidopsis
thaliana inflorescences from a wild-type (ecotype Col0) and its pin1 mutant
[a mutant of the PIN1 auxin efflux carier displaying reduced auxin longitudinal

transport (11) (see SI Appendix, sections S2.1 and S2.4 for more details)]. Plants
were grown until a given developmental stage of the organ of interest (e.g.,
until the beginning of inflorescence flowering for Arabidopsis in Fig. 4). They
were then tilted and clamped horizontally A(s = 0, t) = ϕ/2 for all t under
constant environmental conditions in the dark (to avoid interactions with
phototropism). Number of replicates were 30 for wheat, 15 for Arabidopsis, and
5 for all the other species. Published data were also reprocessed from similar
experiments on Impatiens glandilufera stems by Pfeffer (35) and on poplar
trunks (Populus deltoides x nigra cv I4551) by Coutand et al. (9). More precisely,
two types of experiments were conducted, as explained in SI Appendix, section
S2.2 and S2.5: (i) detailed kinematics experiments on two model species
(Arabidopsis and wheat), based on time-lapse photography and quanti-
tative analysis of curving-decurving kinematics (SI Appendix, sections S2.2
to S2.4) and (ii) simplified morphometric experiments on all the genotypes, to
estimate the bending number (through Bl = Lgz/Lc) and the (transient) global
mode M, defined as the maximum number of places below the apex where
the tangent to the central line of the organ is vertical (SI Appendix, Fig. S5
and section S2.5). Quantitative assessment of the AC model was conducted
by fitting Eq. 6 to the datasets from the detailed kinematics experiments
(including also poplar; see SI Appendix, section S2.6), whereas a qualitative
assessment on mode transitions and space-time equivalence was conducted
on the dataset from the morphometric experiment (including also Impatiens;
see SI Appendix, section S2.5).
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Movie S1. Gravitropic movement of a wheat coleoptile, after an initial tilting at 90° from the vertical. Note that this wheat coleoptile never overshot the
vertical during the straightening process. Other coleoptiles in the experiment did not even reach the vertical even at their tip (not shown in the movie).

Movie S1
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Movie S2. Gravitropic movement of an inflorescence of A. thaliana after an initial tilting at 90° from the vertical. The inflorescence of A. thaliana exhibited
a transient C shape during the straightening process and overshot the vertical.

Movie S2

Movie S3. Solution of the A model. The color (from blue to red) codes for the absolute value of the curvature C(s,t). The simulated organ never reaches
a steady state and oscillation increases along the organ.

Movie S3
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Movie S4. Solution of the AC model, B = 1. The color (from blue to red) codes for the absolute value of the curvature C(s,t). The simulated organ reaches
a steady state but does not reach the vertical.

Movie S4

Movie S5. Solution of the AC Model, B = 10. The color (from blue to red) codes for the absolute value of the curvature C(s,t). The simulated organ reaches
a steady state after exhibiting a transient S-shaped mode during the process.

Movie S5

Other Supporting Information Files

SI Appendix (PDF)
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1- Construction of the mathematical model
1.1 General equation. The plant organs considered in this study are
slender structures. During tropic movements cells do not undergo
shear growth and torsion can be neglected (3). Therefore theorgan
can be considered mechanically as an (actively) flexing rod (3). Its
successive shapes can thus be fully described by the local orientation
A(s, t) and the local curvatureC(s, t) fields. Note that curvature
C is an objective quantity defining the local shape of the organirre-
spective of its local inclinationA. The mechanism that produces the
movement, like differential growth, modifies the local curvature of
the organ. The equation that drives the system should thus determine
the temporal variation in the local curvature

∂C(s, t)

∂t
= φ, [1]

whereφ is a function of the geometry, the biomechanics of bending
and the perception-regulation process,s is the curvilinear abscissa
from the base to the apex andt is the time elapsed since the plant was
tilted horizontally. It is postulated that the perception-regulation pro-
cess driving the dynamics of the movement is of the first order, i.e.
that the biomechanical motors are not limiting the movementas is of-
ten the case (3). In addition, the perception involved in gravitropism
is local (see the argument for Hypothesis H1 in the main text). The
perception of a segment at positions should be a function of the lo-
cal angle and curvatureA(s, t) andC(s, t), and this local perception
then results in a local response. Equation [1] can thus be rewritten

∂C(s, t)

∂t
= φ(A,C). [2]

Assuming that both the tilting angleA(s, t) and the curvature
C(s, t) are small, the functionφ can be expanded as polynomials of
A(s, t) andC(s, t) near the vertical (straight) configurations of the
organ.

∂C(s, t)

∂t
= α+ β1A+ β2A

2 + ...+ γ1C + γ2C
2 + ...+

+δ1AC + δ2A
2C + δ3AC2 + ... [3]

When the organ is nearly straight and vertical, there is no gravitropic
response. SoA = 0, C = 0 is a stable solution of the equation.
Furthermore, as the behavior of the organ is independent of rotation
around the vertical axis, the transformationA → −A, C → −C
should leave the system unchanged. This implies that all even-order
terms in [3] disappear, yielding

∂C(s, t)

∂t
= β1A+ β3A

3 + ...+ γ1C + γ3C
3 + ...

+δ2A
2C + δ3AC2 + ... [4]

This is the most general equation describing gravitropism of an elon-
gated aerial organ.

For simplicity, we will first assume that theβ andγ coefficients
do not depend on positions or time t, i.e. that the sensitivities to
angle and curvature are both time-independent and homogeneous.
These assumptions have experimental support. Time-independence
of the straightening response is envisageable in that tropic responses
are fast in terms of the entire developmental timecourse of the organ
(S1). Spatial homogeneity of the sensing capacity throughout the
growth zone is supported by observations of the even distribution of
statocytes or the response to high magnetic fields (22).

1.2 Test of two response functions: sine law (the A model ) and ex-
ponential law. We may now compare two phenomenologicalφ func-
tions that have been proposed in the literature, the sine lawand the
exponential law, to the general equation [4].

The sine law was defined by Sachs in the 19th century (see (3)
for a review). Here then equation [2] can be rewritten as

∂C(s, t)

∂t
= α sinA(s, t) [5]

whereα is a parameter. Expandingsin(A) as a power series (valid
for anyA) yields

sinA = A−
A3

3!
+

A5

5!
+O(A7) [6]

Since there are no even-order terms, the equation satisfies the sym-
metry condition mentioned above and the sine law is thus a special
instance of equation [4]. In this work, we have used the approxima-
tion sinA ≈ A, for equation [5] giving

∂C(s, t)/∂t = −βA(s, t) [7]

Equation [7] is a mathematical specification of the hypothesis
that the rate of local change in local curvatureC is controlled only by
a graviceptive term depending on the local inclination angleA. We
have thus called this model the graviceptive model, or theA model
(see also equation [3] in the main text).

We may now consider the exponential law postulated in the com-
plete model of the tropic reaction in (20). This law is described by
the following function

∂C(s, t)

∂t
= α e

A−π/2
A1 = α e

A
A1 e

− π
2A1 [8]

The effect of this function becomes very small whenA is less
thanπ/2 − A1 and thus only affects the start of the reaction. The
power series ofeA/A1 is given by

eA/A1 = 1 +
A

A1

+
1

2

(

A

A1

)

2

+
1

3!

(

A

A1

)

3

+
1

4!

(

A

A1

)

4

+ ... [9]

Here even terms appear so this function violates the symmetries of
the system and is therefore not a suitable model. This illustrates the
importance of considering the symmetry of the problem when mod-
eling especially when the exponential function is used.
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1.3 First-order equation. NearA(s, t) = 0 andC(s, t) = 0, equa-
tion [4] can be linearized. This first order expression is in fact a
second order approximation since we have seen previously that all
the even terms disappear and the first cross-product termsA2C and
C2A are third-order. The generalized equation of gravitropismat the
second order is thus given by

∂C(s, t)

∂t
= −βA− γC [10]

For an initially straight organ clamped at the base and tilted with an
initial angleA0 from the vertical, the boundary conditions are then
given by

A(0, t) = A(s, 0) = A0 [11]

C(s, 0) = 0 [12]

Equation [10] is a mathematical specification of the hypothesis that
the rate of change in local curvatureC is controlled by a gravicep-
tive term depending on local inclination angleA and a proprioceptive
term depending on the sensing of local curvature by each organ seg-
mentC (while respecting the symmetry of the problem, and using
a second order approximation). This new model has been therefore
called the graviproprioceptive model, or theAC model (see also equa-
tion [5] in the main text).

1.4 Steady state and the dimensionless number Bl. The steady
state of the equation [10] is given by

∂C(s, t)

∂t
= 0 [13]

−βA(s, t)− γC(s, t) = 0 [14]

C(s, t) = ∂sA(s, t) [15]

As A(s, t) = 0 is forbidden by the boundary condition if
A0 6= 0, there is only one steady solution

−βA(s, t)− γ
∂A(s, t)

∂t
= 0 [16]

A(s, t) = A0e
−

βs
γ [17]

0 2 4 6 8 10

0

2

4

6

8

10

x

y

Fig. 1. Final shape of the AC model for different values of Bl with Lgz = 10.
From the lower line (green) to the upper one (yellow) the values of Bl are re-
spectively 0.5, 1, 2, 4 and 8.

Equation [17] thus defines the steady-state shape of the organ. Along
the organ at steady state, the angleA(s) decreases fromA0 to A0/e
(∼ 0.37A0) over a lengthLc given by

LC =
γ

β
[18]

Lc is called the convergence length. It is then possible to designate a
dimensionless numberBl by expressingLc relatively to a character-
istic effective length for bendingLgz (the length of the growth zone
where active curving can be achieved):

Bl =
βLgz

γ
[19]

Each value ofBl corresponds to one and only one specific shape
(Figure 1). WhenBl is a small number the apex of the organ cannot
reach the vertical despite the fact that the graviceptive setpoint angle
is A = 0, because the convergence length is too large compared to
the length of the organ.

1.5 Timing of the movement and dimensionless number Bt. It is
insightful to compare the time for the apex to reach the vertical to
the time for the organ to converge to its final shape. Indeed when the
organ reaches the vertical some time before convergence occurs, the
organ may exhibit transient spatial oscillations.

A straightforward (under)estimation of the time for the apex to
reach the vertical can be obtained by ignoring the proprioceptive pro-
cess and further assuming that the angleA stays at its maximal value
of A0.

∂C(s, t)

∂t
≈ −βA0 [20]

with the solution

A(s, t) = A0 −

∫ s

Lgz

dsβA0t [21]

i.e.,

A(0, t) = A0 −

∫

0

Lgz

dsβA0t = A0(1− βLgzt) [22]

Thus the timeTv to bring the apex to the vertical orientation (A = 0)
is

Tv =
1

βLgz
[23]

Likewise, when the graviproprioceptive term dominates, the conver-
gence timeTc to the final shape is given by the characteristic time
required by the organ to reach the steady state

Tc =
1

γ
[24]

It is now possible to define a dimensionless number for the movement
as the ratio of the convergence timeTc and the vertical timeTv

Bt =
βLgz

γ
[25]

By comparing equation [19] and equation [25] we see

Bl = Bt = B [26]

This "bending number" will quantify the number of transientover-
shoots that occur when the organ approaches the steady stateas dis-
cussed in the main text.

2



s

t

 

 

0 5 10

0

1

2

3

4

5

0

0.5

1

1.5

s
t

 

 

0 5 10

0

1

2

3

4

5

0

0.5

1

1.5

−1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

A
a

A
s

Fig. 2. Quantitative comparison between the analytical solution Aa(s, t) (left panel) for the angle and the numerical solution As(s, t) (middle panel) for the A model
with β = 1 and Lgz = 10. Quantitative validation plot Aa(s, t) vs As(s, t) (right panel) with orthogonal linear fit (slope 1.0, intercept 0.0, R2 = 1.0).
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with B = 10 and Lgz = 10. The quantitative validation plot Aa(s, t) vs As(s, t) (right panel) with orthogonal linear fit (slope 1.0, intercept 0.0, R2 = 1.0)

1.6 Analytical Solution and Numerical Simulations. The A model
corresponds to the case, where the proprioceptive term is removed,
and only the angle perception is kept:

∂C(s, t)

∂t
= −βA [27]

With the initial conditionA(s, t = 0) = A0 this has the solution

A(s, t) = A0

√

βt

s
J0

(

2
√

βts
)

[28]

as can be seen by directly inserting it into the equation and perform-
ing the differentiations (S2) using

C(s, t) =
∂A(s, t)

∂s
[29]

This analytical solution A(s, t) of theA model [28] was compared
to the angle space maps obtained through numerical simulations of
Equation [27], for many sets of values for the two parameters. A
typical example is shown in Figure S3. Again, no discrepancies were
found between the analytical solution and the numerical experiments,
so Equation 28 is correct and can be used to investigate the behavior
of theA model and assess it against experimental data.

The analytical solution of the graviproprioceptive equation [10]
with boundary conditions [11] and [12] are

A(s, t) = A0e
−γt

∞
∑

n=0

γn/2

(

βs

γt

)−n/2

Jn

(

2
√

βts
)

[30]

which can also be verified by direct differentiation, although more
cumbersome (S2). This analytical solution A(s, t) of theAC model
[30] was compared to the angle space map obtained through numeri-
cal simulations of Equation [10] for many sets of values for the two

parameters. A typical example is shown in Figure S2. No discrep-
ancies were found between the analytical solution and the numerical
experiments, so Equation [30] is correct and can be used to investi-
gate the behavior of theAC model and assess it against experimental
data. The detailed mathematical derivation of the analytical solutions
is available on ArXiv (S2).
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2- Experiments
2.1 - Plant Materials and tilting experiments. Experiments were con-
ducted in growth cabinets for etiolated wheat coleoptiles (Triticum
aestivum cv. Recital) or controlled temperature greenhouses for
the nine other types of plant organs - bean hypocotyl (Phaseolus
vulgaris), sunflower hypocotyl (Helianthus annuus ), pea epicotyl
(Pisum sativum), tomato stem (Solanum lycopersicum), chili stem
(Capsicum annuum ), raspberry cane (Rubus ideaus), carnation in-
florescence (Dianthus caryophyllus ), andArabidopsis thaliana in-
florescences from a wild type (ecotype Col0) and itspin1 mutant
(a mutant of the PIN1 auxin efflux carier displaying reduced auxin
longitudinal transport (11)). Plants were grown until a given devel-
opmental stage of the organ of interest (e.g until the beginning of
inflorescence flowering for Arabidopsis in Figure 4). They were then
tilted and clamped horizontallyA(s = 0, t) = π/2 for all t un-
der constant environmental conditions in the dark (to avoidinterac-
tions with phototropism). Number of replicates were 30 for wheat, 15
for Arabidopsis and 5 for all the other species. Published data were
also reprocessed from similar experiments onImpatiens glandilufera
stems by Pfeffer (35) and on poplar trunks (Populus deltoides x nigra
cv I4551) by Coutand et al. (9).

2.2 - Detailed kinematics experiments. Time lapse photography was
performed using a flash light, where the light was filtered to retain
only green light, which did not stimulate any phototropic response.
After initial tilting of the organ, the tropic movement was followed
until a clear steady-state shape was achieved. One typical experiment
on Arabidopsis thaliana is presented in Figure S5.A.

2.3 - Kinematics of Curving-Decurving. The central line of the organ
was extracted from the pictures at successive timest and curvatureC
and curvilinear abscissas at successive points along the central line
were computed using a method described in refs (3,9). Space-time
plots with color coding indicating the magnitude of the angle or the
curvature were then generated to illustrate the pattern of the gravit-
ropic movement.

2.4 Plant Material: phylogenetics of species studied. Eleven
species were chosen from a broad taxonomical range of land an-
giosperms including monocots and dicots, see Figure S4. Different
types of organs were studied: coleoptile, hypoctyl, epicotyl, inflo-
rescence stems, or stems of vegetative shoots. The plants studied
represent many of the growth habits of angiosperms, e.g. herbaceous
plants, biennial shrubs and trees.

4



Fig. 4. Phylogenetic distribution of the species under study (modified from The Angiosperm Phylogeny (S3)). Families of the studied species are marked by a red dot.
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2.5 Morphometric experiment and Characterization of trans ient
oscillatory modes. Estimates of the bending number (throughBl =
Lgz/Lc) and of the (transient) global modeM (Figure S5.B) were
obtained. To estimate the lengthLgz (the length of the organ along
which active curving can take place), the first image of the kinemat-
ics just after tilting the organ was compared to the last one when the
organ has reached a steady state (Figure 4). The distance between
the apex and the most basal point with non-zero curvature on the last
image gives the total length that was able to curve at the start of the
experiment.This gives an approximation of the length of thegrowth
zoneLgz .To get the convergence lengthLc on the image of the steady
state shape, the local orientation angle is taken from the point where
the organ started to curve (Figure 4). Then the plot ofA(s) is fitted

with an exponential function,A0e
−s/Lc . This fit gives a direct esti-

mate of the convergence length to the verticalLc. The measurement
of the modes are illustrated in Figure S5.B. At a given timet the cur-
rent mode is defined as the number of places below the apex where
the tangent to the central line of the organ is vertical (Figure S5.B).
In the example (Figure S5.A) the inflorescence of Arabidopsis dis-
played transient J then C shape and finally, just before convergence,
an S shape. (Figure S5.B). Transient oscillatory modes werechar-
acterized by the mode number M defined as the maximal number of
places in which the tangent to the central line of the organ isvertical
simultaneously during the straightening mouvement. This transient
state is the most curved state. In our experiments, only modes 0, 1
and 2 were observed. The value of mode M for (Figure S5.A) tilting
experiment is thus M= 2.

mode 0 mode 1 mode 2

A.

B.

Fig. 5. A.Timelapse photographs of a tilting experiment on the inflorescence of Arabidopsis thaliana taken at 2- hour intervals. The apical part overshoots the vertical
once 8 hours after tilting (4th image, C-shape). The white bar is 1 cm long. B.Quantification of the transient modes of the gravitropic movement. Mode M is the
maximal number of places in which the tangent to central line of the organ crosses the vertical simultaneously. The curved line represents the gravitropic organ and
the dashed lines represent different modes. No dashed line, mode 0 or J-shape; one dashed line, mode 1 or C shape; 2 dashed lines, mode 2 or S shape.
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2.6 Quantitative Assessment and Statistical Fit.. The analytical
expression for the angleAac of the AC model [10] was fitted to the
experimental angle-space mapping numerically through a non lin-
ear optimization algorithm combining steepest gradient with random
sampling of the parameter space (to avoid local minima), using the
bending number estimated from the morphometric method as a start-
ing value. The comparison between the measured angle dynamics
Aexp(s, t) and that predicted by theAC modelAac(s, t) was based
on orthogonal functional linear regression, since the model prediction
can also display random errors through the estimation ofB (S4).
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3. Detailed kinematics experiments and quantitative asses sment
of the AC model.
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Fig. 6. Quantitative comparison between experimental (exp) and predicted angle spacetime map of A(s, t) in Arabidopsis thaliana inflorescence for the entire
gravitropic response of two different individuals A and B. Experimental angle space-time map of Aexp(s, t) (left panels), the angle space-time map predicted by the
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Analytical Solution of the Proprio-Graviceptive equation for shoot gravitropism of
plants.

Renaud Bastien,1, 2, 3, 4, ∗ Bruno Moulia,2, 3 Stéphane Douady,4 and Tomas Bohr5
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3Clermont Université, Université Blaise Pascal, UMR 547 PIAF, BP 10448, F-63000 Clermont-Ferrand
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We derive the analytical solutions to the second order generalised gravi-proprioceptive equation
given in our recent paper [1]. These equations show how plants adjust to the surrounding gravitation
field and highlight the fact that the plant must be able to not only sense its local posture with
respect to the gravitational field, but also to sense its own local curvature. In [1] we obtained
explicit analytical solutions of these equations in terms of (sums of) Bessel functions, and in the
present paper we derive these solutions.

Gravitropism is a slow movement by which plants re-
orient their growth in response to gravity. In a recent
paper [1], we have studied the gravitropic response of a
broad range of plants by placing them horizontally in a
dark room and monitoring how they curve upwards in
response to gravity. It was shown that the minimal dy-
namical model accounting for these observations is not
the usual gravisensing law, where the plant simply senses
the local tilt angle, but what we have called a gravi-
proprioceptive law, where one takes into account that the
plant can, in addition, sense its own local curvature. In
that paper, exact solutions for the linearized versions of
both the graviceptive and the gravi-proprioceptive law
were given and compared to experiment. We here give
the derivation of these solutions

The plant is described as a slender rod with arc length
s going from s = 0 at the base to s = L at the tip.
The local tilt angle A(s, t) describes the orientation with
respect to the vertical gravitational field, such that A = 0
is vertical. The generalized (gravi-proprioceptive) law of
gravitropism describes how the local curvature C(s, t))
changes in response to the local tilt angle and the local
curvature itself as

∂C(s, t)

∂t
= −βA(s, t)− γC(s, t), (1)

where the curvature and the tilt angle are related by

C(s, t) =
∂A(s, t)

∂s
, (2)

and where the coefficient β controls the graviceptive term
(sensing of tilt angle) and the coefficient γ controls the
gravi-proprioceptive term (sensing the curvature).

The subject of the present paper is to solve this equa-
tion with the experimentally relevant boundary and ini-
tial condition. Thus we assume that the plant is initially

∗ renaud.bastien@clermont.inra.fr

straight with an angle, say Ai from the vertical. Since
(1) is linear in A, we can, without loss of generality, take
Ai = 1. The solution with a different Ai will simply
be obtained by multiplying our solution by Ai.Thus we
assume the initial conditions

A(s, t = 0) = 1 (3)

and

C(s, t = 0) =
∂A(s, t = 0)

∂s
= 0 (4)

for all 0 < s < L. Further we assume that the plant is
clamped in the sense that tilt angle at the base remains
equal to Ai = 1 for all future times. Thus the boundary
condition is

A(s = 0, t) = 1 (5)

for all t ≥ 0

I. THE GRAVICEPTIVE MODEL

We first consider the purely graviceptive model, i.e.,
(1) with γ = 0:

∂C(s, t)

∂t
= −βA(s, t) (6)

To solve this equation, we first set β = 1 with out loss
of generality simply by using the scaled time βt. Now,
using that

C(s, t) =
∂A(s, t)

∂s
(7)

we can write (6) as

∂2A(s, t)

∂s∂t
= ∂2

stA = −A (8)

where we use the short hand notation ∂/∂x = ∂x. Note
that C satisfies the same equation.
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A. Solution by separation

We shall now try to find separated solutions of (8).
From our numerical work it seems that the solutions de-
pend on

√
s and

√
t and since both s and t are assumed

positive, we can introduce the new independent variables
(ξ, η) as

ξ = (s t)1/2 and η =

(
t

s

)1/2

(9)

or

s =
ξ

η
and t = ξη (10)

and obtain

∂s = (∂sξ) ∂ξ + (∂sη) ∂η =
1

2
η ∂ξ −

1

2
η2ξ−1 ∂η (11)

∂t = (∂tξ) ∂ξ + (∂tη) ∂η =
1

2
η−1 ∂ξ +

1

2
ξ−1 ∂η (12)

Using this, we find

∂2
st =

1

4ξ2

(
ξ2∂2

ξξ + ξ∂ξ − η∂η + η2∂2
ηη

)
(13)

Note that the ∂2
ξη cancel and that the invariance of (6) on

exchanging s and t implies an invariance when η → η−1.
In these variables, (8) for an arbitrary function Ψ can be
written(

ξ2∂2
ξξ + ξ∂ξ − η∂η + η2∂2

ηη + 4ξ2
)

Ψ(ξ, η) = 0 (14)

If we now assume that the solution can be written in the
separated form

Ψ(ξ, η) = f(η)g(ξ) (15)

we get the two eigenvalue equations

ξ2g′′(ξ) + ξ g′(ξ) + 4ξ2g(ξ) = λ g(ξ) (16)

η2f ′′(η)− ηf ′(η) = −λ f(η) (17)

Substituting y = log η gives (17) the form

f ′′(y)− 2f ′(y) + λ f(y) = 0 (18)

with solutions

f(y) = ep y = ηp (19)

with

p2 − 2p+ λ = 0 (20)

or

p =
(

1±
√

1− λ)
)

(21)

and then (16) becomes

ξ2g′′(ξ) + ξ g′(ξ) +
(
4ξ2 − p(2− p)

)
g(ξ) = 0 (22)

If we finally substitute x = 2ξ, this becomes

x2g′′(x) + x g′(x) +
(
x2 − p(2− p)

)
g(x) = 0 (23)

which is recognised as Bessel’s equation of order n, where
n2 = p(2−p). For n to be a real number we must restrict
p to lie in the interval p ∈ [0, 2]. In this interval we can
write the full solution as

Ψn(s, t) = K

(
t

s

)p/2
Jn(2
√
s t) (24)

If n is to be an integer we must choose p = 0, 1 or 2
giving n = 0, 1 and 0, respectively. To find a solution for
A, we must satisfy the boundary condition A(s→ 0, t) =
A(s, t→ 0) = 1 and since(

t

s

)p/2
Jn(2
√
st)→ s(n−p)/2t(n+p)/2 (25)

for small s t, we must choose n = p = 0, i.e.,

A(ξ, η) = J0(2ξ) (26)

or, returning to the variables s and t and re-inserting β,

A(s, t) = J0(2
√
βs t) (27)

We can also find the curvature

C(s, t) = ∂sA(s, t) =

√
βt

s
J1

(
2
√
βts
)

(28)

which, since C also satisfies (8), also has the form (24).
For small s, the s-dependence cancels since J1(x) ≈ x/2
for small x, and we get

C(s, t)→ βt (29)

for small s or t and thus C(s, t→ 0) = 0 as we demanded.

B. Solution by Laplace transformation

We could have solved (8) more directly Laplace trans-
forming is (in s), which gives

p∂tÂ− ∂tA(s = 0, t) = −βÂ, (30)

where

Â(p, t) =

∫ ∞
0

A(s, t)e−psds (31)

is the Laplace transform of A(s, t). From the boundary
condition (5) we get ∂tA(s = 0, t) = 0 and

∂tÂ = −β
p
Â, (32)

which has to be solved with the initial condition A(s, t =

0) = 1⇒ ˆA(p, t = 0) = 1/p with the solution

Â =
1

p
e−

βt
p
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We see that Â(p, t) is analytic in the complex p-plane
except at the isolated (essential) singularity p = 0. The
inverse Laplace transform A(s, t) can simply be found as
the residue (see e.g. [2] Theorem 8.2.1)

A(s, t) =
1

2πi

∮
C(0,ε)

esp−
βt
p

p
dp = J0(2

√
βst) (33)

where the last equality is a special case of the well-known
identity derived e.g. in [3]:

Fn(s, t) =
1

2πi

∮
Ω(0,ε)

eps−
t
p

pn+1
dp =

(s
t

)n/2
Jn(2
√
st )

(34)
valid for any n > −1.

II. THE PROPRIO-GRAVICEPTIVE MODEL

We now consider the generalised equation of gravit-
ropism

∂tC(s, t) = −βA(s, t)− γC(s, t) (35)

and with scaled time T = γt and S = (β/γ)s we obtain

∂2
STA = −A− ∂SA (36)

In the following we drop the capitals and our equation
becomes

∂2
stA = −A− ∂sA (37)

again with the initial conditions (3) and (4) and the
clamped boundary condition (5).

Note that (37) has that stationary (asymptotic) solu-
tion

A0(s) = e−s (38)

satisfying the boundary conditions 3 and 4. One might
try the substitution A(s, t) = B(s, t)e−t, since the equa-
tion for B would simply be (6). However, the boundary
condition (5) would be B(s = 0, t) = et which is time
dependent and complicates matters.

The Laplace transform is

Â(p, t) =

∫ ∞
0

A(s, t)e−psds (39)

and the Laplace transform of 37 (with γ = β = 1) gives

p∂tÂ− ∂tA(s = 0, t) = −Â− (pÂ−A(s = 0, t))(40)

From the boundary condition, we know that A(s =
0, t) is constant in time and thus ∂tA(s = 0, t) = 0. Also
A(s = 0, t) = 1 so we obtain

p∂tÂ = −Â− pÂ+ 1 (41)

or

∂tÂ+
1 + p

p
Â =

1

p
(42)

with the solution

Â =
1

1 + p
+

1

p(1 + p)
e−

1+p
p t

=
1

1 + p
+

(
1

p
− 1

1 + p

)
e−te−

t
p

=
1

p
e−te−

t
p +

1

1 + p

(
1− e−te−

t
p

)
, (43)

where Â(p, t = 0) = 1/p in accordance with the boundary
condition. It correctly approaches the stationary state
since

Â(p, t)→ 1

1 + p
= Â0 (44)

for t → ∞ when p > 0 and Â(p, t) is analytic in the
complex p-plane except at the isolated singularities p = 0
and p = −1.

Thus the inverse Laplace transform A(s, t) is simply
the sum of the residues [2] of the function

A(s, t) =
∑

singularities p∗

1

2πi

∮
Ω(p∗,ε)

eps
(

1

p
e−te−

t
p

+
1

1 + p

(
1− e−te−

t
p

))
(45)

at each of its singularities in the complex p-plane. The
pole at p = −1 is a simple pole, but the residue is zero

since the numerator 1 − e−te−
t
p is zero for p = −1. We

therefore only need the residue at p = 0, which is an es-
sential singularity. Thus we have to evaluate the contour
integral of epsÂ(p, t) over a closed curve Ω(0, ε) encir-
cling the origin. The contribution of the term eps/(1+p)
vanishes, since it has no pole at p = 0, and we can write

A(s, t) = A1(s, t) +A2(s, t), (46)

where

A1(s, t) =
e−t

2πi

∮
Ω(0,ε)

esp−
t
p

p
dp (47)

and

A2(s, t) = −e
−t

2πi

∮
Ω(0,ε)

esp−
t
p

1 + p
dp, (48)

where first term is given by (33)

A1(s, t) = e−tJ0(2
√
st ). (49)

Near the origin (more precisely, as long as | p |< 1) we
can expand

1

1 + p
= 1− p+ p2 . . . =

∞∑
n=0

(−p)n (50)
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so that

A2(s, t) = −e
−t

2πi

∞∑
n=0

∮
Ω(0,ε)

esp−
t
p (−p)ndp

= e−t
∞∑
n=0

Tn(s, t), (51)

where

Tn(s, t) = − 1

2πi

∮
Ω(0,ε)

esp−
t
p (−p)ndp. (52)

We define z = −1/p and thus dp = dz/z2, whereby

Tn(s, t) =
1

2πi

∮
Ω(0,ε)

etz−
s
z z−(n+2)dz

=

(
t

s

)n+1
2

Jn+1(2
√
st ) (53)

for any n > 0. Note the sign change since the contour Ω
is now traversed in the clockwise direction. Thus we can

write

A2(s, t) = e−t
∞∑
m=0

(
t

s

)m+1
2

Jm+1(2
√
st )

= e−t
∞∑
n=1

(
t

s

)n
2

Jn(2
√
st ) (54)

and the full solution is

A(s, t) = e−t
∞∑
m=0

(
t

s

)n
2

Jn(2
√
st )

= e−s −
∞∑
n=1

(−1)n
(s
t

)n/2
Jn(2
√
st ) (55)

which, going back to the original variables using t → γt
and s→ (β/γ)s gives

A(s, t) = e−γt
∞∑
m=0

(
γ2t

βs

)n
2

Jn(2
√
βst )

= e−βs/γ −
∞∑
n=1

(−1)n
(
βs

γ2t

)n/2
Jn(2

√
βst ) (56)

If the initial angle is Ai, we get the same solution, but
with the factor Ai multiplying the solution (56).
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Beyond the sine law of plant gravitropism
Jacques Dumais1
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T
he great German plant physiolo-
gist Wilhelm Pfeffer rightly
claimed that “no plant is entirely
without the power of movement”

(1). If this fact remains underappreciated,
it is perhaps because plant movements
typically unfold over minutes, hours, or
days, and thus exceed the attention span
of all but the most dedicated observer.
Among the large array of plant move-
ments, the tropisms—that is, those move-
ments that are directed toward or away
from an external stimulus such as gravity
or light—are the most fascinating because
they highlight beautifully the sentient na-
ture of plants and the goal-directedness of
their growth habit. The pervasiveness of
plant tropisms is revealed when one stops
to consider the unlikeliness that seeds
lodged haphazardly within the crevices of
a rugged terrain should sprout stems that
reliably find their way up. Were it not for
the ability of the young plants to sense
light and gravity, forests would be impen-
etrable tangles of stems and branches
growing in all directions. Their prevalence
in the plant kingdom explains why trop-
isms have been an active area of research
since the beginning of the 19th century. By
the end of the 19th century, the field had
reached such a level of development and
popularity that eminent biologists, in-
cluding Charles Darwin and Pfeffer, could
devote entire books to the topic (1, 2).
Given this long and illustrious tradition
of research, one might expect today’s bi-
ologists to have extracted all useful in-
formation from standard observational
research of plant tropisms. A paper pub-
lished in PNAS should convince the
readers that much can still be learned from
careful, quantitative observation of bi-
ological processes. In a systematic study of
shoot gravitropism in 11 taxa, Bastien
et al. (3) at once establish the universal
response to gravity as a process of initial
stem curving followed by apical straight-
ening and debunk the idea that current
models of gravitropism offer a plausible
explanation for the process.
The standard model of gravitropism can

be traced back to Julius Sachs, who stated
that the component of gravity acting at
right angle to a plant axis (a stem or root)
determines the strength of the stimulus
(4). Accordingly, the gravitropic response
should be proportional to the sine of the
angle between the organ axis and the
vertical; thus, a stem placed horizontally
would show the strongest response, which
would then gradually decline as the stem

approaches the vertical. Since its formu-
lation, Sachs’ sine law has been validated
repeatedly, sometimes with minor mod-
ifications (5, 6). It was also noted that
the sedimentation of statoliths within
gravisensing cells would lead to some form
of sinusoidal dependence on angle (7, 8).
Thus, the sine law, despite its simplicity,
offered a good fit of overall plant response
to gravity and even enjoyed some level of

mechanistic justification in the sedimen-
tation pattern of statoliths.
The shortcomings of the sine law sur-

face when one attempts to build a regula-
tory model out of it. To develop such
a model, one must ask where gravity is
sensed and how the sensing elements re-
spond to a gravitropic stimulus. In the case
of the root, gravity sensing is limited to the
columella cells of the root cap (9, 10). The
signal is then transmitted to the elongation
zone via a redistribution of auxin flow (11,
12). The stem, however, shows a notable
difference from the root. Experimental
evidence indicates that the entire stem
senses gravity and can responds to it lo-
cally (13, 14) whereas the apex itself ap-
pears to play no particular role, since
decapitated plants respond normally to
gravity (15). As Bastien et al. (3) clearly
show, a stem whose distributed gravisens-
ing elements react to gravistimulation
according to the sine law would zigzag
about the vertical repeatedly without ever
reaching a stable configuration. This
response arises because the basal
elements of the stem keep responding to
gravity and, therefore, keep curving up-
ward long after the apical region of
the stem has reached the vertical. As a re-
sult of the sustained curving of the basal
elements, the stem apex overshoots its
target repeatedly (Fig. 1A). Moreover, the
apical straightening that is an integral part
of the gravitropic response of stems is
never fully achieved in a model based on
the sine law. It thus appears that a crucial
element is missing from the standard
model of gravitropism.
The solution put forward by Bastien

et al. (3) implicates a form of plant pro-
prioception called autotropism. Auto-
tropism is the Newton’s first law of plant
tropisms; that is, in the absence of external
stimuli, plant organs maintain straight
growth. Thus, elongating stem segments
that are not receiving a gravitropic stimu-
lus telling them to bend would naturally
straighten under their internal autotropic
response. Autotropism was already known
to Pfeffer and his contemporaries (1), and
the counteracting role it plays with gravi-
tropic curving has also been included in
models (16, 17). Despite these precursors,
the model put forward by Bastien et al. (3)

Fig. 1. Shoot gravitropism beyond the sine law.
(A) Diagrams of a stem responding to gravity ac-
cording to the sine law. Sensing and curving are
distributed over the entire length of the stem.
The orange arrows indicate the component of
the gravity vector (g) that serves as the effective
bending stimulus (s). The stem repeatedly over-
shoots the vertical because the basal part of
the stem is still receiving a strong stimulus and is
therefore actively curving even as the apical part
approaches the vertical. (B) The gravitropic re-
sponse of Impatiens glandulifera sketched from
Pfeffer’s original photographs. This plant is a prime
example of a gravitropic response with a large
bending number (B ∼ 9). It overshoots the vertical
twice, thus forming first a “C” and then a “S”
shape, but ultimately converges on a stable con-
figuration whereby a large section of the stem is
straight. The first two time points of the response
highlight the development of curvature over the
extensive growth zone (Lgz), whereas the last time
point shows the curvature converging ultimately
to a much shorter length scale (Lc). The rapid
convergence to an erect configuration is indicative
of the stabilizing effect of autotropic straighten-
ing in gravitropic responses.
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distinguishes itself by its simplicity and
elegance—it is, in fact, the minimal model
compatible with the two opposing “forces”
of gravitropic bending and autotropic
straightening.
Unlike models based solely on Sachs’

sine law, the gravitropic/autotropic model
put forward by the authors explains why
the universal gravitropic response in plant
stems proceeds from an initial overall
bending of the stem followed by basipetal
straightening (3, 18). As shown in their
paper (3), a stem placed horizontally will
rapidly converge to a steady-state solution
where the stem angle (A) decreases expo-
nentially over the length (Lgz) of the
growth zone:

AðsÞ ¼ π

2
expðs=LcÞ for 0≤ s≤Lgz

In this equation, Lc is the length scale
over which the stem angle changes when
the plant has completed its response to
gravity. Lc is set by the relative strength of
the gravitropic (bending) and the auto-
tropic (straightening) responses. If the
gravitropic response dominates, Lc is
small, indicating that the stem angle
changes over a short distance, thus im-
posing a high local curvature. In contrast,
a large Lc indicates a dominant autotropic
reaction, which prevents the development
of strong curvature at any point along
the stem.
The major breakthrough of this work is

the conclusion that the two lengths Lgz and
Lc govern the entire gravitropic response

of a plant. The authors define a non-
dimensional bending number B as Lgz/Lc.
This ratio captures explicitly the spatial
aspect of the gravitropic response (i.e., it is
the ratio of two important lengths in the
system), but it also, implicitly, captures
a temporal feature of the gravitropic re-
sponse because the length of the growth
zone (Lgz) is the initial distance over which
the curvature is observed, and Lc is the
final distance over which the stem will be
curved when the gravitropic response has
been completed (Fig. 1B). It is the implicit

Future research will have

to include autotropic

straightening as an

integral part of shoot

gravitropism.
temporal component of the bending
number that makes it a useful metric of
gravitropic responses in plants. For a plant
to show an effective rectifying response to
gravity, it will need a zone of curvature
production (i.e., growth zone) at least as
long as the intrinsic length scale (Lc) set by
the internal balance of gravitropic and
autotropic reactions. In other words,
bending numbers are typically greater than
1. For B values close to 1, the length of the
growth zone is comparable to the length
over which curvature will be present when

the gravitropic response has been com-
pleted. Therefore, the stem approaches
the vertical smoothly without over-
shooting. For large B values, the length of
the growth zone greatly exceeds the region
of final curvature. As a result, curvature
will initially develop over a large region
of the stem before converging to a smaller
region. In the convergence process, the
stem will zigzag around the vertical,
forming first a “C” shape and possibly
a “S” shape. The largest B value recorded
so far, approximately 9, is for the Impa-
tiens plant studied by Pfeffer himself (Fig.
1B). An infinite B is obtained if the grav-
itropic curving overpowers the autotropic
straightening. In this case, we recover
the sine law model and the plant never
really settles into a steady-state ver-
tical position.
The beauty of the bending number

resides in the fact that it can be measured
directly from images taken early and late
in the response of gravitropically stimu-
lated plants (Fig. 1B). Simple length
measurements performed on these two
endpoints can tell us everything that has
occurred in the intervening time. Overall,
the study of Bastien et al. (3) offers an
exquisite example of the power of quanti-
tative observations even in the context of
a century-old problem such as gravitrop-
ism. Future research will have to include
autotropic straightening as an integral part
of shoot gravitropism.
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