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The tail copula is widely used to describe the dependence in the tail of multivariate distributions. In some situations such as risk management, the dependence structure may be linked with some covariate. The tail copula thus depends on this covariate and is referred to as the conditional tail copula. The aim of this paper is to propose a nonparametric estimator of the conditional tail copula and to establish its asymptotic normality. Some illustrations are presented both on simulated and real datasets.

Introduction

In various domains such as insurance, finance and hydrology, there is increasing interest in understanding the dependence structure between large values of several variables. For instance, in finance, one can be interested in the link between large values of the market index and large returns of individual stocks, see [START_REF] Ané | Dependence structure and risk measure[END_REF][START_REF] Mcneil | Quantitative risk managements: concepts, techniques, tools[END_REF]. The dependence structure of a random vector Y = (Y 1 , . . . , Y d ) with d ≥ 2 is commonly modeled using a copula. Recall that a copula is a multivariate distribution function with uniformly distributed margins on the interval [0, 1]. Let us denote by Fi the marginal survival functions of Y , i = 1, . . . , d. From Sklar's theorem [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF], if the margins of Y are continuous, then there exists a unique copula S defined on (0, 1) d such that F (y) := P(Y ≥ y) = S( F1 (y 1 ), . . . , Fd (y d )) for all y = (y 1 , . . . , y d ) ∈ R d . This function S is therefore given by S(u) = F (q(u)) for all u = (u 1 , . . . , u d ) ∈ (0, 1) d , where q(u) := ( F ← 1 (u 1 ), . . . , F ← d (u d )) is a multivariate quantile. Note that (a 1 , . . . , a d ) ≥ (b 1 , . . . , b d ) corresponds to the componentwise inequality a i ≥ b i for all i = 1, . . . , d. Additionally, f ← denotes the generalized inverse of a decreasing function f i.e, f ← (x) = inf{t, f (t) ≤ x}. As mentioned in [START_REF] Ané | Dependence structure and risk measure[END_REF], the tail copula is a useful tool to describe the upper tail dependence structure. It is defined as follows: if there exists a function Λ : (0, ∞) d → [0, ∞) such that

lim α→0 + 1 α S(αy) = Λ(y), y ∈ (0, ∞) d , (1) 
then Λ is called the tail copula [START_REF] Schmidt | Nonparametric estimation of tail dependence[END_REF]. Let us highlight that, since the domain of definition of Λ is not limited to the unit hypercube, Λ is not a proper copula. However, many properties of Λ are closely related to copula properties [START_REF] Schmidt | Nonparametric estimation of tail dependence[END_REF]Theorems 1,[START_REF] Ané | Dependence structure and risk measure[END_REF]. Moreover, in view of ( 1), it appears that Λ is a homogeneous positive function. Besides, S is a multivariate regularly varying function at zero since lim

α→0 + S(αy) S(α1) = W (y),
where W (•) = Λ(•)/Λ(1) and 1 = (1, . . . , 1) ∈ R d . We refer to [START_REF] Resnick | Extreme Values, Regular Variation and Point Processes[END_REF]Chapter 5] for a definition of multivariate regularly varying functions and to [START_REF] Bingham | Regular variation[END_REF] for a general account on regular variation. In practice, the tail copula is often reduced to the tail-dependence coefficient defined by

λ := Λ(1) = lim α→0 + 1 α P Y i ≥ F ← i (α), ∀i = lim α→0 + P Y i ≥ F ← i (α), i = j Y j ≥ F ← j (α) .
It was first introduced by [START_REF] Sibuya | Bivariate extreme statistics[END_REF] in the bivariate case. The multivariate random vector Y is said to be tail-dependent if λ ∈ (0, 1] and tail-independent if λ = 0. The case λ = 1 corresponds to complete tail dependence. When λ = 0, large values of the margins Y i are unlikely to happen simultaneously. For example, it is well known that a bivariate normal distribution with correlation coefficient different from ±1 is tail-independent. In finance, λ can be interpreted as the limiting likelihood that a return falls below its Value at Risk, given that another portfolio return has fallen below its Value at Risk at the same level. However, since λ is only a scalar measure of dependence, it may suffer from a loss of information considering the joint behavior of the distribution tails. In contrast, the tail copula S describes the full dependence structure. We also refer to [START_REF] Jäschke | Modeling dependence of extreme events in energy markets using tail copulas[END_REF] for an application of modeling log returns in crude oil and natural gas futures.

The bivariate case (d = 2) has been widely studied in the literature especially when the distribution function of Y belongs to the maximum domain of attraction of a bivariate extreme-value distribution G. In such a case, there exist positive sequences (a 1,n ), (a 2,n ) and sequences

(b 1,n ) and (b 2,n ) such that lim n→∞ P max j=1,...,n Y 1,j -b 1,n a 1,n ≤ y 1 , max j=1,...,n Y 2,j -b 2,n a 2,n ≤ y 2 = G(y 1 , y 2 ),
where (Y 1,j , Y 2,j ), j = 1, . . . , n are independent copies of the random vector Y = (Y 1 , Y 2 ). The bivariate extreme-value distribution G can be written as G(y 1 , y 2 ) = D(G 1 (y 1 ), G 2 (y 2 )), where G 1 and G 2 are the margins of G and D is the bivariate extreme-value copula defined by:

D(u, v) = exp ln(uv)A ln u ln(uv) . (2) 
The marginal distributions G 1 and G 2 are univariate extreme value distributions i.e. for i ∈ {1, 2},

G i (x) = exp{-(1 + γ i x) -1/γi + },
where y + = max(0, y) and γ i ∈ R is called the extreme-value index. The function A(t) is referred to as the Pickands dependence function. It is a convex function lying in a triangular area i.e. such that max(t, (1 -t)) ≤ A(t) ≤ 1 for all t ∈ [0, 1]. It can be shown [START_REF] Resnick | Extreme Values, Regular Variation and Point Processes[END_REF]Chapter 5] that for a bivariate distribution function in the maximum domain of attraction of G, the tail copula exists and is given by

Λ(y 1 , y 2 ) = (y 1 + y 2 ) 1 -A y 1 y 1 + y 2 . (3) 
Collecting ( 2) and ( 3), the bivariate extreme-value copula can be rewritten in terms of the tail copula as

D(u, v) = uv exp (Λ(-ln u, -ln v)) . (4) 
As a consequence, in the bivariate case, the tail copula and the Pickands dependence function both fully characterize the extreme dependence structure of Y . Finally, one may equivalently consider the so-called stable tail-dependence function given by

(y 1 , y 2 ) = y 1 + y 2 -Λ(y 1 , y 2 ) (5) 
to describe the extreme dependence structure.

In the bivariate case, numerous nonparametric estimators of the Pickands dependence function have been introduced [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme values copulas[END_REF][START_REF] Deheuvels | On the limiting behavior of the Pickands estimator for bivariate extreme value distributions[END_REF][START_REF] Pickands | Multivariate extreme value distribution[END_REF][START_REF] Zhang | Nonparametric estimation of the dependence function for a multivariate extreme-value distribution[END_REF] thanks to an interpretation of A in terms of exponential distributions. In [START_REF] Hall | Distribution of dependence function estimation for bivariate extreme-value distributions[END_REF], it is noted that such estimators may not provide proper dependence functions (convex and lying in the above triangular area) and two new estimators satisfying these constraints are introduced. Similarly, a projection technique is proposed in [START_REF] Fils-Villetard | Projection estimators of Pickands dependence functions[END_REF] to force any estimator to be a proper dependence function. The above mentioned estimators are constructed assuming knowledge of the marginal distributions. Rank-based versions of these estimators are proposed for the unknown margins case in [START_REF] Genest | Rank-based inference for bivariate extreme-value copulas[END_REF]. The use of a graphical tool for detecting extreme value dependence is investigated in [START_REF] Cormier | Using B-splines for nonparametric inference on bivariate extreme-value copulas[END_REF]. The estimation of A within the class of Archimax copulas is studied in [START_REF] Capéraà | Bivariate distributions with given extreme value attractor[END_REF]. See [START_REF] Beirlant | Statistics of Extremes: Theory and Applications[END_REF]Chapter 9] for an overview of parametric and nonparametric inference methods for bivariate Pickands dependence functions. We also refer to [START_REF] Gudendorf | Nonparametric estimation of an extreme-value copula in arbitrary dimensions[END_REF][START_REF] Gudendorf | Nonparametric estimation of multivariate extreme-value copulas[END_REF] for extensions to the general multivariate setting. In view of (5), it is clear that estimating the stable tail-dependence function or the tail copula are equivalent problems. First estimators of were introduced in [START_REF] Huang | Statistics of Bivariate Extreme Values[END_REF] in the bivariate case. They have been adapted to the estimation of the tail copula [START_REF] Schmidt | Nonparametric estimation of tail dependence[END_REF] and compared to nonparametric estimators based on the empirical copula. Parametric estimators of Λ have also been proposed in the bivariate case [START_REF] De Haan | Parametric tail copula estimation and model testing[END_REF] and for multivariate elliptical copulas [START_REF] Li | Goodness-of-fit test for tail copulas modeled by elliptical copulas[END_REF].

The case where the random vector Y is recorded simultaneously with a predictive variable X ∈ R p has been less considered. In [START_REF] Zhang | A note on tail dependence regression[END_REF], the authors propose to estimate the tail-dependence coefficient in the regression case using a maximum likelihood approach. In this regression framework, S is a conditional copula. Its estimation is addressed in [START_REF] Gijbels | Conditional copulas, association measures and their applications[END_REF][START_REF] Veraverbeke | Estimation of a conditional copula and association measures[END_REF] with nonparametric techniques and in [START_REF] Abegaz | Semiparametric estimation of conditional copulas[END_REF] using semiparametric approaches. The case of functional covariates is studied in [START_REF] Gijbels | Multivariate and functional covariates and conditional copulas[END_REF]. To our knowledge, the estimation of the tail copula in the regression case has not been considered yet despite potential applications in the study of the Chinese stock market [START_REF] Zhang | A note on tail dependence regression[END_REF] or the modeling of financial returns [START_REF] Fung | Modeling and estimation for bivariate financial returns[END_REF].

We thus consider a random vector (X,

Y ) ∈ R p × R d . For i = 1, . . . , d, the conditional survival function of Y i given X = x is denoted by Fi (•|x) := P(Y i ≥ •|X = x).
The dependence structure of Y conditionally on X = x is then characterized by the conditional copula:

S(u|x) = F (q(u|x)|x) , u = (u 1 , . . . , u d ) ∈ R d ,
where F (•|x) : R d → [0, 1] is the conditional survival function of Y given X = x and q(•|x) is the multivariate conditional quantile defined as q(u|x)

:= ( F ← 1 (u 1 |x), . . . , F ← d (u d |x)
) . Similarly to (1), the conditional tail copula is thus defined by

Λ(y|x) := lim α→0 + 1 α S ( αy| x) , y ∈ (0, ∞) d , (6) 
if this limit exists. In the following, we focus on the case Λ(y|x) > 0 i.e. tail-dependent distributions.

In Section 2, nonparametric estimators of Λ(y|x) are introduced for a fixed vector (x, y) ∈ R p × (0, ∞) d in both situations where the margins are known and unknown. Their asymptotic properties are established in Section 3. A simulation study is presented in Section 4 and an illustration on real data is proposed in Section 5. Concluding remarks are drawn in Section 6. Finally, proofs of the main results are provided in Section 7.

Estimation of the conditional tail copula

Let (X j , Y j ), j = 1, . . . , n be independent copies of the random vector (X, Y ). The estimator of the conditional tail copula is based on a nonparametric estimator of the conditional copula function of Y given X = x. We propose to use a classical kernel estimator. The first step consists of estimating the probability density function g of X by:

ĝh (x) = 1 nh p n j=1 K x -X j h , x ∈ R p ,
where h = h n,x is a non random sequence tending to zero as n goes to infinity and K is a bounded density on R p with support S included in the unit ball of R p . Note that the sequence h may depend on x. As mentioned in the introduction, in many related papers, the margins are supposed to be known. In this situation, the conditional copula S(.|x) can be estimated by

S h (u|x) := 1 nh p ĝh (x) n j=1 I{Y j ≥ q(u|x)}K x -X j h , u ∈ (0, 1) d , x ∈ R p ,
where I{.} is the indicator function. An estimator of the tail copula is then given by:

Λh (y|x) = 1 α S h (αy|x), (7) 
where y ∈ (0, ∞) d and α = α n,x is a (0, 1)-valued sequence tending to zero as n goes to infinity.

In this paper, we consider the more realistic case where nothing is known on the margins. In this situation, the estimation of the marginal survival functions of Y given X = x is obviously required. For all u ∈ (0, 1) d , let us denote by

q(u|x) = (q 1 (u 1 |x), . . . , qd (u d |x))
an estimator of the vector q(u|x) ∈ R d . The following plug-in estimator of the conditional copula is considered:

Ŝh (u|x) := 1 nh p ĝh (x) n j=1 I{Y j ≥ q(u|x)}K x -X j h , u ∈ (0, 1) d , x ∈ R p
and the conditional tail copula is then estimated by:

Λh (y|x) = 1 α S h (αy|x). (8) 
As an example of an estimator of q(u|x), one can propose the statistic

qk (u|x) := ( F ← k,1 (u 1 |x), . . . , F ← k,d (u d |x)) , (9) 
where k = k n,x is a non random sequence tending to zero as n goes to infinity and, for i = 1, . . . , d, F k,i (•|x) is the usual kernel estimator (with bandwidth k) of a conditional survival function:

F k,i (z|x) = 1 nk p ĝk (x) n j=1 I{Y i,j ≥ z}K x -X j k .
The obtained estimators of the conditional copula and of the tail copula are respectively denoted by Šh,k (•|x) and Λh,k (•|x). Let us highlight that these estimators depend on two bandwidths h and k. The first one tunes the smoothness of the estimator of the conditional copula, while the second one controls the smoothness of the estimator of the marginal distributions.

Main results

In this section, the asymptotic properties of the estimators Λh (y|x) and Λh (y|x) are established for a fixed vector (x, y) ∈ R p × (0, ∞) d such that Λ(y|x) > 0. The asymptotic behavior of Λh,k (•|x) is also analyzed in the two situations h = k and h = k. Some regularity and extreme-value assumptions are required. The first one is a classical second-order condition on the conditional copula function S(•|x), see for instance [START_REF] Schmidt | Nonparametric estimation of tail dependence[END_REF].

H.1 There exist a function b(•|x) with b(t|x) → 0 as t → ∞ and a function c Λ (•|x) such that, for all y ∈ (0, ∞) d , lim t→∞ Λ(y|x) -tS(t -1 y|x) b(t|x) = c Λ (y|x) < ∞.
Condition H.1 establishes that the rate of convergence in ( 6) is driven by a given function b(•|x).

Let us recall that, necessarily, |b|(•|x) is a regularly varying function at infinity with index ρ(x) < 0, see [START_REF] De Haan | Generalized regular variation of second order[END_REF]. In the extreme-value literature, ρ(x) is referred to as the conditional second order parameter. As an example, let us consider the multivariate extreme-value copula defined for all u = (u 1 , . . . , u d ) by

P(Y ≤ q(1 -u|x)|X = x) = exp κ(u)A ln u i κ(u) , i = 1, . . . , d -1 x , (10) 
where

κ(u) = d l=1 ln u l , and 
A(.|x) : R d-1 → [1/2, 1]
is the conditional multivariate Pickands dependence function [START_REF] Pickands | Multivariate extreme value distribution[END_REF].

Clearly, [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF] is the extension of the bivariate extreme-value copula (2) to a dimension d > 2. It can be shown that, in the dependent case (i.e. A(.|x) = 1) and if A(.|x) is continuously differentiable, then condition H.1 is satisfied with ρ(x) = -1.

A Lipschitz condition on the probability density function g of X is also required. Denoting by d(x, x ) the Euclidean distance between x ∈ R p and x ∈ R p , it is assumed that H.2 There exists a positive constant c g such that |g(x) -g(x )| ≤ c g d(x, x ).

For x ∈ R p and u ∈ (0, 1) d , the oscillation of the conditional survival function F (.|.) is controlled in a neighborhood of q(u|x) by the following quantity:

ω h,ζ (u|x) = sup F (q(v|x)|t) S(v|x) -1 for t ∈ B(x, h), (1 -ζ)u ≤ v ≤ (1 + ζ)u , (11) 
where ζ ∈ [0, 1) and B(x, h) is the ball of R p centered at x with radius h.

In a first time, conditions H.1 and H.2 are sufficient to establish the asymptotic normality of the estimator Λh (y|x) in the (unrealistic) situation where the margins are known.

Theorem 1. Suppose H.1 and H.2 hold. Let x ∈ R p and y ∈ (0, ∞) d such that g(x) = 0 and

Λ(y|x) = 0. If α in (7) is such that α → 0, nh p α → ∞ and nh p α max h, ω h,0 (αy|x), b(α -1 |x) 2 → 0 (12)
as n → ∞, then,

(nh p α) 1/2 Λh (y|x) -Λ(y|x) d -→ N 0, K 2 2 Λ(y|x) g(x) .
As pointed out in [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF], nh p α → ∞ is a necessary and sufficient condition for the almost sure presence of at least one sample point in the region B(x, h) × (q(α|x), ∞) of R p+d . Condition [START_REF] De Haan | Extreme value theory: An introduction[END_REF] forces the bias to be negligible compared to the standard-deviation of the estimator. Two main sources of bias appear. The first contribution to the bias is due to the kernel smoothing and to the oscillations of order O(h) and O(ω h,0 (αy|x)) of g and F (•|•) respectively. The second source of bias is due to the approximation of the conditional tail copula Λ(y|x) by αS(α -1 y|x). This entails a bias of order O(b(α -1 |x)), see assumption H.1. Let us also highlight that the rate of convergence (nh p α) 1/2 strongly decreases as the dimension p of the covariate increases. This phenomena can be interpreted as a theoretical consequence of the "curse of dimensionality" for kernel-smoothing methods. In practice, for moderate sample sizes, such nonparametric methods are limited to the case p ≤ 2. To overcome this limitation, one can use dimension reduction techniques such as ADE (Average Derivative Estimator), see for instance [START_REF] Härdle | Investigating smooth multiple regression by the method of average derivatives[END_REF].

In order to deal with the case where the margins are estimated, an extreme-value assumption on the conditional marginal distributions of Y given X = x is required. The following von-Mises condition (see [START_REF] De Haan | Extreme value theory: An introduction[END_REF], equation (1.1.30)) is considered:

H.3 For i = 1, . . . , d, the marginal survival function Fi (•|x) is twice differentiable and such that lim y↑y F i (x) Fi (y|x) F i (y|x) ( F i ) 2 (y|x) = γ i (x) + 1,
where

y Fi (x) := F ← i (0|x) ∈ (-∞, ∞] is the right endpoint of the i-th margin, F i (•|x) and F i (•|x)
are respectively the first and the second derivatives of Fi (•|x).

From [START_REF] De Haan | Extreme value theory: An introduction[END_REF], Theorem 1.1.8, condition H.3 entails that the conditional distribution of Y i given X = x is in the domain of attraction of the univariate extreme-value distribution with conditional extremevalue index γ i (x) ∈ R for all i = 1, . . . , d. Note also that from [START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF], Lemma 2, if condition H.3 holds and z n,i (x) → y Fi (x), t n,i (x) → t 0,i (x) as n → ∞ for all i = 1, . . . , d, then there exists a positive auxiliary function a i (•|x) such that

lim n→∞ Fi (z n,i (x) + t n,i (x)a i (z n,i (x)|x)|x) Fi (z n,i (x)|x) = (1 + γ i (x)t 0,i (x)) -1/γi(x) .
Hence, for all sequences α → 0 and

t n,i (x) → 0 as n → ∞, choosing z n,i (x) = F ← i (α|x) → y Fi (x) as α → 0 yields lim n→∞ α -1 Fi F ← i (α|x) + t n,i (x)a i ( F ← i (α|x)|x) x = 1. (13) 
The next assumption allows to control the rate of convergence of the estimator q(•|x) towards the true quantile function q(

•|x) = F ← (•|x).
H.4 There exists a sequence η n → ∞ such that, for all y = (y 1 , . . . ,

y d ) ∈ (0, ∞) d , η n max i=1,...,d F ← i (y i α|x) a i ( F ← i (y i α|x)|x) qi (y i α|x) F ← i (y i α|x) -1 = O P (1).
A condition on the gradient ∇S(•|x) of the conditional copula function is also introduced. It states that convergence [START_REF] Capéraà | Bivariate distributions with given extreme value attractor[END_REF] still holds when differentiating.

H.5

The partial derivatives of the conditional copula S(•|x) exist and are continuous on (0, 1) d . Furthermore, for y ∈ (0, ∞) d and for all vectors ϑ(α, y) such that ϑ(α, y) = αy(1

+ o(1)) as α → 0 + , lim α→0 + y ∇S(ϑ(α, y)|x) = Λ(y|x).
The existence of continuous partial derivatives was shown to be a non restrictive assumption in [START_REF] Segers | Asymptotics of empirical copula processes under non-restrictive smoothness assumptions[END_REF].

H.5 is for instance satisfied by the multivariate extreme-value copula [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF] with A(•|x) = 1 and when A(•|x) is continuously differentiable on (0, 1) d .

We are now in position to state our main result on the asymptotic behavior of Λh (y|x).

Theorem 2. Suppose H.1 -H.5 hold. Let x ∈ R p and y ∈ (0, ∞) d such that g(x) = 0 and Λ(y|x) = 0.

(i) If α in ( 8) is such that α → 0, nh p αη -1 n → ∞ and, for some ζ > 0,

nh p α max h, η 1/2 n ω h,ζ (αy|x), b(α -1 |x) 2 → 0, (14) 
as n → ∞, then Λh (y|x) -Λ(y|x) = (nh p α) -1/2 ξ n + O P η -1 n ,
where ξ n converges in distribution to a N (0, K 2 2 Λ(y|x)/g(x)) random variable. (ii) If, moreover, (nh p α) 1/2 η -1 n → 0, then

(nh p α) 1/2 ( Λh (y|x) -Λ(y|x)) d -→ N 0, K 2 2 Λ(y|x) g(x)
.

Note that Theorem 2(i) yields Λh (y|x) P -→ Λ(y|x). In situation (ii), condition (nh p α) 1/2 η -1 n → 0 entails that the estimator of q(.|x) converges faster than the one of the conditional copula S(.|x). Thus, Λh (y|x) has the same asymptotic behavior as Λh (y|x). In this case, the estimation of the margins does not change the asymptotic distribution.

As an illustration, let us consider the situation where the conditional multivariate quantile q(u|x) is estimated by [START_REF] Cormier | Using B-splines for nonparametric inference on bivariate extreme-value copulas[END_REF]. The regularity of Fi (•|•) is controlled by

ω(i) h,ζ (u|x) = sup Fi ( F ← i (v i |x)|t) v i -1 for t ∈ B(x, h) and (1 -ζ)u i ≤ v i ≤ (1 + ζ)u i
where u ∈ (0, 1) d and ζ ∈ [0, 1). Introducing (e 1 , . . . , e d ) the canonical basis of R d , the above quantity can be rewritten using [START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF] as

ω(i) h,ζ (u|x) = ω h,ζ ((u -1)e i + 1|x
). The situations where the same bandwidth or different bandwidths are used to estimate the conditional copula and the margins are considered separately. Let us first focus on the case h = k. The asymptotic behavior of Λh,h (y|x) is a consequence of Theorem 2(i).

Corollary 1. Suppose H.1, H.2, H.3 and H.5 hold. Let x ∈ R p and y ∈ (0, ∞) d such that g(x) = 0 and Λ(y|x) = 0. If α in ( 8) is such that α → 0, nh p α → ∞ and, for some ζ > 0,

nh p α max h, b(α -1 |x), ω 2/3 h,ζ (αy|x), max i=1,...,d ω(i) h,ζ (y i α|x) 2 → 0, as n → ∞, then Λh,h (y|x) -Λ(y|x) = O P (nh p α) -1/2 .
Here, the estimators of q(•|x) and S(•|x) share the same bandwidth and thus the same rate of convergence (nh p α) -1/2 . Hence, plugging-in [START_REF] Cormier | Using B-splines for nonparametric inference on bivariate extreme-value copulas[END_REF] in Λh (y|x) does not change this rate of convergence. Finally, in the case h = k, the asymptotic behavior of Λh,k (y|x) is a consequence of Theorem 2(ii).

Corollary 2. Suppose H.1, H.2, H.3 and H.5 hold. Let x ∈ R p and y ∈ (0, ∞) d such that g(x) = 0 and Λ(y|x) = 0. If h/k → 0 and α in ( 8) is such that α → 0, nh p α → ∞, nk p+2 α → 0 and, for some ζ > 0,

nh p α max b(α -1 |x), ω 2/3 h,ζ (αy|x), k h p/2 max i=1,...,d ω(i) h,ζ (y i α|x) 2 → 0,
as n → ∞, then

(nh p α) 1/2 ( Λh,k (y|x) -Λ(y|x)) d -→ N 0, K 2 2 Λ(y|x) g(x)
.

Note that condition h/k → 0 entails that the rate of convergence of the margin estimators (nk p α) 1/2 is faster than the one of the conditional copula estimator (nh p α) 1/2 . The asymptotic normality of the plug-in estimator can thus be established and the obtained rate of convergence is (nh p α) 1/2 .

Illustration on simulated data

The estimation of the conditional tail copula is investigated on a two-dimensional (d = 2) simulated dataset where the marginal distributions are supposed to be unknown. We limit ourselves to a univariate covariate (p = 1) and we focus on the estimator Λh,h (•|x) studied in Corollary 1.

The conditional margins are estimated by ( 9) and the smoothness of both the estimators of the conditional copula and of the marginal distributions is tuned by the same bandwidth h and by the same bi-quadratic kernel given for x ∈ R by: 

K(x) := 15 16 (1 -x 2 ) 2 I{|x| ≤ 1}.

Results

In this experiment, N = 100 independent copies of a sample of size n = 1000 are simulated from the model presented in Paragraph 4.1. In order to assess the behavior of the hyper-parameters selection procedure, the distribution over the N replications of the selected hyper-parameters h sel,x and α sel,x is compared with the one of hyper-parameters h ora,x and α ora,x selected by the oracle strategy. The corresponding boxplots are displayed on Figure 2 for Case 1 and x = 0.1. The boxplots associated with our procedure and with the oracle strategy are quite similar even if a largest dispersion can be observed for our selection procedure. The median as well as the meansquared error of the N estimations of Λ(y 1 , y 2 |x) are represented for (y 1 , y 2 ) ∈ [0, 3] 2 respectively on Figures 3 and4. A numerical summary of Figure 4 is proposed in Table 1 where the numerical values of the mean-squared error associated with the N estimations of Λ(y, y|x) are given for y ∈ {1/3, 2/3, 1, 4/3, 5/3, 3}. In all cases, the estimations of Figure 3 allow to visually recover the shape of the true conditional tail copula, see Figure 1. Focusing on Figure 4 and Table 1, it appears that the mean-squared error gets larger when the conditional tail copula increases. This phenomena can be explained thanks to Theorem 2(ii): The asymptotic variance is proportional to the conditional tail copula. One can also note that Case 1 (where the margins do not depend on the covariate) yields smaller mean-squared errors than Case 2. Finally, the "boundary effect" due to kernel estimation does not appear in this simulated example. In other situations, one may consider the use of mirror-reflection type estimators [START_REF] Gijbels | Estimation of the density of a copula function[END_REF] or kernel local linear estimators [START_REF] Cheng | Nonparametric estimation of copula functions for dependence modelling[END_REF].

Illustration on real data

In this section, our approach is illustrated on the so-called pima-indians-diabetes dataset 1 consisting of nine variables measured on subjects aged from 21 to 81 years. This population was studied in order to understand the high prevalence of diabetes in the Pima Indian population. For visualization sake, only two variables are considered: the diastolic blood pressure (DBP, denoted by Y 1 ) and the body mass index (BMI, denoted by Y 2 ). It is indeed suspected that high values of DBP and BMI may represent significant risk factors for diabetes [START_REF] Cheng | On the uth geometric conditional quantile[END_REF]. The original dataset contains 768 subjects with missing BMI and/or DBP values for 39 of them. In our illustration, the complete data subset of n = 729 subjects is considered. The age is taken as the univariate covariable X and its distribution is depicted on Figure 5. The estimation of the conditional tail copula Λ(y 1 , y 2 |x) permits to precise how the age affects the dependence structure between high values of DBP and BMI. Similarly to Section 4, the conditional tail copula estimator Λh,h (.|x) is used with the bi-quadratic kernel and the same bandwidth h. Note that both conditional margins are estimated using ( 9) with a unique bandwidth h even if BMI and DBP have different ranges. Indeed, as a copula function, it can be shown that our conditional tail copula estimator is invariant with respect to strictly monotone transformations and hence, standardizing the variables BMI and DPB would not affect the estimation. We focus on two values for the covariate: x = 30 years and x = 60 years. This bandwidth h and the sample fraction α are selected using the procedure described in Paragraph 4.2 where T = {1/3, 2/3, 1, 4/3, 5/3}, A is the set of 30 regularly spaced values ranging from 0.07 to 0.5 and B = {1, 2, . . . , 10}. The selected hyper-parameters are given by (h sel,30 = 2, α sel,30 = 0.085) for x = 30 and, for x = 60 by (h sel,60 = 9, α sel,60 = 0.31). The bandwidth selected for x = 60 is larger than the one for x = 30 which is not surprising since, in view of Figure 5 (left panel), young subjects are more numerous than old ones. The resulting conditional tail copula estimator Λh,h (y 1 , y 2 |x) is depicted for (y 1 , y 2 ) ∈ [0, 3] 2 at x = 30 years and x = 60 years on Figure 6. Clearly, for both values of the age, BMI and DBP are tail dependent.

Moreover, it appears that the dependence between large values of BMI and DBP is weaker for young subjects than for old ones. This conclusion was however expected. From (4), one can straightforwardly deduce an estimator of the associated conditional extreme-value distribution: Ďh,k (y 1 , y 2 |x) = y 1 y 2 exp Λh,k (-ln y 1 , -ln y 2 |x) . This would open the door to the estimation of probabilities of conditional extreme events, such as "BMI and DBP are simultaneously large at a given age".

Conclusion

A nonparametric estimator of the conditional tail copula has been proposed so as to capture the extreme dependence of a random vector using an additional information on the variables of interest. Asymptotic properties have been established in the case of known margins and in the more realistic situation of unknown margins. The finite sample properties of the estimator have been illustrated on simulated and real datasets. Our future work would include the theoretical study of the process x → Λh,k (y|x) in order to construct confidence regions.

Proofs

Preliminary results

The first lemma is a standard result on the density kernel estimator (see Parzen [START_REF] Parzen | On estimation of a probability density function and mode[END_REF] for a proof).

Lemma 1. Under H.2, if nh p → ∞ then for all x ∈ R p such that g(x) = 0,

|ĝ h (x) -g(x)| = O(h) + O P (nh p ) -1/2 .
Lemma 2 is dedicated to the random variable Sh (u|x) -κ Sh (v|x), where κ ∈ {0, 1} and (u, v) ∈ (0, 1) d × (0, 1) d with v ≤ u. Clearly, if the margins are known, it can be seen as an estimator of S(u|x) -κS(v|x). The asymptotic normality of this random variable is established in the following result.

Lemma 2. Suppose H.2 holds and let x ∈ R p such that g(x) = 0. Consider two sequences u n ∈ (0, 1) d and v n ∈ (0, 1)

d converging to zero as n → ∞ such that nh p (S(u n |x)-κS(v n |x)) → ∞. For some ζ > 0, if there exist a sequence ν n such that (1 -ζ)ν n ≤ v n < u n < (1 + ζ)ν n with nh p (S(u n |x) -κS(v n |x)) max h, S(u n |x) + κS(v n |x) S(u n |x) -κS(v n |x) w h,ζ (ν n |x) 2 → 0, then, (nh p (S(u n |x) -κS(v n |x))) 1/2 Sh (u n |x) -κ Sh (v n |x) S(u n |x) -κS(v n |x) -1 d -→ N 0, K 2 2 g(x) 
.

The proof of this lemma is postponed to the Appendix. Note that if κ = 0, one can take u n = v n and thus Lemma 2 entails that

(nh p S(u n |x)) 1/2 Sh (u n |x) S(u n |x) -1 d -→ N 0, K 2 2 g(x) , (16) 
and the conditions can be simplified as

nh p S(u n |x) → ∞ and nh p S(u n |x) max (h, w h,ζ (ν n |x)) 2 → 0
as n → ∞. Furthermore, in the particular case where u n = 1 + ( Fi (z n |x) -1)e i , z n ∈ (0, 1), the previous convergence result establishes the asymptotic normality of the kernel estimators of the conditional survival functions F h,i (z n |x). Note that this result has also been established in [10, Theorem 1] and [11, Proposition 1]. The case of functional covariates is addressed in [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF]. Mimicking the proof of Corollary 1 in [START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF] thus permits to derive the asymptotic normality of the kernel estimators of the extreme conditional quantiles

F ← i (β n |x).
Lemma 3. Suppose H.2, H.3 hold and let x ∈ R p such that g(x) = 0. Consider a sequence β n ∈ (0, 1) such that, as n → ∞, nh p β n → ∞ and nh p β n max(h, (

w(i) h,ζ (β n |x))) 2 → 0 for some ζ > 0. Then, (nh p β n ) 1/2 F ← i (β n |x) a i ( F ← i (β n |x)|x) F ← h,i (β n |x) F ← i (β n |x) -1 d -→ N 0, K 2 2 g(x) 
.

The last lemma will be useful to deal with differences between two indicator functions. It is a straightforward consequence of the monotonicity of the indicator function.

Lemma 4. Let y, u, v, m and M be vectors of R d with, for all i = 1, . . . , d, M i > max(u i , v i ) and m i < min{u i , v i }. Then,

|I{y i > u i , i = 1, . . . , d} -I{y i > v i , i = 1, . . . , d}| ≤ I{y i > m i , i = 1, . . . , d} -I{y i > M i , i = 1, . . . , d}.

Proof of main results

Proof of Theorem 1 -First, taking u n = αy in ( 16), one has under the assumptions of Theorem 1

(nh p α) 1/2 Sh (αy|x) S(αy|x) -1 d -→ N 0, K 2 2 g(x)Λ(y|x) , (17) 
since S(αy|x) = αΛ(y|x)(1+o(1)). Furthermore, (nh p α) 1/2 ( Λn (y|x)-Λ(y|x)) = T 1,n +T 2,n , where

T 1,n = nh p α 1/2 S(αy|x) Sh (αy|x) S(αy|x) -1 and T 2,n = nh p α 1/2 S(αy|x) 1 - αΛ(y|x) S(

αy|x) .

A direct use of ( 17) entails that

T 1,n d -→ N 0, Λ(y|x) K 2 2 g(x) .
Finally, from H.1,

T 2,n = O (nh p α) 1/2 b(α -1 |x) = o(1),
which concludes the proof.

Proof of Theorem 2 -We start with the decomposition

Λh (y|x) -Λ(y|x) = Λh (y|x) -Λ(y|x) + Λh (y|x) -Λh (y|x) .
From Theorem 1, the first term of the right-hand side is equal to (nh p α) -1/2 ξ n , where ξ n converges in distribution to a centered Gaussian variable with variance K 2 2 Λ(y|x)/g(x). Let us focus on the second term. From H.4, for all ε > 0, there exists a positive constant c ε such that P(A n ) < ε/2 where

A n = η n max i=1,...,d F ← i (y i α|x) a i ( F ← i (y i α|x)|x) qi (y i α|x) F ← i (y i α|x) -1 ≥ c .
Furthermore, denoting by qn (ϑ) = (q n,1 (ϑ), . . . , qn,d (ϑ)) with, for i = 1, . . . , d,

qn,i (ϑ) := F ← i (y i α|x) + ϑη -1 n a i ( F ← i (y i α|x)|x),
Lemma 4 entails that under A C n one has for all j = 1, . . . , n:

|I{Y j ≥ qn (αy|x)} -I{Y j ≥ q(αy|x)}| ≤ I{Y j ≥ qn (-c ε )} -I{Y j ≥ qn (c ε )}. Thus, under A C n , Λh (y|x) -Λh (y|x) ≤ 1 nh p αĝ h (x) n j=1 |I{Y j ≥ qn (-c ε )} -I{Y j ≥ qn (c ε )}| K x -X j h = α -1 Sh (ũ n (-c ε )|x) -Sh (ũ n (c ε )|x) ,
with ũn (ϑ) = ( F1 (q n,1 (ϑ)|x), . . . , Fd (q n,d (ϑ)|x)) . Let us now consider the difference Sh (ũ n (-c ε )|x)-Sh (ũ n (c ε )|x) using Lemma 2 with κ = 1, u n = ũn (-c ε ) and v n = ũn (c ε ). We thus need to check the following three conditions: there exist ζ > 0 and a sequence ν n such that

(1 -ζ)ν n ≤ ũn (c ε ) < ũn (-c ε ) ≤ (1 + ζ)ν n , (18) 
nh p (S(ũ n (-c ε )|x) -S(ũ n (c ε )|x)) → ∞, (19) 
and

nh p (S(ũ n (-c ε )|x) -S(ũ n (c ε )|x)) max h, S(ũ n (-c ε )|x) + S(ũ n (c ε )|x) S(ũ n (-c ε )|x) -S(ũ n (c ε )|x) w h,ζ (ν n |x) 2 → 0. (20) 
To this end, asymptotic equivalents of the sequences ũn (±c ε ) and S(ũ n (-c ε )|x) -S(ũ n (c ε )|x) are required. First, note that a Taylor expansion yields S(ũ n (±c ε )|x) = S(αy|x)

+ (ũ n (±c ε ) -αy) ∇S ( αy + τ (ũ n (±c ε ) -αy) |x) (21) 
where τ ∈ (0, 1). Next, for i = 1, . . . , d, another first order Taylor expansion entails that, for all i = 1, . . . , d,

ũn,i (±c ε ) -αy i = ∓F i ( qn,i (±τ i c ε )| x) c ε η -1 n a i ( F ← i (αy i |x)|x) = ∓F i F ← i (ũ n,i (±τ i c ε )|x) x c ε η -1 n a i ( F ← i (αy i |x)|x),
for τi ∈ (0, 1). Since for all i = 1, . . . , d, equation [START_REF] De Haan | Parametric tail copula estimation and model testing[END_REF] entails that ũn,i (±τ i c ε ) = y i α(1 + o(1)) and since the function y → F i ( F ← i (y|x)|x) is regularly varying at zero with index γ i (x) + 1 (see [START_REF] De Haan | Extreme value theory: An introduction[END_REF], Corollary 1.1.10), one has

ũn,i (±c ε ) -αy i = ∓F i F ← i (y i α|x)|x c ε η -1 n a i ( F ← i (αy i |x)|x)(1 + o(1)).
Now, in view of [START_REF] De Haan | Extreme value theory: An introduction[END_REF], Theorem 1.2.6 and Remark 1.2.7, for i = 1, . . . , d, a i (y|x) = Fi (y|x)

F i (y|x) (1 + o(1)) as y → y Fi (x),
and thus, for i = 1, . . . , d,

ũn,i (±c ε ) -αy i = ∓αc ε η -1 n y i (1 + o(1)). (22) 
Then, condition ( 18) is satisfied with ν n = αy. Furthermore, collecting ( 21) and ( 22) leads to

S(ũ n (-c ε )|x) -S(ũ n (c ε )|x) = αc ε η -1 n y ∇S ( αy + τ (ũ n (-c ε ) -αy) |x) + ∇S ( αy + τ (ũ n (c ε ) -αy) |x) (1 + o(1)).
Then, under H.5,

S(ũ n (-c ε )|x) -S(ũ n (c ε )|x) = 2c ε Λ(y|x)αη -1 n (1 + o(1)), (23) 
and, in view of nh p αη -1 n → ∞, condition ( 19) is clearly satisfied. Finally, since S(ũ n (±c

ε )|x) = αΛ(y|x)(1 + o(1)), one has S(ũ n (-c ε )|x) + S(ũ n (c ε )|x) S(ũ n (-c ε )|x) -S(ũ n (c ε )|x) = O P (η n ),
and thus, condition ( 14) implies [START_REF] Gijbels | Estimation of the density of a copula function[END_REF]. Lemma 2 can now be used with ( 23) to obtain

Sh (ũ n (-c ε )|x) -Sh (ũ n (c ε )|x) = 2c ε Λ(y|x)αη -1 n (1 + o P (1)).
Hence, for all ε > 0, there exists a positive constant c ε such that

P η -1 n Λh (y|x) -Λn (y|x) > c ε A C n ≤ ε 2 ,
and thus

P η -1 n Λh (y|x) -Λn (y|x) > c ε ≤ ε 2 + P(A n ) ≤ ε,
which concludes the proof.

Proof of Corollary 1 -Under the assumptions of Lemma 3, the estimator qn (u|x) defined in [START_REF] Cormier | Using B-splines for nonparametric inference on bivariate extreme-value copulas[END_REF] satisfies condition H.4 with η n = (nh p α) 1/2 . Applying Theorem 2(i) concludes the proof.

Proof of Corollary 2 -Under the assumptions of Lemma 3, the estimator qn (u|x) defined in [START_REF] Cormier | Using B-splines for nonparametric inference on bivariate extreme-value copulas[END_REF] satisfies condition H.4 with η n = (nk p α) 

F (q(u n |x)|x -hs) -κ F (q(v n |x)|x -hs) S(u n |x) -κS(v n |x) -1 ≤ S(u n |x) + κS(v n |x) S(u n |x) -κS(v n |x) ω h,ζ (ν n |x).
Hence, the second term is a

O S(u n |x) + κS(v n |x) S(u n |x) -κS(v n |x) w h,ζ (ν n |x) .
As a first conclusion, one has that E( Ψh,κ (u n , v n |x)) is equal to:

g(x)(S(u n |x) -κS(v n |x)) 1 + O(h) + O S(u n |x) + κS(v n |x) S(u n |x) -κS(v n |x) w h,ζ (ν n |x) . (24) 
Let us now focus on the variance of Ψh,κ (u n , v n |x). First, remark that

Ψh,κ (u n , v n |x) -E( Ψh,κ (u n , v n |x)) = n j=1 Z j,n ,
where

Z j,n := 1 nh p [I{Y j ≥ q(u n |x)} -κI{Y j ≥ q(v n |x)}]K x -X j h -h p E( Ψh,κ (u n , v n |x)) ,
are independent, centered and identically distributed random variables. Remarking that for all τ > 0, [I{Y j ≥ q(u n |x)} -κI{Y j ≥ q(v n |x)}] τ = I{Y j ≥ q(u n |x)} -κI{Y j ≥ q(v n |x)}, the variance of Ψh,κ (u n , v n |x) is equal to:

K 2 2 nh 2p E [I{Y ≥ q(u n |x)} -κI{Y ≥ q(v n |x)}]Q x -X h - h 2p K 2 2 E 2 ( Ψh,κ (u n , v n |x)) ,
where Q := K 2 / K 2 2 has the same properties as K. Thus, [START_REF] Gudendorf | Nonparametric estimation of multivariate extreme-value copulas[END_REF] entails

Var( Ψh (u n |x))) = K 2 2 g(x) nh p (S(u n |x) -κS(v n |x)) × 1 + o(1) - g(x) K 2 2 h p (S(u n |x) -κS(v n |x))(1 + o(1)) ,
and, in view of h p (S(u n |x) -κS(v n |x)) ≤ h p → 0, one has

Var( Ψh (u n |x))) = K 2 2 g(x) nh p (S(u n |x) -κS(v n |x))(1 + o(1)). (25) 
Lyapounov theorem can be used to establish the asymptotic normality of Ψh,κ (u n , v n |x). From (25), the Lyapounov condition reduces to:

lim n→∞ nh p S(u n |x) -κS(v n |x) 1+δ/2 nE|Z 1,n | 2+δ = 0, (26) 
for some δ > 0. Hence, if ( 26) is satisfied, the following convergence holds

nh p S(u n |x) -κS(v n |x) 1/2 Ψh,κ (u n , v n |x) -E( Ψh,κ (u n , v n |x)) d -→ N (0, g(x) K 2 2 ). (27) 
To prove [START_REF] Härdle | Investigating smooth multiple regression by the method of average derivatives[END_REF], remark that for two random variables T 1 and T 2 ,

E|T 1 + T 2 | 2+δ ≤ 2 2+δ max(E|T 1 | 2+δ , E|T 2 | 2+δ ).
Thus, one has

E|Z 1,n | 2+δ ≤ 2 K 2+δ nh p 2+δ E [I{Y ≥ q(u n |x)} -κI{Y ≥ q(v n |x)}]N x -X h ,
where N := (K/ K 2+δ ) 2+δ is a bounded density function on R p with same support as K. Using (24) yields

E|Z 1,n | 2+δ ≤ 2 K 2+δ nh p 2+δ h p (S(u n |x) -κS(v n |x))(1 + o(1)).
Hence, condition ( 26) is satisfied and convergence ( 27 

  ) holds. Finally, remark that(nh p (S(u n |x) -κS(v n |x))) 1/2 Sh (u n |x) -κ Sh (v n |x) S(u n |x) -κS(v n |x) -1 = T 1,n + T 2,n + T 3,n ,whereT 1,n := (nh p (S(u n |x) -κS(v n |x))) 1/2 ĝh (x) Ψh,κ (u n , v n |x) -E( Ψh,κ (u n , v n |x)) S(u n |x) -κS(v n |x) , T 2,n := (nh p (S(u n |x) -κS(v n |x))) 1/2 ĝh (x) E( Ψh,κ (u n , v n |x)) -g(x)(S(u n |x) -κS(v n |x)) S(u n |x) -κS(v n |x) ,andT 3,n := (nh p (S(u n |x) -κS(v n |x))) 1/2 ĝh (x) (g(x) -ĝh (x)). From (27), ĝh (x)T 1,n d -→ N (0, g(x) K 2 2 ). Since from Lemma 1, ĝh (x) P -→ g(x), one has that T 1,n d -→ N (0, K 2 2 /g(x)). Furthermore, (24) implies thatT 2,n = g(x) ĝh (x) (nh p (S(u n |x) -κS(v n |x))) 1/2 O(h) + O S(u n |x) + κS(v n |x) S(u n |x) -κS(v n |x) w h,ζ (ν n |x) = o(1), by assumptions. Finally, Lemma 1 entails that T 3,n = o P (1) which completes the proof. 1 0.04 0.05 0.07 0.10 0.11 0.31 0.07 0.11 0.17 0.22 0.26 0.32 x = 0.5 0.06 0.10 0.17 0.21 0.27 0.61 0.11 0.21 0.34 0.43 0.51 0.67 Table 1: Mean-squared errors of the N estimations of Λ(y, y|x) for y ∈ {1/3, 2/3, 1, 4/3, 5/3, 3}.
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 1 Figure 1: Conditional tail copula Λ(y 1 , y 2 |x) given in (15) for (y 1 , y 2 ) ∈ [0, 3] 2 at x = 0.1 (left panel) and x = 0.5 (right panel).

Figure 2 :Figure 3 :

 23 Figure 2: Boxplots of the hyper-parameters h (left) and α (right) selected by our procedure (selected) and by the oracle strategy (oracle) on simulated data in the Case 1 with x = 0.1.
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 456 Figure 4: Mean-squared error associated with the conditional tail copula estimates computed on simulated data for (y 1 , y 2 ) ∈ [0, 3] 2 in Case 1 (top) and Case 2 (bottom) at x = 0.1 (left) and x = 0.5 (right).

  Section 4.3 to an oracle strategy consisting in taking the values h ora,x and α ora,x that minimize the oracle criterion: Of course, this oracle strategy cannot be applied in practical situations since the tail copula Λ(•|x) is unknown. The idea behind this homogeneity criterion is that, for well chosen hyper-parameters h and α, Λh,h (.|x) should provide a good approximation of the conditional tail copula which, among other properties, is an homogeneous function and thus, one can expect the function Λh,h (.|x) to be approximately homogeneous. At the opposite, a bad choice of h and α can lead to a large difference between Λh,h (t, t|x) and t Λh,h (1, 1|x) for some values of t > 0. In what follows, T = {1/3, 2/3, 1, 4/3, 5/3}, A is the set of 30 regularly spaced values ranging from 0.05 to 0.3 and B is the set of 30 regularly spaced values ranging from 0.03 to 0.2.

	H ora (h, α) :=	t∈T	Λh,h (t, t|x) -Λ(t, t|x)	2 =	1 α 2	t∈T	Šh,h (tα, tα|x) -αΛ(t, t|x)	2 .
	The simulated model is described in Paragraph 4.1, implementation details are given in Para-
	graph 4.2 and results are reported in Paragraph 4.3.				

in

  1/2 . Applying Theorem 2(ii) concludes the proof.Clearly, under H.2, the first term of the right hand-side of the previous inequality is a O(h).

	Moreover, under H.2,
	K(s)g(x -hs)ds = g(x)(1 + o(1)),
	S
	and

http://ftp.ics.uci.edu/pub/machine-learning-databases/pima-indians-diabetes
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Model

The covariate X ∈ [0, 1] follows a standard uniform distribution. The conditional distribution of Y 1 given X = x is an exponential distribution with mean parameter µ(x) > 0. Besides, Y 2 given X = x follows a Pareto distribution with tail-index γ(x) > 0, i.e. P(Y 2 > y|X = x) = y -1/γ(x) for all y ≥ 1. The dependence structure between the margins Y 1 and Y 2 is controlled by the Gumbel copula defined for (u 1 , u 2 ) ∈ (0, 1) 2 by:

where for all x ∈ [0, 1], θ(x) > 1 tunes the dependence level. If θ(x) = 1, then S(u 1 , u 2 |x) = u 1 u 2 is the independent copula. At the opposite, if θ(x) → +∞, then S(u 1 , u 2 |x) → min{u 1 , u 2 } which is the Fréchet upper bound copula for modeling co-monotone random variables. The conditional tail copula is given by:

for all (y 1 , y

Two cases are considered for the functions µ and γ driving the margin distributions:

Let us note that, in Case 1, the margins do not depend on the covariate. For visualization purposes, only two different values of x are considered: x = 0.1 corresponding to a strong dependence and x = 0.5 corresponding to a weak dependence. The associated conditional tail copulas are depicted on Figure 1.

Hyper-parameters selection

The considered conditional tail copula estimator Λh,h (.|x) depends on two hyper-parameters h and α. These parameters are selected thanks to the homogeneity criterion

where T ⊂ (0, ∞) is a finite set. The selected parameters h sel,x and α sel,x are given by

where A and B are finite sets of possible values for α and h respectively. Note that the selected parameters may depend on the value x of the covariate. This selection procedure will be compared where κ ∈ {0, 1}. We first focus on its expectation. Since (Y 1 , . . . , Y n ) are identically distributed, one has 

Appendix