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Abstract

The tail copula is widely used to describe the amount of extremal dependence of a multi-

variate distribution. In some situations such as risk management, the dependence structure

can be linked with some covariate. The tail copula thus depends on this covariate and is

referred to as the conditional tail copula. The aim of this paper is to propose a nonparamet-

ric estimator of the conditional tail copula and to establish its asymptotic normality. Some

illustrations are presented both on simulated and real datasets.

AMS Subject Classifications: 62G05, 62G20, 62G30, 62G32.

Keywords: Extremal dependence, Tail copula, Covariate.

1 Introduction

In various domains such as insurance, finance and hydrology, there is an increasing interest in under-

standing the dependence structure between large values of two or more variables. For example, in

finance, one can be interested in the link between large values of the market index and large returns

of individual stocks, see [2, 28]. The dependence structure of a random vector Y = (Y1, . . . , Yd)
T

with d ≥ 2 is commonly described by a copula which is a multivariate distribution function with

uniformly distributed margins on the interval [0, 1]. Let us denote by F̄i, i = 1, . . . , d the marginal

survival functions of Y . From Sklar theorem [34], if the margins of Y are continuous, there exist

a unique copula S defined on [0, 1]d such that for all y = (y1, . . . , yd)
T ∈ R

d, the multivariate

survival function writes F̄ (y) := P(Y ≥ y) = S(F̄1(y1), . . . , F̄d(yd)). This function S is then given

for all u = (u1, . . . , ud)
T ∈ [0, 1]d by S(u) = F̄ (q(u)), where q(u) := (F̄←1 (u1), . . . , F̄

←
d (ud))

T is

a multivariate quantile. Note that (a1, . . . , ad) ≥ (b1, . . . , bd) corresponds to the componentwise

inequality ai ≥ bi for all i = 1, . . . , d. Besides, f← denotes the generalized inverse of a decreasing

function f i.e, f←(x) = inf{t, f(t) ≤ x}. As mentioned in [2], the tail copula is a useful tool to
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describe the upper tail dependence structure. It is defined as follows: if there exists a function

Λ : [0,∞)d → [0,∞) such that

lim
α→0+

1

α
S(αy) = Λ(y), y ∈ (0,∞)d, (1)

then Λ is called the tail copula [26]. Let us note that (1) entails first that Λ is an homogeneous

positive function and second that S is a multivariate regularly varying function at 0 since

lim
α→0+

S(αy)

S(α1)
= W (y),

where W (.) = Λ(.)/Λ(1) and 1 = (1, . . . , 1)T ∈ R
d. We refer to [31, Chapter 5] for a definition of

multivariate regularly varying functions and to [4] for a general account on regular variation. In

practice, the tail copula is often reduced to the tail-dependence coefficient defined by

λ := Λ(1) = lim
α→0+

P
{
Yi ≥ F̄←i (α), i 6= j

∣∣Yj ≥ F̄←j (α)
}
.

Clearly, this coefficient does not depend on the index j ∈ {1, . . . , d}. It was first introduced by [33]

in the bivariate case. The multivariate random vector Y is said to be tail-dependent if λ ∈ (0, 1]

and tail-independent if λ = 0. The case λ = 1 corresponds to complete tail dependence. Intuitively,

when λ = 0, large values of the margins Yi are unlikely to happen simultaneously. As an example,

it is well known that a bivariate normal distribution with correlation coefficient different from ±1

is tail-independent.

The bivariate case (d = 2) has been widely studied in the literature especially when the distri-

bution function of Y belongs to the maximum domain of attraction of a bivariate extreme-value

distribution i.e. when there exist positive sequences (a1,n), (a2,n) and sequences (b1,n) and (b2,n)

such that

lim
n→∞

P





n∨

j=1

Y1,j − b1,n
a1,n

≤ y1;

n∨

j=1

Y2,j − b2,n
a2,n

≤ y2



 = G(y1, y2),

where (Y1,j , Y2,j), j = 1, . . . , n are independent copies of the random vector Y = (Y1, Y2). The

bivariate extreme-value distribution G can be expressed as G(y1, y2) = D(G1(y1), G2(y2)), where

G1 and G2 are the margins of G and D is the bivariate extreme-value copula defined by:

D(u, v) = exp

{
log(uv)A

(
log u

log(uv)

)}
. (2)

The marginal distributions G1 and G2 are univariate extreme value distributions i.e. for i ∈ {1, 2},

Gi(x) = exp{−(1 + γix)
−1/γi

+ },

where y+ = 0 ∨ y and γi ∈ R is called the extreme value index. The function A(t) is referred to

as the Pickands dependence function. It is a convex function lying in a triangular area i.e such
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that t ∨ (1 − t) ≤ A(t) ≤ 1 for all t ∈ [0, 1]. It can be shown [31, Chapter 5] that for a bivariate

distribution function in the maximum domain of attraction of G, the tail copula exists and is given

by

Λ(y1, y2) = (y1 + y2)

{
1−A

(
y1

y1 + y2

)}
. (3)

Collecting (2) and (3), the bivariate extreme-value copula can be rewritten in terms of the tail

copula as

D(u, v) = uv expΛ(− log u,− log v).

As a consequence, in the bivariate case, the tail copula and the Pickands dependence function both

fully characterise the extreme dependence structure of Y . Finally, one may equivalently consider

the so-called stable tail-dependence function given by

ℓ(y1, y2) = y1 + y2 − Λ(y1, y2) (4)

to describe the extreme dependence structure.

In the bivariate case, numerous nonparametric estimators of the Pickands dependence function

have been introduced [5, 14, 30, 37] thanks to an interpretation of A in terms of exponential distri-

butions. In [24], it is remarked that such estimators may not provide proper dependence functions

(convex and lying in the above triangular area) and two new estimators satisfying these constraints

are introduced. Similarly, a projection technique is proposed in [15] to force any estimator to be

a proper dependence function. The above mentioned estimators are constructed assuming knowl-

edge of the marginal distributions. Rank-based versions of these estimators are proposed for the

unknown margins case in [18]. The estimation of A within the class of Archimax copulas is studied

in [6]. See [3, Chapter 9] for an overview of parametric and nonparametric inference methods for

bivariate Pickands dependence functions. We also refer to [22, 23] for extensions to the general

multivariate setting. In view of (4), it is clear that estimating the stable tail-dependence function

or the tail copula are equivalent problems. The first estimators of ℓ are introduced in [25] in the

bivariate case. They are then adapted to the estimation of the tail copula [32] and compared to

nonparametric estimators based on the empirical copula. Parametric estimators of Λ have also

been proposed in the bivariate case [12] and for multivariate elliptical copulas [27].

The case where the random vector Y is recorded simultaneously with a predictive variable X ∈ R
p

has been less considered. In [36], the authors propose to estimate the tail-dependence coefficient

in the regression case using a maximum likelihood approach. In this regression framework, S is

a conditional copula. Its estimation is addressed in [21, 35] with nonparametric techniques and

in [1] using semiparametric approaches. The case of functional covariates is studied in [20]. Up

to our knowledge, the estimation of the tail copula in the regression case has not been considered

yet despite potential applications: study of the Chinese stock market [36] or modelling of financial

returns [16].
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From now on, we thus consider the random vector (X,Y ) ∈ R
p × R

d. For i = 1, . . . , d, the

conditional survival function of Yi given X = x is denoted by F̄i(.|x) := P(Yi ≥ .|X = x). The

dependence structure of Y conditionally on X = x is then described by the conditional copula:

S(u|x) = F̄ (q(u|x)|x) , u = (u1, . . . , ud) ∈ R
d,

where F̄ (.|x) : R
d → [0, 1] is the conditional survival function of Y given X = x and q(.|x) is

the multivariate conditional quantile defined as q(u|x) := (F̄←1 (u1|x), . . . , F̄
←
d (ud|x))

T . Similarly

to (1), we thus define the conditional tail copula by

Λ(y|x) := lim
α→0+

1

α
S (αy|x) , y ∈ (0,∞)d, (5)

if this limit exists. Note that in what follows, we only consider the case Λ(y|x) > 0 i.e. tail-

dependent distributions.

In Section 2, we propose nonparametric estimators of Λ(y|x) for a fixed vector (x, y) ∈ R
p× [0,∞)d

when the margins are first known and then unknown. Their asymptotic properties are established

in Section 3. A simulation study is presented in Section 4 and an illustration on real data is

proposed in Section 5. Finally, proofs of the main results are given in Section 6.

2 Estimation of the conditional tail copula

Let (Xj , Yj), j = 1, . . . , n be independent copies of the random vector (X,Y ). The estimator of the

conditional tail copula is based on a nonparametric estimator of the conditional copula function

of Y given X = x. In the following, we propose to use a classical kernel estimator. The first step

consists in estimating the probability density function g of X by:

ĝh(x) =
1

nhp

n∑

j=1

K

(
x−Xj

h

)
, x ∈ R

p,

where h = hn is a non random sequence tending to zero as n goes to infinity and K is a bounded

density on R
p with support S included in the unit ball of Rp. As mentioned in the introduction, in

many related papers the margins are often supposed to be known. In this situation, the conditional

copula S(.|x) can be estimated by

S̃h(u|x) :=
1

nhpĝh(x)

n∑

j=1

I{Yj ≥ q(u|x)}K

(
x−Xj

h

)
, u ∈ [0, 1]d, x ∈ R

p,

where I{.} is the indicator function. An estimator of the tail copula is then given by:

Λ̃h(y|x) =
1

α
S̃h(αy|x), (6)

where y ∈ (0,∞)d and α = αn is a sequence tending to zero as n goes to infinity. In this paper,

we consider the more realistic case where nothing is known on the margins. In this situation, the
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estimation of the marginal survival functions of Y given X = x is obviously required. For all

u ∈ [0, 1]d, let us denote by

q̂(u|x) = (q̂1(u1|x), . . . , q̂d(ud|x))
T

an estimator of the vector q(u|x) ∈ R
d. We propose the following plug-in estimator of the condi-

tional copula:

Ŝh(u|x) :=
1

nhpĝh(x)

n∑

j=1

I{Yj ≥ q̂(u|x)}K

(
x−Xj

h

)
, u ∈ [0, 1]d, x ∈ R

p.

The conditional tail copula is then estimated by:

Λ̂h(y|x) =
1

α
Ŝh(αy|x). (7)

As an example of an estimator of q(u|x), one can propose the statistic

q̌k(u|x) := ( ˆ̄F
←

k,1(u1|x), . . . ,
ˆ̄F
←

k,d(ud|x))
T , (8)

where k = kn is a non random sequence tending to zero as n goes to infinity and, for i = 1, . . . , d,
ˆ̄F k,i(.|x) is the usual kernel estimator with bandwidth k for a conditional survival function defined

as

ˆ̄F k,i(z|x) =
1

nkpĝk(x)

n∑

j=1

I{Yi,j ≥ z}K

(
x−Xj

k

)
. (9)

The obtained estimators of the conditional copula and of the tail copula are respectively denoted

by Šh,k(.|x) and Λ̌h,k(.|x). Let us highlight that these estimators depend on two bandwidth h and

k. The first one tune the smoothness of the estimator of the conditional copula, while the second

one controls the smoothness of the estimator of the marginal distributions. In the following, the

asymptotic behavior of Λ̌h,k(.|x) is analysed in the two situations h = k and h 6= k.

3 Main results

In this section, the asymptotic properties of the estimators Λ̃h(y|x) and Λ̂h(y|x) are established

for a fixed vector (x, y) ∈ R
p × [0,∞)d such that Λ(y|x) > 0. Some regularity and extreme-value

assumptions are required. The first one is a classical second-order condition on the conditional

copula function S(.|x), see for instance [32].

H.1 There exist a function b(.|x) with b(t|x) → 0 as t → ∞ and a function cΛ(.|x) such that for

all y ∈ [0,∞)d,

lim
t→∞

Λ(y|x)− tS(t−1y|x)

b(t|x)
= cΛ(y|x) < ∞.

Condition H.1 establishes that rate of convergence in (5) is driven by a given function b(.|x). Let us

recall that necessarily |b|(.|x) is a regularly varying function at infinity with index ρ(x) < 0, see [13].
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In the extreme-value literature, ρ(x) is referred to as the conditional second order parameter. As

an example, let us consider the multivariate extreme-value copula defined for all u = (u1, . . . , ud)
T

by

P(Y ≤ q(1− u|x)|X = x) = exp

{
κ(u)A

(
log ui

κ(u)
, i = 1, . . . , d− 1

∣∣∣∣x
)}

, (10)

where

κ(u) =

d∑

l=1

log ul,

and A(.|x) : R
d−1 → [1/2, 1] is the conditional multivariate Pickands dependence function [30].

Clearly, (10) is the extension of the bivariate extreme-value copula (2) to a dimension d > 2. It can

be shown that, in the dependent case (i.e. A(.|x) 6= 1) and if A(.|x) is continuously differentiable

(denoted by A(.|x) ∈ C1), then condition H.1 is satisfied with ρ(x) = −1.

A Lipschitz condition on the probability density function g of X is also required. Denoting by

d̃(x, x′) the Euclidean distance between x ∈ R
p and x′ ∈ R

p, it is assumed that

H.2 There exists a positive constant cg such that |g(x)− g(x′)| ≤ cgd̃(x, x
′).

For x ∈ R
p and u ∈ [0, 1]d, the oscillation of the conditional survival function F̄ (.|x) is controlled

in a neighbourhood of q(u|x) by the following quantity:

ωh,ζ(u|x) = sup

{∣∣∣∣
F̄ (q(v|x))|t)

S(v|x)
− 1

∣∣∣∣ for t ∈ B(x, h), (1− ζ)u ≤ v ≤ (1 + ζ)u

}
, (11)

where ζ ∈ [0, 1) and B(x, h) is the ball of Rp centred at x with radius h.

In a first time, conditions H.1 and H.2 are sufficient to establish the asymptotic normality of the

estimator Λ̃h(y|x) in the (unrealistic) situation where the margins are known.

Theorem 1. Suppose H.1 and H.2 hold. Let x ∈ R
p and y ∈ [0,∞)d such that g(x) 6= 0 and

Λ(y|x) 6= 0. If α in (6) is such that α → 0, nhpα → ∞ and

nhpα(h ∨ ωh,0(αy|x) ∨ b(α−1|x))2 → 0 (12)

as n → ∞, then,

(nhpα)1/2
(
Λ̃h(y|x)− Λ(y|x)

)
d

−→ N

(
0,

‖K‖22Λ(y|x)

g(x)

)
.

As pointed out in [9], nhpα → ∞ is a necessary and sufficient condition for the almost sure presence

of at least one sample point in the region B(x, h)× (q(α|x),∞) of Rp+d. Condition (12) forces the

bias to be neglectible compared to the standard-deviation of the estimator. Two main sources of

bias appear. The first contribution to the bias is due to the kernel smoothing and to the oscillations

of order O(h) and O(ωh,0(αy|x)) of g and F̄ (.|x) respectively. The second source of bias is due
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to the approximation of the conditional tail copula Λ(y|x) by αS(α−1y|x). This entails a bias of

order O(b(α−1|x)), see assumption H.1.

In order to deal with the case where the margins are estimated, an extreme-value assumption on

the conditional marginal distributions of Y given X = x is required. The following von-Mises

condition (see [11], equation (1.1.30)) is considered:

H.3 For i = 1, . . . , d, the marginal survival function F̄i(.|x) is twice differentiable and such that

lim
y↑yFi

(x)

F̄i(y|x)F̄
”
i (y|x)

(F̄
′

i )
2(y|x)

= γi(x) + 1,

where yFi
(x) := F̄←i (0|x) ∈ (−∞,∞] is the right endpoint of the i−th margin, F̄

′

i (.|x) and

F̄ ”
i (.|x) are respectively the first and the second derivative of F̄i(.|x).

From [11], Theorem 1.1.8, condition H.3 entails that for all i = 1, . . . , d, the conditional distribution

of Yi given X = x is in the domain of attraction of the univariate extreme-value distribution with

conditional extreme-value index γi(x) ∈ R. Note also that from [10], Lemma 2, condition H.3

implies that for all i = 1, . . . , d and for all sequences α → 0 and tn,i(x) → 0 as n → ∞, there exists

a positive auxiliary function ai(.|x) such that

lim
n→∞

α−1F̄i

(
F̄←i (α|x) + tn,i(x)ai(F̄

←
i (α|x)|x)

∣∣x
)
= 1. (13)

The next assumption permits to control the rate of convergence of the estimator q̂(.|x) towards

the true quantile function q(.|x) = F̄←(.|x).

H.4 There exists a sequence (ηn) satisfying ηn → ∞ such that for all y = (y1, . . . , yd)
T ∈ (0,∞)d,

ηn

d∨

i=1

F̄←i (yiα|x)

ai(F̄←i (yiα|x)|x)

∣∣∣∣
q̂i(yiα|x)

F̄←i (yiα|x)
− 1

∣∣∣∣ = OP(1).

A condition on the gradient ∇S(.|x) of the conditional copula function is also needed. It states

that convergence (5) still holds when differentiating.

H.5 The conditional copula S(.|x) is of class C1. Furthermore, for y ∈ (0,∞)d and for all vectors

ϑ(α, y) such that ϑ(α, y) = αy(1 + o(1)) as α → 0+,

lim
α→0+

yT∇S(ϑ(α, y)|x) = Λ(y|x).

This assumption is for instance satisfied by the multivariate extreme-value copula (10) with

A(.|x) 6= 1 and A(.|x) ∈ C1.

We are now in position to state our main result on the asymptotic behavior of Λ̂h(y|x).
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Theorem 2. Suppose H.1 - H.5 hold. Let x ∈ R
p and y ∈ [0,∞)d such that g(x) 6= 0 and

Λ(y|x) 6= 0.

(i) If α in (7) is such that α → 0, nhpαη−1n → ∞ and, for some ζ > 0,

nhpα
(
h ∨ η1/2n ωh,ζ(αy|x) ∨ b(α−1|x)

)2
→ 0, (14)

as n → ∞, then

Λ̂h(y|x)− Λ(y|x) = (nhpα)−1/2ξn +OP

(
η−1n

)
,

where ξn converges in distribution to a N (0, ‖K‖22Λ(y|x)/g(x)) random variable.

(ii) If, moreover, (nhpα)1/2η−1n → 0, then

(nhpα)1/2(Λ̂h(y|x)− Λ(y|x))
d

−→ N

(
0,

‖K‖22Λ(y|x)

g(x)

)
.

Note that Theorem 2(i) yields Λ̂h(y|x)
P

−→ Λ(y|x). In situation (ii), condition (nhpα)1/2η−1n → 0

entails that the estimator of q(.|x) converges faster than the one of the conditional copula S(.|x).

Thus, the estimator Λ̂h(y|x) has the same asymptotic behavior as the estimator Λ̃h(y|x). In this

case, the estimation of the margins does not change the asymptotic distribution.

As an illustration, let us consider the situation where the statistic (8) is used to compute the

estimator of the conditional tail copula. To this end, the regularity of F̄i(.|.) is controlled by

ω̄
(i)
h,ζ(u|x) = sup

{∣∣∣∣
F̄i(F̄

←
i (vi|x)|t)

vi
− 1

∣∣∣∣ for t ∈ B(x, h) and (1− ζ)ui ≤ vi ≤ (1 + ζ)ui

}

where u ∈ (0, 1)d and ζ ∈ [0, 1). Introducing (e1, . . . , ed) the canonical basis of R
d, the above

quantity can be rewritten using (11) as ω̄
(i)
h,ζ(u|x) = ωh,ζ((u− 1)ei + 1|x). Let us first focus on the

situation where the same bandwidth h is used to estimate the conditional copula and the margins.

The asymptotic behavior of the estimator Λ̌h,h(y|x) is a consequence of Theorem 2(i).

Corollary 1. Suppose H.1, H.2, H.3 and H.5 hold. Let x ∈ R
p and y ∈ [0,∞)d such that

g(x) 6= 0 and Λ(y|x) 6= 0. If α in (7) is such that α → 0, nhpα → ∞ and, for some ζ > 0,

nhpα

(
h ∨ b(α−1|x) ∨ ω

2/3
h,ζ (αy|x) ∨

d∨

i=1

ω̄
(i)
h,ζ(yiα|x)

)2

→ 0,

as n → ∞, then

Λ̌h,h(y|x)− Λ(y|x) = OP

(
(nhpα)−1/2

)
.

Here, the estimators of q(.|x) and S(.|x) share the same bandwidth and thus the same rate of con-

vergence (nhpα)−1/2. Hence, plugging-in (8) in Λ̃h(y|x) does not change this rate of convergence.

Finally, we consider the situation where two different bandwidth sequences k and h are used to

estimate the marginal distributions and the conditional copula. The asymptotic behavior of the

estimator Λ̌h,k(y|x) is a consequence of Theorem 2(ii).
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Corollary 2. Suppose H.1, H.2, H.3 and H.5 hold. Let x ∈ R
p and y ∈ [0,∞)d such that

g(x) 6= 0 and Λ(y|x) 6= 0. If h/k → 0 and α in (7) is such that α → 0, nhpα → ∞, nkp+2α → 0

and, for some ζ > 0,

nhpα

(
b(α−1|x) ∨ ω

2/3
h,ζ (αy|x) ∨

(
k

h

)p/2 d∨

i=1

ω̄
(i)
h,ζ(yiα|x)

)2

→ 0,

as n → ∞, then

(nhpα)1/2(Λ̌h,k(y|x)− Λ(y|x))
d

−→ N

(
0,

‖K‖22Λ(y|x)

g(x)

)
.

Note that condition h/k → 0 entails that the rate of convergence of the margin estimators (nkpα)1/2

is faster than the one of the conditional copula estimator (nhpα)1/2. The asymptotic normality of

the plug-in estimator can thus be established and the obtained rate of convergence is (nhpα)1/2.

4 Illustration on simulated data

The behavior of the conditional tail copula estimator Λ̌h,k(.|x) is investigated on a two-dimensional

simulated dataset when the marginal distributions are supposed to be unknown. The smoothness

of the estimators of the conditional copula and of the marginal distributions are tuned by the same

bandwidth h = k and by the same bi-quadratic kernel given by:

K(x1, x2) :=
3

π

(
1− (x2

1 + x2
2)
)2

I{x2
1 + x2

2 ≤ 1}.

The simulated model is described in Paragraph 4.1, implementation details are given in Para-

graph 4.2 and results are reported in Paragraph 4.3.

4.1 Model

The covariate X ∈ [0, 1] follows a standard uniform distribution. The conditional distribution of

Y1 given X = x is an exponential distribution with mean parameter µ(x) > 0. Besides, Y2 given

X = x follows a Pareto distribution with tail-index γ(x) > 0, i.e. P(Y2 > y|X = x) = y−1/γ(x) for

all y ≥ 1. The dependence structure between the margins Y1 and Y2 is controlled by the Gumbel

copula defined for (u1, u2) ∈ (0, 1)2 by:

S(u1, u2|x) = exp

{
−
[
(− log(1− u1))

θ(x)
+ (− log(1− u2))

θ(x)
]1/θ(x)}

+ u1 + u2 − 1,

where for all x ∈ [0, 1], θ(x) > 1 tunes the dependence level. If θ(x) = 1, then S(u1, u2|x) = u1u2

is the independent copula. At the opposite, if θ(x) → +∞, then S(u1, u2|x) → u1 ∧ u2 which is

the Fréchet upper bound copula for modelling comonotone random variables. The conditional tail

copula is given by:

Λ(y1, y2|x) = y1 + y2 −
(
y
θ(x)
1 + y

θ(x)
2

)1/θ(x)
,

9



for all (y1, y2) ∈ (0,∞)2 and x ∈ [0, 1]. The function θ is taken as θ(x) = 12x2 − 12x + 5 for

x ∈ [0, 1], its minimum is θ(0.5) = 2 while its maximum is θ(0) = θ(1) = 5. Two cases are

considered for the functions µ and γ driving the margin distributions:

µ(x) = γ(x) = 1 (Case 1) and µ(x) = γ(x) + 1/2 =
1

2
sin(2πx) + 1 (Case 2) .

Let us note that, in Case 1, the margins do not depend on the covariate. For visualization purposes,

only two different values of x are considered: x = 0.1 corresponding to a strong dependence and

x = 0.5 corresponding to a weak dependence. The associated conditional tail copulas are depicted

on Figure 1.
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Figure 1: Representations of the conditional tail copula Λ(y1, y2|x) for (y1, y2) ∈ [0, 3]2 at x = 0.1

(left panel) and x = 0.5 (right panel).

4.2 Hyper-parameters selection

The considered conditional tail copula estimator Λ̌h,h(.|x) depends on two hyper-parameters h and

α. We propose to select these parameters by using an homogeneity criterion

H(h, α) :=
∑

t∈T

(
Λ̌h,h(tα|x)− tΛ̌h,h(α|x)

)2
, (15)

where T ⊂ (0,∞) is a finite set. The selected parameters hsel and αsel are given by

(hsel, αsel) := argmin
α∈A,h∈B

H(h, α),

10



where A and B are finite sets of possible values for α and h respectively. In what follows, we take

T = {1/3, 2/3, 1, 4/3, 5/3}, A = {0.05, 0.06, . . . , 0.5} and B = {0.03, 0.04, . . . , 0.33}.

4.3 Results

In this experiment, N = 100 independent copies of a sample of size n = 1000 are simulated from the

model presented in Paragraph 4.1. In each situation, the median as well as the mean-squared error

of the N estimations of Λ(y1, y2|x) are represented for (y1, y2) ∈ [0, 3]2 respectively on Figures 2

and 3. In all cases, the estimations of Figure 2 allow to visually recover the shape of the true

conditional tail copula, see Figure 1. Focussing on Figure 3, it appears that the mean-squared

error gets larger when the conditional tail copula increases. This phenomena can be explained

thanks to Theorem 2(ii): The asymptotic variance is proportional to the conditional tail copula.

One can also note that the Case 1 where the margins do not depend on the covariate leads to smaller

mean-squared errors than Case 2. Finally, the “boundary effect” due to kernel estimation does not

appear in this simulated example. In other situations, one may consider the use of mirror-reflection

type estimators [19] or kernel local linear estimators [8].

5 Illustration on real data

In this section, we illustrate our approach on the so-called pima-indians-diabetes dataset1 con-

sisting of nine variables measured on n = 768 subjects aged from 21 to 81 years. This population

was studied in order to understand the high prevalence of diabetes in the Pima Indian popula-

tion. For visualization sakes, only two variables are considered: the diastolic blood pressure (DBP,

denoted by Y1) and the body mass index (BMI, denoted by Y2). The age is considered as the

univariate covariable X. It is indeed suspected that high values of DBP and BMI may represent

significant risk factors for diabetes [7]. The estimation of the conditional tail copula Λ(y1, y2|x)

can show how the dependence structure between high values of DBP and BMI may be affected by

the age.

Similarly to Section 4, the conditional tail copula estimator Λ̌h,h(.|x) is used with the bi-

quadratic kernel and an unique bandwidth h. This bandwidth h and the sample fraction α

are selected using the procedure described in Paragraph 4.2 with T = {1/3, 2/3, 1, 4/3, 5/3},

A = {0.05, 0.06, . . . , 0.5} and B = {1, 2, . . . , 10}. The resulting conditional tail copula estima-

tor Λ̌h,h(y1, y2|x) is depicted for (y1, y2) ∈ [0, 3]2 at x = 30 years and x = 60 years on Figure 4. It

appears that the dependence between large values of BMI and DBP is weaker for young subjects

than for old ones.

1http://ftp.ics.uci.edu/pub/machine-learning-databases/pima-indians-diabetes
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Figure 2: Representation of the median of the conditional tail copula estimates for (y1, y2) ∈ [0, 3]2

in Case 1 (first row) and Case 2 (second row) at x = 0.1 (left) and x = 0.5 (right).
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(y1, y2) ∈ [0, 3]2 in Case 1 (first row) and Case 2 (second row) at x = 0.1 (left) and x = 0.5 (right).
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Figure 4: Representation of the conditional tail copula estimator Λ̌h,h(y1, y2|x) for (y1, y2) ∈ [0, 3]2

at x = 30 years (left panel) and x = 60 years (right panel).

6 Proofs

6.1 Preliminary results

The first lemma is a standard result on the density kernel estimator (see Parzen [29] for a proof).

Lemma 1. Under H.2, if nhp → ∞ then for all x ∈ R
p such that g(x) 6= 0,

|ĝh(x)− g(x)| = O(h) +OP

(
(nhp)−1/2

)
.

The next result is dedicated to the random variable given by S̃h(u|x)−κS̃h(v|x), where κ ∈ {0, 1}

and (u, v) ∈ (0, 1)d × (0, 1)d with v ≤ u. Clearly, if the margins are known, it can be seen as an

estimator of S(u|x)− κS(v|x). The asymptotic normality of this random variable is established in

the following result.

Lemma 2. Suppose H.2 holds and let x ∈ R
p such that g(x) 6= 0. Consider two sequences

un ∈ (0, 1)d and vn ∈ (0, 1)d converging to zero as n → ∞ such that nhp(S(un|x)−κS(vn|x)) → ∞.

For some ζ > 0, if there exists a sequence νn such that (1− ζ)νn ≤ vn < un < (1 + ζ)νn with

nhp (S(un|x)− κS(vn|x))

(
h ∨

S(un|x) + κS(vn|x)

S(un|x)− κS(vn|x)
wh,ζ(νn|x)

)2

→ 0,

14



then,

(nhp(S(un|x)− κS(vn|x)))
1/2

(
S̃h(un|x)− κS̃h(vn|x)

S(un|x)− κS(vn|x)
− 1

)
d

−→ N

(
0,

‖K‖22
g(x)

)
.

The proof of this lemma is postponed to the Appendix. Note that if κ = 0, one can take un = vn

and thus Lemma 2 entails that

(nhpS(un|x))
1/2

(
S̃h(un|x)

S(un|x)
− 1

)
d

−→ N

(
0,

‖K‖22
g(x)

)
,

and the conditions can be simplified as nhpS(un|x) → ∞ and nhpS(un|x) (h ∨ wh,ζ(νn|x))
2 → 0

as n → ∞. Furthermore, in the particular case where un = 1 + (F̄i(zn|x) − 1)ei, zn ∈ (0, 1),

the previous convergence result establishes the asymptotic normality of the kernel estimators of

the conditional survival functions ˆ̄Fh,i(zn|x). Note that this result has also been established

in [9, Theorem 1] and [10, Proposition 1]. The case of functional covariates is addressed in [17].

Mimicking the proof of Corollary 1 in [10] thus permits to derive the asymptotic normality of the

kernel estimators of the extreme conditional quantiles F̄←i (βn|x).

Lemma 3. Suppose H.2, H.3 hold and let x ∈ R
p such that g(x) 6= 0. Consider a sequence

βn ∈ (0, 1) such that, as n → ∞, nhpβn → ∞ and nhpβn(h ∨ w̄
(i)
h,ζ(βn|x))

2 → 0 for some ζ > 0.

Then,

(nhpβn)
1/2 F̄←i (βn|x)

ai(F̄←i (βn|x)|x)

(
ˆ̄F
←

h,i(βn|x)

F̄←i (βn|x)
− 1

)
d

−→ N

(
0,

‖K‖22
g(x)

)
.

The last lemma will be useful to deal with differences between two indicator functions. It is a

straightforward consequence of the monotonicity of the indicator function.

Lemma 4. Let y, u, v, m and M be vectors of R
d with, for all i = 1, . . . , d, Mi > ui ∨ vi and

mi < ui ∧ vi. Then,

|I{yi > ui, i = 1, . . . , d} − I{yi > vi, i = 1, . . . , d}|

≤ I{yi > mi, i = 1, . . . , d} − I{yi > Mi, i = 1, . . . , d}.

6.2 Proof of main results

Proof of Theorem 1 − First, taking un = αy and κ = 0 in Lemma 2, one has under the

assumptions of Theorem 1

(nhpα)1/2

(
S̃h(αy|x)

S(αy|x)
− 1

)
d

−→ N

(
0,

‖K‖22
g(x)Λ(y|x)

)
, (16)
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since S(αy|x) = αΛ(y|x)(1+o(1)). Furthermore, (nhpα)1/2(Λ̃n(y|x)−Λ(y|x)) = T1,n+T2,n, where

T1,n =

(
nhp

α

)1/2

S(αy|x)

(
S̃h(αy|x)

S(αy|x)
− 1

)

and T2,n =

(
nhp

α

)1/2

S(αy|x)

(
1−

αΛ(y|x)

S(αy|x)

)
.

A direct use of (16) entails that

T1,n
d

−→ N

(
0,

Λ(y|x)‖K‖22
g(x)

)
.

Finally, from H.1,

T2,n = O
(
(nhpα)1/2b(α−1|x)

)
= o(1),

which concludes the proof.

Proof of Theorem 2 − We start with the decomposition

Λ̂h(y|x)− Λ(y|x) =
(
Λ̃h(y|x)− Λ(y|x)

)
+
(
Λ̂h(y|x)− Λ̃h(y|x)

)
.

From Theorem 1, the first term of the right-hand side is equal to (nhpα)−1/2ξn, where ξn converges

in distribution to a centred Gaussian variable with variance ‖K‖22Λ(y|x)/g(x). Let us focus on the

second term. From H.4, for all ε > 0, there exists a positive constant cε such that P(An) < ε/2

where

An =

{
ηn

d∨

i=1

F̄←i (yiα|x)

ai(F̄←i (yiα|x)|x)

∣∣∣∣
q̂i(yiα|x)

F̄←i (yiα|x)
− 1

∣∣∣∣ ≥ cǫ

}
.

Furthermore, denoting by q̃n(ϑ) = (q̃n,1(ϑ), . . . , q̃n,d(ϑ))
T with, for i = 1, . . . , d,

q̃n,i(ϑ) := F̄←i (yiα|x) + ϑη−1n ai(F̄
←
i (yiα|x)|x),

Lemma 4 entails that under AC
n one has for all j = 1, . . . , n:

|I{Yj ≥ q̂n(αy|x)} − I{Yj ≥ q(αy|x)}| ≤ I{Yj ≥ q̃n(−cε)} − I{Yj ≥ q̃n(cε)}.

Thus, under AC
n ,

∣∣∣Λ̂h(y|x)− Λ̃h(y|x)
∣∣∣ ≤

1

nhpαĝh(x)

n∑

j=1

|I{Yj ≥ q̃n(−cε)} − I{Yj ≥ q̃n(cε)}|K

(
x−Xj

h

)

= α−1
(
S̃h(ũn(−cε)|x)− S̃h(ũn(cε)|x)

)
,

with ũn(ϑ) = (F̄1(q̃n,1(ϑ)|x), . . . , F̄d(q̃n,d(ϑ)|x))
T . Let us now treat the difference S̃h(ũn(−cε)|x)−

S̃h(ũn(cε)|x) using Lemma 2 with κ = 1, un = ũn(−cε) and vn = ũn(cε). We thus need to check

the following three conditions: there exists ζ > 0 and a sequence νn such that

(1− ζ)νn ≤ ũn(cε) < ũn(−cε) ≤ (1 + ζ)νn, (17)
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nhp(S(ũn(−cε)|x)− S(ũn(cε)|x)) → ∞, (18)

and

nhp (S(ũn(−cε)|x)− S(ũn(cε)|x))

(
h ∨

S(ũn(−cε)|x) + S(ũn(cε)|x)

S(ũn(−cε)|x)− S(ũn(cε)|x)
wh,ζ(νn|x)

)2

→ 0. (19)

To this end, asymptotic equivalents of the sequences ũn(±cε) and S(ũn(−cε)|x)− S(ũn(cε)|x) are

required. First, note that a Taylor expansion yields

S(ũn(±cε)|x) = S(αy|x)

+ (ũn(±cε)− αy)T∇S ( αy + θ(ũn(±cε)− αy) |x) (20)

where θ ∈ (0, 1). Next, for i = 1, . . . , d, another first order Taylor expansion entails that, for all

i = 1, . . . , d,

ũn,i(±cε)− αyi = ∓F
′

i

(
q̃n,i(±θ̃icε)

∣∣∣x
)
cεη
−1
n ai(F̄

←
i (αyi|x)|x)

= ∓F
′

i

(
F̄←i (ũn,i(±θ̃icε)|x)

∣∣∣x
)
cεη
−1
n ai(F̄

←
i (αyi|x)|x),

for θ̃i ∈ (0, 1). Since for all i = 1, . . . , d, equation (13) entails that ũn,i(±θ̃icε) = yiα(1 + o(1)) and

since the function y 7→ F
′

i (F̄
←
i (y|x)|x) is a regularly varying function at zero with index γi(x) + 1

(see [11], Corollary 1.1.10), one has

ũn,i(±cε)− αyi = ∓F
′

i

(
F̄←i (yiα|x)|x

)
cεη
−1
n ai(F̄

←
i (αyi|x)|x)(1 + o(1)).

Now, in view of [11], Theorem 1.2.6 and Remark 1.2.7, for i = 1, . . . , d,

ai(y|x) =
F̄i(y|x)

F
′

i (y|x)
(1 + o(1)) as y → yFi

(x),

and thus, for i = 1, . . . , d,

ũn,i(±cε)− αyi = ∓αcεη
−1
n yi(1 + o(1)). (21)

Then, condition (17) is satisfied with νn = αy. Furthermore, collecting (20) and (21) leads to

S(ũn(−cε)|x)− S(ũn(cε)|x) = αcεη
−1
n yt

{
∇S ( αy + θ(ũn(−cε)− αy) |x)

+ ∇S ( αy + θ(ũn(cε)− αy) |x)
}
(1 + o(1)).

Then, under H.5,

S(ũn(−cε)|x)− S(ũn(cε)|x) = 2cεΛ(y|x)αη
−1
n (1 + o(1)), (22)

and, in view of nhpαnη
−1
n → ∞, condition (18) is clearly satisfied. Finally, since S(ũn(±cε)|x) =

αΛ(y|x)(1 + o(1)), one has

S(ũn(−cε)|x) + S(ũn(cε)|x)

S(ũn(−cε)|x)− S(ũn(cε)|x)
= OP(ηn),
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and thus, condition (14) implies (19). Lemma 2 can now be used with (22) to obtain

S̃h(ũn(−cε)|x)− S̃h(ũn(cε)|x) = 2cεΛ(y|x)αη
−1
n (1 + oP(1)).

Hence, for all ε > 0, there exists a positive constant c′ε such that

P

(
η−1n

∣∣∣Λ̂h(y|x)− Λ̃n(y|x)
∣∣∣ > c′ε

∣∣∣AC
n

)
≤

ε

2
,

and thus

P

(
η−1n

∣∣∣Λ̂h(y|x)− Λ̃n(y|x)
∣∣∣ > c′ε

)
≤

ε

2
+ P(An) ≤ ε,

which concludes the proof.

Proof of Corollary 1 − Under the assumptions of Lemma 3, the estimator q̂n(u|x) defined in (8)

satisfies condition H.4 with ηn = (nhpα)1/2. Applying Theorem 2(i) concludes the proof.

Proof of Corollary 2 − Under the assumptions of Lemma 3, the estimator q̂n(u|x) defined in (8)

satisfies condition H.4 with ηn = (nkpα)1/2. Applying Theorem 2(ii) concludes the proof.
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Appendix

Proof of Lemma 2 − Let us introduce the random variable

Ψ̃h,κ(un, vn|x) := ĝh(x)
(
S̃h(un|x)− κS̃h(vn|x)

)
,

where κ ∈ {0, 1}. We first focus on its expectation. Since (Y1, . . . , Yn) are identically distributed,

one has

E(Ψ̃h,κ(un, vn|x)) = h−pE

{
[I{Y ≥ q(un|x)} − κI{Y ≥ q(vn|x)}]K

(
x−X

h

)}

= h−p
∫

Rp

[F̄ (q(un|x)|t)− κF̄ (q(vn|x)|t)]K

(
x− t

h

)
g(t)dt

=

∫

S

[F̄ (q(un|x)|x− hs)− κF̄ (q(vn|x)|x− hs)]K(s)g(x− hs)ds,

and therefore
∣∣∣∣∣
E(Ψ̃h,κ(un, vn|x))

S(un|x)− κS(vn|x)
− g(x)

∣∣∣∣∣ ≤

∫

S

K(s)|g(x− hs)− g(x)|ds

+

∫

S

K(s)

∣∣∣∣
F̄ (q(un|x)|x− hs)− κF̄ (q(vn|x)|x− hs)

S(un|x)− κS(vn|x)
− 1

∣∣∣∣ g(x− hs)ds.

Clearly, under H.2, the first term of the right hand-side of the previous inequality is a O(h).

Moreover, under H.2, ∫

S

K(s)g(x− hs)ds = g(x)(1 + o(1)),

and ∣∣∣∣
F̄ (q(un|x)|x− hs)− κF̄ (q(vn|x)|x− hs)

S(un|x)− κS(vn|x)
− 1

∣∣∣∣ ≤
S(un|x) + κS(vn|x)

S(un|x)− κS(vn|x)
ωh,ζ(νn|x).

Hence, the second term is a

O

(
S(un|x) + κS(vn|x)

S(un|x)− κS(vn|x)
wh,ζ(νn|x)

)
.

As a first conclusion, one has that E(Ψ̃h,κ(un, vn|x)) is equal to:

g(x)(S(un|x)− κS(vn|x))

(
1 +O(h) +O

(
S(un|x) + κS(vn|x)

S(un|x)− κS(vn|x)
wh,ζ(νn|x)

))
. (23)

Let us now focus on the variance of Ψ̃h,κ(un, vn|x). First, remark that

Ψ̃h,κ(un, vn|x)− E(Ψ̃h,κ(un, vn|x)) =
n∑

j=1

Zj,n,

where

Zj,n :=
1

nhp

(
[I{Yj ≥ q(un|x)} − κI{Yj ≥ q(vn|x)}]K

(
x−Xj

h

)
− hp

E(Ψ̃h,κ(un, vn|x))

)
,
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are independent, centered and identically distributed random variables. Remarking that for all

τ > 0, [I{Yj ≥ q(un|x)} − κI{Yj ≥ q(vn|x)}]
τ = I{Yj ≥ q(un|x)} − κI{Yj ≥ q(vn|x)}, the variance

of Ψ̃h,κ(un, vn|x) is equal to:

‖K‖22
nh2p

(
E

(
[I{Y ≥ q(un|x)} − κI{Y ≥ q(vn|x)}]Q

(
x−X

h

))
−

h2p

‖K‖22
E
2(Ψ̃h,κ(un, vn|x))

)
,

where Q := K2/‖K‖22 has the same properties as K. Thus, (23) entails

Var(Ψ̃h(un|x))) =
‖K‖22g(x)

nhp
(S(un|x)− κS(vn|x))

×

(
1 + o(1)−

g(x)

‖K‖22
hp(S(un|x)− κS(vn|x))(1 + o(1))

)
,

and, in view of hp(S(un|x)− κS(vn|x)) ≤ hp → 0, one has

Var(Ψ̃h(un|x))) =
‖K‖22g(x)

nhp
(S(un|x)− κS(vn|x))(1 + o(1)). (24)

We now use the Lyapounov theorem to establish the asymptotic normality of Ψ̃h,κ(un, vn|x).

From (24), the Lyapounov condition reduces to:

lim
n→∞

(
nhp

S(un|x)− κS(vn|x)

)1+δ/2

nE|Z1,n|
2+δ = 0, (25)

for some δ > 0. Hence, if (25) is satisfied, the following convergence holds

(
nhp

S(un|x)− κS(vn|x)

)1/2 (
Ψ̃h,κ(un, vn|x)− E(Ψ̃h,κ(un, vn|x))

)
d

−→ N (0, g(x)‖K‖22). (26)

To prove (25), remark that for two random variables T1 and T2, E|T1 + T2|
2+δ ≤ 22+δ(E|T1|

2+δ ∨

E|T2|
2+δ). Thus, one has

E|Z1,n|
2+δ ≤

(
2‖K‖2+δ

nhp

)2+δ

E

(
[I{Y ≥ q(un|x)} − κI{Y ≥ q(vn|x)}]N

(
x−X

h

))
,

where N := (K/‖K‖2+δ)
2+δ is a bounded density function on R

p with same support as K. Us-

ing (23) yields

E|Z1,n|
2+δ ≤

(
2‖K‖2+δ

nhp

)2+δ

hp(S(un|x)− κS(vn|x))(1 + o(1)).

Hence, condition (25) is satisfied and convergence (26) holds. Finally, remark that

(nhp(S(un|x)− κS(vn|x)))
1/2

(
S̃h(un|x)− κS̃h(vn|x)

S(un|x)− κS(vn|x)
− 1

)
= T1,n + T2,n + T3,n,
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where

T1,n :=
(nhp(S(un|x)− κS(vn|x)))

1/2

ĝh(x)

Ψ̃h,κ(un, vn|x)− E(Ψ̃h,κ(un, vn|x))

S(un|x)− κS(vn|x)
,

T2,n :=
(nhp(S(un|x)− κS(vn|x)))

1/2

ĝh(x)

E(Ψ̃h,κ(un, vn|x))− g(x)(S(un|x)− κS(vn|x))

S(un|x)− κS(vn|x)
,

and T3,n :=
(nhp(S(un|x)− κS(vn|x)))

1/2

ĝh(x)
(g(x)− ĝh(x)).

From (26), ĝh(x)T1,n
d

−→ N (0, g(x)‖K‖22). Since from Lemma 1, ĝh(x)
P

−→ g(x), one has that

T1,n
d

−→ N (0, ‖K‖22/g(x)). Furthermore, (23) implies that

T2,n =
g(x)

ĝh(x)
(nhp(S(un|x)−κS(vn|x)))

1/2

(
O(h) +O

(
S(un|x) + κS(vn|x)

S(un|x)− κS(vn|x)
wh,ζ(νn|x)

))
= o(1),

by assumptions. Finally, Lemma 1 entails that T3,n = oP(1) which completes the proof.
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