

Seasonality in growth of ectomycorrhizal hyphae in Fagus, Quercus and Pinus in France

Mark Ronald M. R. Bakker, Frida F. Andreasson, Masako M. Dannoura, Bernhard Zeller, Jérome J. Ngao, Daniel D. Epron

► To cite this version:

Mark Ronald M. R. Bakker, Frida F. Andreasson, Masako M. Dannoura, Bernhard Zeller, Jérôme J. Ngao, et al.. Seasonality in growth of ectomycorrhizal hyphae in Fagus, Quercus and Pinus in France. International Symposium "Root Research and Applications" RootRAP, Sep 2009, Vienna, Austria. 2 p. hal-00964563

HAL Id: hal-00964563 https://hal.science/hal-00964563

Submitted on 6 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Seasonality in growth of ectomycorrhizal hyphae in *Fagus*, *Quercus* and *Pinus* in France

Mark R Bakker^{1,2*}, <u>F Andreasson</u>^{1,2}, Masako Dannoura^{3,4}, Bernd Zeller⁵, Jérôme Ngao^{6,7}, Daniel Epron^{8,9}

¹ Université de Bordeaux, UMR 1220 TCEM, F-33883 Villenave d'Ornon, France *Contact phone (+)5 57 12 25 23; fax 2515 ; <u>Mark.Bakker@bordeaux.inra.fr</u>

² INRA, UMR 1220 TCEM, F-33883 Villenave d'Ornon, France

³ INRA, UR Ecologie Fonctionnelle et Physique de l'Environnement, Centre de Pierroton, 69 route d'Arcachon, F-33612 Cestas, France

⁴ Kyoto University, Laboratory of Forest Hydrology, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto 606-8502, Japan

⁵ INRA, UR Biogéochimie des Ecosystèmes Forestiers, Centre de Nancy, F-54280 Champenoux, France

⁶ Université Paris-Sud, UMR Ecologie Systématique et Evolution, F-91405 Orsay, France

⁷ CNRS, UMR Ecologie Systématique et Evolution, F-91405 Orsay, France

⁸Nancy Université, Université Henri Poincaré, UMR Ecologie et Ecophysiologie Forestières, Faculté des Sciences, F-54500 Vandoeuvre les Nancy, France

⁹ INRA, UMR Ecologie et Ecophysiologie Forestières, Centre de Nancy, F-54280 Champenoux, France

ABSTRACT

Fine roots and associated mycorrhizal partners are the major pathway for uptake of water and nutrients into forest trees. In turn, fine roots and mycorrhizal structures contain significant amounts of carbon and nutrients but sound scientific research underpinning our understanding on the dynamics of production, maintenance and turnover of these structures is still limited. In particular, assessing how much carbon is allocated to the finest structures, i.e. mycorrhizal hyphal networks, for construction and maintenance, is still a key challenge for *in situ* research in forest ecosystems. In the present work, our objective is to quantify the production of ectomycorrhizal hyphal structures throughout the growing season in three forest sites with different tree cover, i.e. Fagus sylvatica, Quercus petraea and *Pinus pinaster*. At each of the study sites ¹³CO₂ labelling experiments [1] will be carried out by combining a canopy labelling chamber on trenched trees with a tuneable diode laser absorption spectrometry method to trace the fate of the ¹³C in the trees and the soil. This will be done throughout 2009 using three different seasons for labelling. At each of the three labelling periods, ingrowth mesh bags (30 µm mesh filled with quartz sand) will be installed in the top soil around the labelled trees. Ectomycorrhizal hyphae that grow into the mesh bags will be evaluated upon retrieval after three months for biomass, length and ¹³C signature. Preliminary data and their interpretation will be available in early summer 2009.

KEYWORDS: ectomycorrhizal hyphae, forest trees, growth dynamics, ingrowth bags, labelling

INTRODUCTION

Mycorrhizal hyphae associated with fine roots of trees may account for approximately 20– 30% of the allocation of assimilates, and the fungal mantles and extramatrical mycelia of these mycorrhizal fungi are estimated to have a biomass of about 0.5-0.7 t/ha [2]. Knowledge on this pool and the fluxes through this pool are thus of major importance for ecosystem carbond budgets. The few studies reporting on this gave contradictory results. Staddon et al. (2003) using a 14C method showed that most ERM hyphae of AM fungi live on average 5 to 6 days, but Hawkes et al. (2008) reported that AM fungi could retain retain recently assimilated photosynthate carbon in lipids for at least 32 days. Here we combine a 13C labelling of tree canopies with ingrowth mesh bags in three tree species and through different moments in the growing season to study 1) the production of ectomyocorrhizal hyphae through the growing season (seasonility of growth); 2) the turnover of carbon through the ectomycorrhizal hyphae using the 13C signal in their tissues.

METHODS

Young trees of *Fagus sylvatica* (northeast France), *Quercus petraea* (central France) and *Pinus Pinaster* (southwest France) will be labelled with ¹³C in three (*Fagus* and *Quercus*) to four (*Pinus*) growing seasons [1]. Ingrowth mesh bags (30 μ m mesh filled with quartz sand; method adapted from Wallander et al. 2004) will be installed in the top soil around the labelled trees at each labelling. The whereabouts of ¹³C isotopes in the aerial and belowground tissues of the tree and in the soil will be monitored intensively for 2 months. Half of the ingrowth bags will be retrieved after 1 month, the other half after 3 months. Ectomycorrhizal hyphae that grow in the mesh bags will be evaluated upon retrieval for biomass and length (Wallander et al. 2004, Bakker et al. 2009) and ¹³C signature.

RESULTS AND DISCUSSIONS

First retrieval (after 1 month of hyphal growth into the ingrowth bags) is due for June 20th for the first site, for June 27th for the second site and for July 8th for the third site. Second retrievals (3 months after first labelling) are due for September and October 2009. Preliminary data will be presented on the poster, together will other data from the project [1] as far as these are availabe. We expect increasing quantities of hyphal structures in the ingrowth bags (between 1 and 3 months) against decreasing values of δ^{13} C.

REFERENCES

- [1] CATS project, French National Research Agency (2008-2010).
- [2] Memory of Understanding Cost Action FP0803 'Belowground carbon turnover in European forests, november 2008.
- Bakker MR, Jolicoeur E, Trichet P, Augusto L, Plassard C, Guinberteau J and D Loustau (2009) Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old *Pinus pinaster* stand. Tree Physiol 29:229– 238.
- Hawkes CV, Hartley IP, Ineson P and AH Fitter (2008) Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biology 14:1181–1190.
- Staddon PL, Ramsey CB, Ostle N, Ineson P and AH Fitter (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of C-14. Science 300:1138–1140.
- Wallander H, Göransson H and U Rosengren (2004) Production, standing biomass and natural abundance of ¹⁵N and ¹³C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139:89–97.