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Abstract

The tail copula is widely used to describe the dependence in the tail of multivariate dis-
tributions. In some situations such as risk management, the dependence structure may be
linked with some covariate. The tail copula thus depends on this covariate and is referred to
as the conditional tail copula. The aim of this paper is to propose a nonparametric estimator
of the conditional tail copula and to establish its asymptotic normality. Some illustrations are
presented both on simulated and real datasets.

AMS Subject Classifications: 62G05, 62G20, 62G30, 62G32.
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1 Introduction

In various domains such as insurance, finance and hydrology, there is increasing interest in un-
derstanding the dependence structure between large values of several variables. For instance, in
finance, one can be interested in the link between large values of the market index and large returns
of individual stocks, see [2, 30]. The dependence structure of a random vector Y = (Y1, . . . , Yd)

>

with d ≥ 2 is commonly modeled using a copula. Recall that a copula is a multivariate distribu-
tion function with uniformly distributed margins on the interval [0, 1]. Let us denote by F̄i the
marginal survival functions of Y , i = 1, . . . , d. From Sklar’s theorem [37], if the margins of Y
are continuous, then there exists a unique copula S defined on (0, 1)d such that F̄ (y) := P(Y ≥
y) = S(F̄1(y1), . . . , F̄d(yd)) for all y = (y1, . . . , yd)

> ∈ Rd. This function S is therefore given by
S(u) = F̄ (q(u)) for all u = (u1, . . . , ud)

> ∈ (0, 1)d, where q(u) := (F̄←1 (u1), . . . , F̄←d (ud))
> is a

multivariate quantile. Note that (a1, . . . , ad) ≥ (b1, . . . , bd) corresponds to the componentwise in-
equality ai ≥ bi for all i = 1, . . . , d. Additionally, f← denotes the generalized inverse of a decreasing
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function f i.e, f←(x) = inf{t, f(t) ≤ x}. As mentioned in [2], the tail copula is a useful tool to
describe the upper tail dependence structure. It is defined as follows: if there exists a function
Λ : (0,∞)d → [0,∞) such that

lim
α→0+

1

α
S(αy) = Λ(y), y ∈ (0,∞)d, (1)

then Λ is called the tail copula [34]. Let us highlight that, since the domain of definition of Λ is
not limited to the unit hypercube, Λ is not a proper copula. However, many properties of Λ are
closely related to copula properties [34, Theorems 1, 2]. Moreover, in view of (1), it appears that
Λ is a homogeneous positive function. Besides, S is a multivariate regularly varying function at
zero since

lim
α→0+

S(αy)

S(α1)
= W (y),

where W (·) = Λ(·)/Λ(1) and 1 = (1, . . . , 1)> ∈ Rd. We refer to [33, Chapter 5] for a definition of
multivariate regularly varying functions and to [4] for a general account on regular variation. In
practice, the tail copula is often reduced to the tail-dependence coefficient defined by

λ := Λ(1) = lim
α→0+

1

α
P
{
Yi ≥ F̄←i (α), ∀i

}
= lim
α→0+

P
{
Yi ≥ F̄←i (α), i 6= j

∣∣Yj ≥ F̄←j (α)
}
.

It was first introduced by [36] in the bivariate case. The multivariate random vector Y is said
to be tail-dependent if λ ∈ (0, 1] and tail-independent if λ = 0. The case λ = 1 corresponds to
complete tail dependence. When λ = 0, large values of the margins Yi are unlikely to happen
simultaneously. For example, it is well known that a bivariate normal distribution with correlation
coefficient different from ±1 is tail-independent. In finance, λ can be interpreted as the limiting
likelihood that a return falls below its Value at Risk, given that another portfolio return has fallen
below its Value at Risk at the same level. However, since λ is only a scalar measure of dependence,
it may suffer from a loss of information considering the joint behavior of the distribution tails. In
contrast, the tail copula S describes the full dependence structure. We also refer to [28] for an
application of modeling log returns in crude oil and natural gas futures.

The bivariate case (d = 2) has been widely studied in the literature especially when the distri-
bution function of Y belongs to the maximum domain of attraction of a bivariate extreme-value
distribution G. In such a case, there exist positive sequences (a1,n), (a2,n) and sequences (b1,n)

and (b2,n) such that

lim
n→∞

P
{

max
j=1,...,n

Y1,j − b1,n
a1,n

≤ y1, max
j=1,...,n

Y2,j − b2,n
a2,n

≤ y2

}
= G(y1, y2),

where (Y1,j , Y2,j), j = 1, . . . , n are independent copies of the random vector Y = (Y1, Y2). The
bivariate extreme-value distribution G can be written as G(y1, y2) = D(G1(y1), G2(y2)), where G1

and G2 are the margins of G and D is the bivariate extreme-value copula defined by:

D(u, v) = exp

{
ln(uv)A

(
lnu

ln(uv)

)}
. (2)
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The marginal distributions G1 and G2 are univariate extreme value distributions i.e. for i ∈ {1, 2},

Gi(x) = exp{−(1 + γix)
−1/γi
+ },

where y+ = max(0, y) and γi ∈ R is called the extreme-value index. The function A(t) is referred
to as the Pickands dependence function. It is a convex function lying in a triangular area i.e. such
that max(t, (1− t)) ≤ A(t) ≤ 1 for all t ∈ [0, 1]. It can be shown [33, Chapter 5] that for a bivariate
distribution function in the maximum domain of attraction of G, the tail copula exists and is given
by

Λ(y1, y2) = (y1 + y2)

{
1−A

(
y1

y1 + y2

)}
. (3)

Collecting (2) and (3), the bivariate extreme-value copula can be rewritten in terms of the tail
copula as

D(u, v) = uv exp (Λ(− lnu,− ln v)) . (4)

As a consequence, in the bivariate case, the tail copula and the Pickands dependence function both
fully characterize the extreme dependence structure of Y . Finally, one may equivalently consider
the so-called stable tail-dependence function given by

`(y1, y2) = y1 + y2 − Λ(y1, y2) (5)

to describe the extreme dependence structure.

In the bivariate case, numerous nonparametric estimators of the Pickands dependence function
have been introduced [5, 15, 32, 40] thanks to an interpretation of A in terms of exponential
distributions. In [25], it is noted that such estimators may not provide proper dependence functions
(convex and lying in the above triangular area) and two new estimators satisfying these constraints
are introduced. Similarly, a projection technique is proposed in [16] to force any estimator to
be a proper dependence function. The above mentioned estimators are constructed assuming
knowledge of the marginal distributions. Rank-based versions of these estimators are proposed
for the unknown margins case in [19]. The use of a graphical tool for detecting extreme value
dependence is investigated in [9]. The estimation of A within the class of Archimax copulas is
studied in [6]. See [3, Chapter 9] for an overview of parametric and nonparametric inference
methods for bivariate Pickands dependence functions. We also refer to [23, 24] for extensions to
the general multivariate setting. In view of (5), it is clear that estimating the stable tail-dependence
function or the tail copula are equivalent problems. First estimators of ` were introduced in [27] in
the bivariate case. They have been adapted to the estimation of the tail copula [34] and compared
to nonparametric estimators based on the empirical copula. Parametric estimators of Λ have also
been proposed in the bivariate case [13] and for multivariate elliptical copulas [29].
The case where the random vector Y is recorded simultaneously with a predictive variable X ∈ Rp

has been less considered. In [39], the authors propose to estimate the tail-dependence coefficient
in the regression case using a maximum likelihood approach. In this regression framework, S is
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a conditional copula. Its estimation is addressed in [22, 38] with nonparametric techniques and
in [1] using semiparametric approaches. The case of functional covariates is studied in [21]. To
our knowledge, the estimation of the tail copula in the regression case has not been considered
yet despite potential applications in the study of the Chinese stock market [39] or the modeling of
financial returns [17].

We thus consider a random vector (X,Y ) ∈ Rp × Rd. For i = 1, . . . , d, the conditional survival
function of Yi given X = x is denoted by F̄i(·|x) := P(Yi ≥ ·|X = x). The dependence structure of
Y conditionally on X = x is then characterized by the conditional copula:

S(u|x) = F̄ (q(u|x)|x) , u = (u1, . . . , ud) ∈ Rd,

where F̄ (·|x) : Rd → [0, 1] is the conditional survival function of Y given X = x and q(·|x) is
the multivariate conditional quantile defined as q(u|x) := (F̄←1 (u1|x), . . . , F̄←d (ud|x))>. Similarly
to (1), the conditional tail copula is thus defined by

Λ(y|x) := lim
α→0+

1

α
S (αy|x) , y ∈ (0,∞)d, (6)

if this limit exists. In the following, we focus on the case Λ(y|x) > 0 i.e. tail-dependent distribu-
tions.
In Section 2, nonparametric estimators of Λ(y|x) are introduced for a fixed vector (x, y) ∈ Rp ×
(0,∞)d in both situations where the margins are known and unknown. Their asymptotic proper-
ties are established in Section 3. A simulation study is presented in Section 4 and an illustration
on real data is proposed in Section 5. Concluding remarks are drawn in Section 6. Finally, proofs
of the main results are provided in Section 7.

2 Estimation of the conditional tail copula

Let (Xj , Yj), j = 1, . . . , n be independent copies of the random vector (X,Y ). The estimator of the
conditional tail copula is based on a nonparametric estimator of the conditional copula function of
Y given X = x. We propose to use a classical kernel estimator. The first step consists of estimating
the probability density function g of X by:

ĝh(x) =
1

nhp

n∑
j=1

K

(
x−Xj

h

)
, x ∈ Rp,

where h = hn,x is a non random sequence tending to zero as n goes to infinity and K is a bounded
density on Rp with support S included in the unit ball of Rp. Note that the sequence h may depend
on x. As mentioned in the introduction, in many related papers, the margins are supposed to be
known. In this situation, the conditional copula S(.|x) can be estimated by

S̃h(u|x) :=
1

nhpĝh(x)

n∑
j=1

I{Yj ≥ q(u|x)}K
(
x−Xj

h

)
, u ∈ (0, 1)d, x ∈ Rp,
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where I{.} is the indicator function. An estimator of the tail copula is then given by:

Λ̃h(y|x) =
1

α
S̃h(αy|x), (7)

where y ∈ (0,∞)d and α = αn,x is a (0, 1)-valued sequence tending to zero as n goes to infinity.
In this paper, we consider the more realistic case where nothing is known on the margins. In this
situation, the estimation of the marginal survival functions of Y given X = x is obviously required.
For all u ∈ (0, 1)d, let us denote by

q̂(u|x) = (q̂1(u1|x), . . . , q̂d(ud|x))
>

an estimator of the vector q(u|x) ∈ Rd. The following plug-in estimator of the conditional copula
is considered:

Ŝh(u|x) :=
1

nhpĝh(x)

n∑
j=1

I{Yj ≥ q̂(u|x)}K
(
x−Xj

h

)
, u ∈ (0, 1)d, x ∈ Rp

and the conditional tail copula is then estimated by:

Λ̂h(y|x) =
1

α
Ŝh(αy|x). (8)

As an example of an estimator of q(u|x), one can propose the statistic

q̌k(u|x) := ( ˆ̄F
←
k,1(u1|x), . . . , ˆ̄F

←
k,d(ud|x))>, (9)

where k = kn,x is a non random sequence tending to zero as n goes to infinity and, for i = 1, . . . , d,
ˆ̄F k,i(·|x) is the usual kernel estimator (with bandwidth k) of a conditional survival function:

ˆ̄F k,i(z|x) =
1

nkpĝk(x)

n∑
j=1

I{Yi,j ≥ z}K
(
x−Xj

k

)
.

The obtained estimators of the conditional copula and of the tail copula are respectively denoted
by Šh,k(·|x) and Λ̌h,k(·|x). Let us highlight that these estimators depend on two bandwidths h and
k. The first one tunes the smoothness of the estimator of the conditional copula, while the second
one controls the smoothness of the estimator of the marginal distributions.

3 Main results

In this section, the asymptotic properties of the estimators Λ̃h(y|x) and Λ̂h(y|x) are established
for a fixed vector (x, y) ∈ Rp× (0,∞)d such that Λ(y|x) > 0. The asymptotic behavior of Λ̌h,k(·|x)

is also analyzed in the two situations h = k and h 6= k. Some regularity and extreme-value
assumptions are required. The first one is a classical second-order condition on the conditional
copula function S(·|x), see for instance [34].
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H.1 There exist a function b(·|x) with b(t|x)→ 0 as t→∞ and a function cΛ(·|x) such that, for
all y ∈ (0,∞)d,

lim
t→∞

Λ(y|x)− tS(t−1y|x)

b(t|x)
= cΛ(y|x) <∞.

Condition H.1 establishes that the rate of convergence in (6) is driven by a given function b(·|x).
Let us recall that, necessarily, |b|(·|x) is a regularly varying function at infinity with index ρ(x) <

0, see [14]. In the extreme-value literature, ρ(x) is referred to as the conditional second order
parameter. As an example, let us consider the multivariate extreme-value copula defined for all
u = (u1, . . . , ud)

> by

P(Y ≤ q(1− u|x)|X = x) = exp

{
κ(u)A

(
lnui
κ(u)

, i = 1, . . . , d− 1

∣∣∣∣x)} , (10)

where

κ(u) =

d∑
l=1

lnul,

and A(.|x) : Rd−1 → [1/2, 1] is the conditional multivariate Pickands dependence function [32].
Clearly, (10) is the extension of the bivariate extreme-value copula (2) to a dimension d > 2. It can
be shown that, in the dependent case (i.e. A(.|x) 6= 1) and if A(.|x) is continuously differentiable,
then condition H.1 is satisfied with ρ(x) = −1.

A Lipschitz condition on the probability density function g of X is also required. Denoting by
d̃(x, x′) the Euclidean distance between x ∈ Rp and x′ ∈ Rp, it is assumed that

H.2 There exists a positive constant cg such that |g(x)− g(x′)| ≤ cgd̃(x, x′).

For x ∈ Rp and u ∈ (0, 1)d, the oscillation of the conditional survival function F̄ (.|.) is controlled
in a neighborhood of q(u|x) by the following quantity:

ωh,ζ(u|x) = sup

{∣∣∣∣ F̄ (q(v|x)|t)
S(v|x)

− 1

∣∣∣∣ for t ∈ B(x, h), (1− ζ)u ≤ v ≤ (1 + ζ)u

}
, (11)

where ζ ∈ [0, 1) and B(x, h) is the ball of Rp centered at x with radius h.

In a first time, conditions H.1 and H.2 are sufficient to establish the asymptotic normality of the
estimator Λ̃h(y|x) in the (unrealistic) situation where the margins are known.

Theorem 1. Suppose H.1 and H.2 hold. Let x ∈ Rp and y ∈ (0,∞)d such that g(x) 6= 0 and
Λ(y|x) 6= 0. If α in (7) is such that α→ 0, nhpα→∞ and

nhpαmax
(
h, ωh,0(αy|x), b(α−1|x)

)2 → 0 (12)

as n→∞, then,

(nhpα)1/2
(

Λ̃h(y|x)− Λ(y|x)
)

d−→ N
(

0,
‖K‖22Λ(y|x)

g(x)

)
.
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As pointed out in [10], nhpα → ∞ is a necessary and sufficient condition for the almost sure
presence of at least one sample point in the region B(x, h)× (q(α|x),∞) of Rp+d. Condition (12)
forces the bias to be negligible compared to the standard-deviation of the estimator. Two main
sources of bias appear. The first contribution to the bias is due to the kernel smoothing and to the
oscillations of order O(h) and O(ωh,0(αy|x)) of g and F̄ (·|·) respectively. The second source of bias
is due to the approximation of the conditional tail copula Λ(y|x) by αS(α−1y|x). This entails a
bias of order O(b(α−1|x)), see assumption H.1. Let us also highlight that the rate of convergence
(nhpα)1/2 strongly decreases as the dimension p of the covariate increases. This phenomena can
be interpreted as a theoretical consequence of the “curse of dimensionality” for kernel-smoothing
methods. In practice, for moderate sample sizes, such nonparametric methods are limited to the
case p ≤ 2. To overcome this limitation, one can use dimension reduction techniques such as ADE
(Average Derivative Estimator), see for instance [26].
In order to deal with the case where the margins are estimated, an extreme-value assumption on
the conditional marginal distributions of Y given X = x is required. The following von-Mises
condition (see [12], equation (1.1.30)) is considered:

H.3 For i = 1, . . . , d, the marginal survival function F̄i(·|x) is twice differentiable and such that

lim
y↑yFi

(x)

F̄i(y|x)F̄
′′

i (y|x)

(F̄
′
i )

2(y|x)
= γi(x) + 1,

where yFi
(x) := F̄←i (0|x) ∈ (−∞,∞] is the right endpoint of the i−th margin, F̄ ′i (·|x) and

F̄ ′′i (·|x) are respectively the first and the second derivatives of F̄i(·|x).

From [12], Theorem 1.1.8, condition H.3 entails that the conditional distribution of Yi given X = x

is in the domain of attraction of the univariate extreme-value distribution with conditional extreme-
value index γi(x) ∈ R for all i = 1, . . . , d. Note also that from [11], Lemma 2, if condition H.3
holds and zn,i(x) → yFi

(x), tn,i(x) → t0,i(x) as n → ∞ for all i = 1, . . . , d, then there exists a
positive auxiliary function ai(·|x) such that

lim
n→∞

F̄i(zn,i(x) + tn,i(x)ai(zn,i(x)|x)|x)

F̄i(zn,i(x)|x)
= (1 + γi(x)t0,i(x))−1/γi(x).

Hence, for all sequences α → 0 and tn,i(x) → 0 as n → ∞, choosing zn,i(x) = F̄←i (α|x) → yFi
(x)

as α→ 0 yields
lim
n→∞

α−1F̄i
(
F̄←i (α|x) + tn,i(x)ai(F̄

←
i (α|x)|x)

∣∣x) = 1. (13)

The next assumption allows to control the rate of convergence of the estimator q̂(·|x) towards the
true quantile function q(·|x) = F̄←(·|x).

H.4 There exists a sequence ηn →∞ such that, for all y = (y1, . . . , yd)
> ∈ (0,∞)d,

ηn max
i=1,...,d

F̄←i (yiα|x)

ai(F̄←i (yiα|x)|x)

∣∣∣∣ q̂i(yiα|x)

F̄←i (yiα|x)
− 1

∣∣∣∣ = OP(1).
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A condition on the gradient ∇S(·|x) of the conditional copula function is also introduced. It states
that convergence (6) still holds when differentiating.

H.5 The partial derivatives of the conditional copula S(·|x) exist and are continuous on (0, 1)d.
Furthermore, for y ∈ (0,∞)d and for all vectors ϑ(α, y) such that ϑ(α, y) = αy(1 + o(1)) as
α→ 0+,

lim
α→0+

y>∇S(ϑ(α, y)|x) = Λ(y|x).

The existence of continuous partial derivatives was shown to be a non restrictive assumption in [35].
H.5 is for instance satisfied by the multivariate extreme-value copula (10) with A(·|x) 6= 1 and
when A(·|x) is continuously differentiable on (0, 1)d.

We are now in position to state our main result on the asymptotic behavior of Λ̂h(y|x).

Theorem 2. Suppose H.1 - H.5 hold. Let x ∈ Rp and y ∈ (0,∞)d such that g(x) 6= 0 and
Λ(y|x) 6= 0.
(i) If α in (8) is such that α→ 0, nhpαη−1

n →∞ and, for some ζ > 0,

nhpαmax
(
h, η1/2

n ωh,ζ(αy|x), b(α−1|x)
)2

→ 0, (14)

as n→∞, then
Λ̂h(y|x)− Λ(y|x) = (nhpα)−1/2ξn +OP

(
η−1
n

)
,

where ξn converges in distribution to a N (0, ‖K‖22Λ(y|x)/g(x)) random variable.
(ii) If, moreover, (nhpα)1/2η−1

n → 0, then

(nhpα)1/2(Λ̂h(y|x)− Λ(y|x))
d−→ N

(
0,
‖K‖22Λ(y|x)

g(x)

)
.

Note that Theorem 2(i) yields Λ̂h(y|x)
P−→ Λ(y|x). In situation (ii), condition (nhpα)1/2η−1

n → 0

entails that the estimator of q(.|x) converges faster than the one of the conditional copula S(.|x).
Thus, Λ̂h(y|x) has the same asymptotic behavior as Λ̃h(y|x). In this case, the estimation of the
margins does not change the asymptotic distribution.

As an illustration, let us consider the situation where the conditional multivariate quantile q(u|x)

is estimated by (9). The regularity of F̄i(·|·) is controlled by

ω̄
(i)
h,ζ(u|x) = sup

{∣∣∣∣ F̄i(F̄←i (vi|x)|t)
vi

− 1

∣∣∣∣ for t ∈ B(x, h) and (1− ζ)ui ≤ vi ≤ (1 + ζ)ui

}
where u ∈ (0, 1)d and ζ ∈ [0, 1). Introducing (e1, . . . , ed) the canonical basis of Rd, the above
quantity can be rewritten using (11) as ω̄(i)

h,ζ(u|x) = ωh,ζ((u − 1)ei + 1|x). The situations where
the same bandwidth or different bandwidths are used to estimate the conditional copula and the
margins are considered separately. Let us first focus on the case h = k. The asymptotic behavior
of Λ̌h,h(y|x) is a consequence of Theorem 2(i).
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Corollary 1. Suppose H.1, H.2, H.3 and H.5 hold. Let x ∈ Rp and y ∈ (0,∞)d such that
g(x) 6= 0 and Λ(y|x) 6= 0. If α in (8) is such that α→ 0, nhpα→∞ and, for some ζ > 0,

nhpαmax

(
h, b(α−1|x), ω

2/3
h,ζ (αy|x), max

i=1,...,d

(
ω̄

(i)
h,ζ(yiα|x)

))2

→ 0,

as n→∞, then
Λ̌h,h(y|x)− Λ(y|x) = OP

(
(nhpα)−1/2

)
.

Here, the estimators of q(·|x) and S(·|x) share the same bandwidth and thus the same rate of con-
vergence (nhpα)−1/2. Hence, plugging-in (9) in Λ̃h(y|x) does not change this rate of convergence.
Finally, in the case h 6= k, the asymptotic behavior of Λ̌h,k(y|x) is a consequence of Theorem 2(ii).

Corollary 2. Suppose H.1, H.2, H.3 and H.5 hold. Let x ∈ Rp and y ∈ (0,∞)d such that
g(x) 6= 0 and Λ(y|x) 6= 0. If h/k → 0 and α in (8) is such that α → 0, nhpα → ∞, nkp+2α → 0

and, for some ζ > 0,

nhpαmax

(
b(α−1|x), ω

2/3
h,ζ (αy|x),

(
k

h

)p/2
max
i=1,...,d

ω̄
(i)
h,ζ(yiα|x)

)2

→ 0,

as n→∞, then

(nhpα)1/2(Λ̌h,k(y|x)− Λ(y|x))
d−→ N

(
0,
‖K‖22Λ(y|x)

g(x)

)
.

Note that condition h/k → 0 entails that the rate of convergence of the margin estimators (nkpα)1/2

is faster than the one of the conditional copula estimator (nhpα)1/2. The asymptotic normality of
the plug-in estimator can thus be established and the obtained rate of convergence is (nhpα)1/2.

4 Illustration on simulated data

The estimation of the conditional tail copula is investigated on a two-dimensional (d = 2) simulated
dataset where the marginal distributions are supposed to be unknown. We limit ourselves to
a univariate covariate (p = 1) and we focus on the estimator Λ̌h,h(·|x) studied in Corollary 1.
The conditional margins are estimated by (9) and the smoothness of both the estimators of the
conditional copula and of the marginal distributions is tuned by the same bandwidth h and by the
same bi-quadratic kernel given for x ∈ R by:

K(x) :=
15

16
(1− x2)2I{|x| ≤ 1}.

The simulated model is described in Paragraph 4.1, implementation details are given in Para-
graph 4.2 and results are reported in Paragraph 4.3.
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4.1 Model

The covariate X ∈ [0, 1] follows a standard uniform distribution. The conditional distribution of
Y1 given X = x is an exponential distribution with mean parameter µ(x) > 0. Besides, Y2 given
X = x follows a Pareto distribution with tail-index γ(x) > 0, i.e. P(Y2 > y|X = x) = y−1/γ(x) for
all y ≥ 1. The dependence structure between the margins Y1 and Y2 is controlled by the Gumbel
copula defined for (u1, u2) ∈ (0, 1)2 by:

S(u1, u2|x) = exp

{
−
[
(− ln(1− u1))

θ(x)
+ (− ln(1− u2))

θ(x)
]1/θ(x)

}
+ u1 + u2 − 1,

where for all x ∈ [0, 1], θ(x) > 1 tunes the dependence level. If θ(x) = 1, then S(u1, u2|x) = u1u2

is the independent copula. At the opposite, if θ(x)→ +∞, then S(u1, u2|x)→ min{u1, u2} which
is the Fréchet upper bound copula for modeling co-monotone random variables. The conditional
tail copula is given by:

Λ(y1, y2|x) = y1 + y2 −
(
y
θ(x)
1 + y

θ(x)
2

)1/θ(x)

, (15)

for all (y1, y2) ∈ (0,∞)2 and x ∈ [0, 1]. The function θ is θ(x) = 12x2 − 12x + 5 for x ∈ [0, 1], its
minimum is θ(0.5) = 2 while its maximum is θ(0) = θ(1) = 5. Two cases are considered for the
functions µ and γ driving the margin distributions:

µ(x) = γ(x) = 1 (Case 1) and µ(x) = γ(x) + 1/2 =
1

2
sin(2πx) + 1 (Case 2).

Let us note that, in Case 1, the margins do not depend on the covariate. For visualization purposes,
only two different values of x are considered: x = 0.1 corresponding to a strong dependence and
x = 0.5 corresponding to a weak dependence. The associated conditional tail copulas are depicted
on Figure 1.

4.2 Hyper-parameters selection

The considered conditional tail copula estimator Λ̌h,h(.|x) depends on two hyper-parameters h and
α. These parameters are selected thanks to the homogeneity criterion

H(h, α) :=
∑
t∈T

(
Λ̌h,h(t, t|x)− tΛ̌h,h(1, 1|x)

)2
=

1

α2

∑
t∈T

(
Šh,h(tα, tα|x)− tŠh,h(α, α|x)

)2
,

where T ⊂ (0,∞) is a finite set. The selected parameters hsel,x and αsel,x are given by

(hsel,x, αsel,x) := arg min
α∈A,h∈B

H(h, α),

where A and B are finite sets of possible values for α and h respectively. Note that the selected
parameters may depend on the value x of the covariate. This selection procedure will be compared
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in Section 4.3 to an oracle strategy consisting in taking the values hora,x and αora,x that minimize
the oracle criterion:

Hora(h, α) :=
∑
t∈T

(
Λ̌h,h(t, t|x)− Λ(t, t|x)

)2
=

1

α2

∑
t∈T

(
Šh,h(tα, tα|x)− αΛ(t, t|x)

)2
.

Of course, this oracle strategy cannot be applied in practical situations since the tail copula Λ(·|x)

is unknown. The idea behind this homogeneity criterion is that, for well chosen hyper-parameters h
and α, Λ̌h,h(.|x) should provide a good approximation of the conditional tail copula which, among
other properties, is an homogeneous function and thus, one can expect the function Λ̌h,h(.|x)

to be approximately homogeneous. At the opposite, a bad choice of h and α can lead to a
large difference between Λ̌h,h(t, t|x) and tΛ̌h,h(1, 1|x) for some values of t > 0. In what follows,
T = {1/3, 2/3, 1, 4/3, 5/3}, A is the set of 30 regularly spaced values ranging from 0.05 to 0.3 and
B is the set of 30 regularly spaced values ranging from 0.03 to 0.2.

4.3 Results

In this experiment, N = 100 independent copies of a sample of size n = 1000 are simulated from
the model presented in Paragraph 4.1. In order to assess the behavior of the hyper-parameters
selection procedure, the distribution over the N replications of the selected hyper-parameters hsel,x
and αsel,x is compared with the one of hyper-parameters hora,x and αora,x selected by the oracle
strategy. The corresponding boxplots are displayed on Figure 2 for Case 1 and x = 0.1. The
boxplots associated with our procedure and with the oracle strategy are quite similar even if a
largest dispersion can be observed for our selection procedure. The median as well as the mean-
squared error of the N estimations of Λ(y1, y2|x) are represented for (y1, y2) ∈ [0, 3]2 respectively
on Figures 3 and 4. A numerical summary of Figure 4 is proposed in Table 1 where the numerical
values of the mean-squared error associated with the N estimations of Λ(y, y|x) are given for
y ∈ {1/3, 2/3, 1, 4/3, 5/3, 3}. In all cases, the estimations of Figure 3 allow to visually recover
the shape of the true conditional tail copula, see Figure 1. Focusing on Figure 4 and Table 1, it
appears that the mean-squared error gets larger when the conditional tail copula increases. This
phenomena can be explained thanks to Theorem 2(ii): The asymptotic variance is proportional
to the conditional tail copula. One can also note that Case 1 (where the margins do not depend
on the covariate) yields smaller mean-squared errors than Case 2. Finally, the “boundary effect”
due to kernel estimation does not appear in this simulated example. In other situations, one may
consider the use of mirror-reflection type estimators [20] or kernel local linear estimators [8].

5 Illustration on real data

In this section, our approach is illustrated on the so-called pima-indians-diabetes dataset1

consisting of nine variables measured on subjects aged from 21 to 81 years. This population was
1http://ftp.ics.uci.edu/pub/machine-learning-databases/pima-indians-diabetes
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studied in order to understand the high prevalence of diabetes in the Pima Indian population. For
visualization sake, only two variables are considered: the diastolic blood pressure (DBP, denoted
by Y1) and the body mass index (BMI, denoted by Y2). It is indeed suspected that high values
of DBP and BMI may represent significant risk factors for diabetes [7]. The original dataset
contains 768 subjects with missing BMI and/or DBP values for 39 of them. In our illustration,
the complete data subset of n = 729 subjects is considered. The age is taken as the univariate
covariable X and its distribution is depicted on Figure 5. The estimation of the conditional tail
copula Λ(y1, y2|x) permits to precise how the age affects the dependence structure between high
values of DBP and BMI. Similarly to Section 4, the conditional tail copula estimator Λ̌h,h(.|x) is
used with the bi-quadratic kernel and the same bandwidth h. Note that both conditional margins
are estimated using (9) with a unique bandwidth h even if BMI and DBP have different ranges.
Indeed, as a copula function, it can be shown that our conditional tail copula estimator is invariant
with respect to strictly monotone transformations and hence, standardizing the variables BMI
and DPB would not affect the estimation. We focus on two values for the covariate: x = 30 years
and x = 60 years. This bandwidth h and the sample fraction α are selected using the procedure
described in Paragraph 4.2 where T = {1/3, 2/3, 1, 4/3, 5/3}, A is the set of 30 regularly spaced
values ranging from 0.07 to 0.5 and B = {1, 2, . . . , 10}. The selected hyper-parameters are given
by (hsel,30 = 2, αsel,30 = 0.085) for x = 30 and, for x = 60 by (hsel,60 = 9, αsel,60 = 0.31). The
bandwidth selected for x = 60 is larger than the one for x = 30 which is not surprising since,
in view of Figure 5 (left panel), young subjects are more numerous than old ones. The resulting
conditional tail copula estimator Λ̌h,h(y1, y2|x) is depicted for (y1, y2) ∈ [0, 3]2 at x = 30 years and
x = 60 years on Figure 6. Clearly, for both values of the age, BMI and DBP are tail dependent.
Moreover, it appears that the dependence between large values of BMI and DBP is weaker for
young subjects than for old ones. This conclusion was however expected. From (4), one can
straightforwardly deduce an estimator of the associated conditional extreme-value distribution:
Ďh,k(y1, y2|x) = y1y2 exp

(
Λ̌h,k(− ln y1,− ln y2|x)

)
. This would open the door to the estimation of

probabilities of conditional extreme events, such as “BMI and DBP are simultaneously large at a
given age”.

6 Conclusion

A nonparametric estimator of the conditional tail copula has been proposed so as to capture the
extreme dependence of a random vector using an additional information on the variables of interest.
Asymptotic properties have been established in the case of known margins and in the more realistic
situation of unknown margins. The finite sample properties of the estimator have been illustrated
on simulated and real datasets. Our future work would include the theoretical study of the process
x 7→ Λ̌h,k(y|x) in order to construct confidence regions.
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7 Proofs

7.1 Preliminary results

The first lemma is a standard result on the density kernel estimator (see Parzen [31] for a proof).

Lemma 1. Under H.2, if nhp →∞ then for all x ∈ Rp such that g(x) 6= 0,

|ĝh(x)− g(x)| = O(h) +OP

(
(nhp)−1/2

)
.

Lemma 2 is dedicated to the random variable S̃h(u|x) − κS̃h(v|x), where κ ∈ {0, 1} and (u, v) ∈
(0, 1)d × (0, 1)d with v ≤ u. Clearly, if the margins are known, it can be seen as an estimator of
S(u|x)−κS(v|x). The asymptotic normality of this random variable is established in the following
result.

Lemma 2. Suppose H.2 holds and let x ∈ Rp such that g(x) 6= 0. Consider two sequences
un ∈ (0, 1)d and vn ∈ (0, 1)d converging to zero as n→∞ such that nhp(S(un|x)−κS(vn|x))→∞.
For some ζ > 0, if there exist a sequence νn such that (1− ζ)νn ≤ vn < un < (1 + ζ)νn with

nhp (S(un|x)− κS(vn|x)) max

(
h,
S(un|x) + κS(vn|x)

S(un|x)− κS(vn|x)
wh,ζ(νn|x)

)2

→ 0,

then,

(nhp(S(un|x)− κS(vn|x)))
1/2

(
S̃h(un|x)− κS̃h(vn|x)

S(un|x)− κS(vn|x)
− 1

)
d−→ N

(
0,
‖K‖22
g(x)

)
.

The proof of this lemma is postponed to the Appendix. Note that if κ = 0, one can take un = vn

and thus Lemma 2 entails that

(nhpS(un|x))
1/2

(
S̃h(un|x)

S(un|x)
− 1

)
d−→ N

(
0,
‖K‖22
g(x)

)
, (16)

and the conditions can be simplified as nhpS(un|x)→∞ and nhpS(un|x) max (h,wh,ζ(νn|x))
2 → 0

as n → ∞. Furthermore, in the particular case where un = 1 + (F̄i(zn|x) − 1)ei, zn ∈ (0, 1),
the previous convergence result establishes the asymptotic normality of the kernel estimators of
the conditional survival functions ˆ̄Fh,i(zn|x). Note that this result has also been established
in [10, Theorem 1] and [11, Proposition 1]. The case of functional covariates is addressed in [18].
Mimicking the proof of Corollary 1 in [11] thus permits to derive the asymptotic normality of the
kernel estimators of the extreme conditional quantiles F̄←i (βn|x).

Lemma 3. Suppose H.2, H.3 hold and let x ∈ Rp such that g(x) 6= 0. Consider a sequence
βn ∈ (0, 1) such that, as n → ∞, nhpβn → ∞ and nhpβn max(h, (w̄

(i)
h,ζ(βn|x)))2 → 0 for some

ζ > 0. Then,

(nhpβn)1/2 F̄←i (βn|x)

ai(F̄←i (βn|x)|x)

(
ˆ̄F
←
h,i(βn|x)

F̄←i (βn|x)
− 1

)
d−→ N

(
0,
‖K‖22
g(x)

)
.
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The last lemma will be useful to deal with differences between two indicator functions. It is a
straightforward consequence of the monotonicity of the indicator function.

Lemma 4. Let y, u, v, m and M be vectors of Rd with, for all i = 1, . . . , d, Mi > max(ui, vi) and
mi < min{ui, vi}. Then,

|I{yi > ui, i = 1, . . . , d} − I{yi > vi, i = 1, . . . , d}|

≤ I{yi > mi, i = 1, . . . , d} − I{yi > Mi, i = 1, . . . , d}.

7.2 Proof of main results

Proof of Theorem 1− First, taking un = αy in (16), one has under the assumptions of Theorem 1

(nhpα)1/2

(
S̃h(αy|x)

S(αy|x)
− 1

)
d−→ N

(
0,

‖K‖22
g(x)Λ(y|x)

)
, (17)

since S(αy|x) = αΛ(y|x)(1+o(1)). Furthermore, (nhpα)1/2(Λ̃n(y|x)−Λ(y|x)) = T1,n+T2,n, where

T1,n =

(
nhp

α

)1/2

S(αy|x)

(
S̃h(αy|x)

S(αy|x)
− 1

)

and T2,n =

(
nhp

α

)1/2

S(αy|x)

(
1− αΛ(y|x)

S(αy|x)

)
.

A direct use of (17) entails that

T1,n
d−→ N

(
0,

Λ(y|x)‖K‖22
g(x)

)
.

Finally, from H.1,
T2,n = O

(
(nhpα)1/2b(α−1|x)

)
= o(1),

which concludes the proof.

Proof of Theorem 2 − We start with the decomposition

Λ̂h(y|x)− Λ(y|x) =
(

Λ̃h(y|x)− Λ(y|x)
)

+
(

Λ̂h(y|x)− Λ̃h(y|x)
)
.

From Theorem 1, the first term of the right-hand side is equal to (nhpα)−1/2ξn, where ξn converges
in distribution to a centered Gaussian variable with variance ‖K‖22Λ(y|x)/g(x). Let us focus on
the second term. From H.4, for all ε > 0, there exists a positive constant cε such that P(An) < ε/2

where

An =

{
ηn max

i=1,...,d

F̄←i (yiα|x)

ai(F̄←i (yiα|x)|x)

∣∣∣∣ q̂i(yiα|x)

F̄←i (yiα|x)
− 1

∣∣∣∣ ≥ cε} .
Furthermore, denoting by q̃n(ϑ) = (q̃n,1(ϑ), . . . , q̃n,d(ϑ))> with, for i = 1, . . . , d,

q̃n,i(ϑ) := F̄←i (yiα|x) + ϑη−1
n ai(F̄

←
i (yiα|x)|x),

14



Lemma 4 entails that under ACn one has for all j = 1, . . . , n:

|I{Yj ≥ q̂n(αy|x)} − I{Yj ≥ q(αy|x)}| ≤ I{Yj ≥ q̃n(−cε)} − I{Yj ≥ q̃n(cε)}.

Thus, under ACn ,∣∣∣Λ̂h(y|x)− Λ̃h(y|x)
∣∣∣ ≤ 1

nhpαĝh(x)

n∑
j=1

|I{Yj ≥ q̃n(−cε)} − I{Yj ≥ q̃n(cε)}|K
(
x−Xj

h

)
= α−1

(
S̃h(ũn(−cε)|x)− S̃h(ũn(cε)|x)

)
,

with ũn(ϑ) = (F̄1(q̃n,1(ϑ)|x), . . . , F̄d(q̃n,d(ϑ)|x))>. Let us now consider the difference S̃h(ũn(−cε)|x)−
S̃h(ũn(cε)|x) using Lemma 2 with κ = 1, un = ũn(−cε) and vn = ũn(cε). We thus need to check
the following three conditions: there exist ζ > 0 and a sequence νn such that

(1− ζ)νn ≤ ũn(cε) < ũn(−cε) ≤ (1 + ζ)νn, (18)

nhp(S(ũn(−cε)|x)− S(ũn(cε)|x))→∞, (19)

and

nhp (S(ũn(−cε)|x)− S(ũn(cε)|x)) max

(
h,
S(ũn(−cε)|x) + S(ũn(cε)|x)

S(ũn(−cε)|x)− S(ũn(cε)|x)
wh,ζ(νn|x)

)2

→ 0. (20)

To this end, asymptotic equivalents of the sequences ũn(±cε) and S(ũn(−cε)|x)− S(ũn(cε)|x) are
required. First, note that a Taylor expansion yields

S(ũn(±cε)|x) = S(αy|x)

+ (ũn(±cε)− αy)>∇S ( αy + τ(ũn(±cε)− αy) |x) (21)

where τ ∈ (0, 1). Next, for i = 1, . . . , d, another first order Taylor expansion entails that, for all
i = 1, . . . , d,

ũn,i(±cε)− αyi = ∓F
′

i ( q̃n,i(±τ̃icε)|x) cεη
−1
n ai(F̄

←
i (αyi|x)|x)

= ∓F
′

i

(
F̄←i (ũn,i(±τ̃icε)|x)

∣∣x) cεη−1
n ai(F̄

←
i (αyi|x)|x),

for τ̃i ∈ (0, 1). Since for all i = 1, . . . , d, equation (13) entails that ũn,i(±τ̃icε) = yiα(1 + o(1)) and
since the function y 7→ F

′

i (F̄
←
i (y|x)|x) is regularly varying at zero with index γi(x) + 1 (see [12],

Corollary 1.1.10), one has

ũn,i(±cε)− αyi = ∓F
′

i

(
F̄←i (yiα|x)|x

)
cεη
−1
n ai(F̄

←
i (αyi|x)|x)(1 + o(1)).

Now, in view of [12], Theorem 1.2.6 and Remark 1.2.7, for i = 1, . . . , d,

ai(y|x) =
F̄i(y|x)

F
′
i (y|x)

(1 + o(1)) as y → yFi(x),
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and thus, for i = 1, . . . , d,

ũn,i(±cε)− αyi = ∓αcεη−1
n yi(1 + o(1)). (22)

Then, condition (18) is satisfied with νn = αy. Furthermore, collecting (21) and (22) leads to

S(ũn(−cε)|x)− S(ũn(cε)|x) = αcεη
−1
n y>

{
∇S ( αy + τ(ũn(−cε)− αy) |x)

+ ∇S ( αy + τ(ũn(cε)− αy) |x)
}

(1 + o(1)).

Then, under H.5,

S(ũn(−cε)|x)− S(ũn(cε)|x) = 2cεΛ(y|x)αη−1
n (1 + o(1)), (23)

and, in view of nhpαη−1
n → ∞, condition (19) is clearly satisfied. Finally, since S(ũn(±cε)|x) =

αΛ(y|x)(1 + o(1)), one has

S(ũn(−cε)|x) + S(ũn(cε)|x)

S(ũn(−cε)|x)− S(ũn(cε)|x)
= OP(ηn),

and thus, condition (14) implies (20). Lemma 2 can now be used with (23) to obtain

S̃h(ũn(−cε)|x)− S̃h(ũn(cε)|x) = 2cεΛ(y|x)αη−1
n (1 + oP(1)).

Hence, for all ε > 0, there exists a positive constant c′ε such that

P
(
η−1
n

∣∣∣Λ̂h(y|x)− Λ̃n(y|x)
∣∣∣ > c′ε

∣∣∣ACn) ≤ ε

2
,

and thus
P
(
η−1
n

∣∣∣Λ̂h(y|x)− Λ̃n(y|x)
∣∣∣ > c′ε

)
≤ ε

2
+ P(An) ≤ ε,

which concludes the proof.

Proof of Corollary 1 − Under the assumptions of Lemma 3, the estimator q̂n(u|x) defined in (9)
satisfies condition H.4 with ηn = (nhpα)1/2. Applying Theorem 2(i) concludes the proof.

Proof of Corollary 2 − Under the assumptions of Lemma 3, the estimator q̂n(u|x) defined in (9)
satisfies condition H.4 with ηn = (nkpα)1/2. Applying Theorem 2(ii) concludes the proof.
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Appendix

Proof of Lemma 2 − Let us introduce the random variable

Ψ̃h,κ(un, vn|x) := ĝh(x)
(
S̃h(un|x)− κS̃h(vn|x)

)
,

where κ ∈ {0, 1}. We first focus on its expectation. Since (Y1, . . . , Yn) are identically distributed,
one has

E(Ψ̃h,κ(un, vn|x)) = h−pE
{

[I{Y ≥ q(un|x)} − κI{Y ≥ q(vn|x)}]K
(
x−X
h

)}
= h−p

∫
Rp

[F̄ (q(un|x)|t)− κF̄ (q(vn|x)|t)]K
(
x− t
h

)
g(t)dt

=

∫
S

[F̄ (q(un|x)|x− hs)− κF̄ (q(vn|x)|x− hs)]K(s)g(x− hs)ds,

and therefore∣∣∣∣∣ E(Ψ̃h,κ(un, vn|x))

S(un|x)− κS(vn|x)
− g(x)

∣∣∣∣∣ ≤
∫
S
K(s)|g(x− hs)− g(x)|ds

+

∫
S
K(s)

∣∣∣∣ F̄ (q(un|x)|x− hs)− κF̄ (q(vn|x)|x− hs)
S(un|x)− κS(vn|x)

− 1

∣∣∣∣ g(x− hs)ds.
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Clearly, under H.2, the first term of the right hand-side of the previous inequality is a O(h).
Moreover, under H.2, ∫

S
K(s)g(x− hs)ds = g(x)(1 + o(1)),

and ∣∣∣∣ F̄ (q(un|x)|x− hs)− κF̄ (q(vn|x)|x− hs)
S(un|x)− κS(vn|x)

− 1

∣∣∣∣ ≤ S(un|x) + κS(vn|x)

S(un|x)− κS(vn|x)
ωh,ζ(νn|x).

Hence, the second term is a

O
(
S(un|x) + κS(vn|x)

S(un|x)− κS(vn|x)
wh,ζ(νn|x)

)
.

As a first conclusion, one has that E(Ψ̃h,κ(un, vn|x)) is equal to:

g(x)(S(un|x)− κS(vn|x))

(
1 +O(h) +O

(
S(un|x) + κS(vn|x)

S(un|x)− κS(vn|x)
wh,ζ(νn|x)

))
. (24)

Let us now focus on the variance of Ψ̃h,κ(un, vn|x). First, remark that

Ψ̃h,κ(un, vn|x)− E(Ψ̃h,κ(un, vn|x)) =

n∑
j=1

Zj,n,

where

Zj,n :=
1

nhp

(
[I{Yj ≥ q(un|x)} − κI{Yj ≥ q(vn|x)}]K

(
x−Xj

h

)
− hpE(Ψ̃h,κ(un, vn|x))

)
,

are independent, centered and identically distributed random variables. Remarking that for all
τ > 0, [I{Yj ≥ q(un|x)} − κI{Yj ≥ q(vn|x)}]τ = I{Yj ≥ q(un|x)} − κI{Yj ≥ q(vn|x)}, the variance
of Ψ̃h,κ(un, vn|x) is equal to:

‖K‖22
nh2p

(
E
(

[I{Y ≥ q(un|x)} − κI{Y ≥ q(vn|x)}]Q
(
x−X
h

))
− h2p

‖K‖22
E2(Ψ̃h,κ(un, vn|x))

)
,

where Q := K2/‖K‖22 has the same properties as K. Thus, (24) entails

Var(Ψ̃h(un|x))) =
‖K‖22g(x)

nhp
(S(un|x)− κS(vn|x))

×
(

1 + o(1)− g(x)

‖K‖22
hp(S(un|x)− κS(vn|x))(1 + o(1))

)
,

and, in view of hp(S(un|x)− κS(vn|x)) ≤ hp → 0, one has

Var(Ψ̃h(un|x))) =
‖K‖22g(x)

nhp
(S(un|x)− κS(vn|x))(1 + o(1)). (25)

Lyapounov theorem can be used to establish the asymptotic normality of Ψ̃h,κ(un, vn|x). From (25),
the Lyapounov condition reduces to:

lim
n→∞

(
nhp

S(un|x)− κS(vn|x)

)1+δ/2

nE|Z1,n|2+δ = 0, (26)
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for some δ > 0. Hence, if (26) is satisfied, the following convergence holds(
nhp

S(un|x)− κS(vn|x)

)1/2 (
Ψ̃h,κ(un, vn|x)− E(Ψ̃h,κ(un, vn|x))

)
d−→ N (0, g(x)‖K‖22). (27)

To prove (26), remark that for two random variables T1 and T2,

E|T1 + T2|2+δ ≤ 22+δ max(E|T1|2+δ,E|T2|2+δ).

Thus, one has

E|Z1,n|2+δ ≤
(

2‖K‖2+δ

nhp

)2+δ

E
(

[I{Y ≥ q(un|x)} − κI{Y ≥ q(vn|x)}]N
(
x−X
h

))
,

where N := (K/‖K‖2+δ)
2+δ is a bounded density function on Rp with same support as K. Us-

ing (24) yields

E|Z1,n|2+δ ≤
(

2‖K‖2+δ

nhp

)2+δ

hp(S(un|x)− κS(vn|x))(1 + o(1)).

Hence, condition (26) is satisfied and convergence (27) holds. Finally, remark that

(nhp(S(un|x)− κS(vn|x)))1/2

(
S̃h(un|x)− κS̃h(vn|x)

S(un|x)− κS(vn|x)
− 1

)
= T1,n + T2,n + T3,n,

where

T1,n :=
(nhp(S(un|x)− κS(vn|x)))1/2

ĝh(x)

Ψ̃h,κ(un, vn|x)− E(Ψ̃h,κ(un, vn|x))

S(un|x)− κS(vn|x)
,

T2,n :=
(nhp(S(un|x)− κS(vn|x)))1/2

ĝh(x)

E(Ψ̃h,κ(un, vn|x))− g(x)(S(un|x)− κS(vn|x))

S(un|x)− κS(vn|x)
,

and T3,n :=
(nhp(S(un|x)− κS(vn|x)))1/2

ĝh(x)
(g(x)− ĝh(x)).

From (27), ĝh(x)T1,n
d−→ N (0, g(x)‖K‖22). Since from Lemma 1, ĝh(x)

P−→ g(x), one has that
T1,n

d−→ N (0, ‖K‖22/g(x)). Furthermore, (24) implies that

T2,n =
g(x)

ĝh(x)
(nhp(S(un|x)−κS(vn|x)))1/2

(
O(h) +O

(
S(un|x) + κS(vn|x)

S(un|x)− κS(vn|x)
wh,ζ(νn|x)

))
= o(1),

by assumptions. Finally, Lemma 1 entails that T3,n = oP(1) which completes the proof.

Case 1 Case 2
y 1/3 2/3 1 4/3 5/3 3 1/3 2/3 1 4/3 5/3 3

x = 0.1 0.04 0.05 0.07 0.10 0.11 0.31 0.07 0.11 0.17 0.22 0.26 0.32
x = 0.5 0.06 0.10 0.17 0.21 0.27 0.61 0.11 0.21 0.34 0.43 0.51 0.67

Table 1: Mean-squared errors of the N estimations of Λ(y, y|x) for y ∈ {1/3, 2/3, 1, 4/3, 5/3, 3}.
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Figure 1: Conditional tail copula Λ(y1, y2|x) given in (15) for (y1, y2) ∈ [0, 3]2 at x = 0.1 (left
panel) and x = 0.5 (right panel).
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Figure 2: Boxplots of the hyper-parameters h (left) and α (right) selected by our procedure
(selected) and by the oracle strategy (oracle) on simulated data in the Case 1 with x = 0.1.
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Figure 3: Median of the conditional tail copula estimates computed on simulated data for (y1, y2) ∈
[0, 3]2 in Case 1 (top) and Case 2 (bottom) at x = 0.1 (left) and x = 0.5 (right).
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Figure 4: Mean-squared error associated with the conditional tail copula estimates computed on
simulated data for (y1, y2) ∈ [0, 3]2 in Case 1 (top) and Case 2 (bottom) at x = 0.1 (left) and
x = 0.5 (right).
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Figure 5: Histogram of the covariate X (age) in the pima-indians-dataset.
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Figure 6: Conditional tail copula estimator Λ̌h,h(y1, y2|x) computed on the pima-indians-dataset
for (y1, y2) ∈ [0, 3]2 at x = 30 years (left panel) and x = 60 years (right panel).
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