Exponential bounds and tails for additive random recursive sequences - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2007

Exponential bounds and tails for additive random recursive sequences

Résumé

Exponential bounds and tail estimates are derived for additive random recursive sequences, which typically arise as functionals of recursive structures, of random trees or in recursive algorithms. In particular they arise as parameters of divide and conquer type algorithms. We derive tail bounds from estimates of the Laplace transforms and of the moment sequences. For the proof we use some classical exponential bounds and some variants of the induction method. The paper generalizes results of Rösler (% \citeyearNPRoesler:91, % \citeyearNPRoesler:92) and % \citeNNeininger:05 on subgaussian tails to more general classes of additive random recursive sequences. It also gives sufficient conditions for tail bounds of the form \exp(-a t^p) which are based on a characterization of \citeNKasahara:78.
Fichier principal
Vignette du fichier
662-2657-1-PB.pdf (215.44 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00964242 , version 1 (24-03-2014)

Identifiants

Citer

Ludger Rüschendorf, Eva-Maria Schopp. Exponential bounds and tails for additive random recursive sequences. Discrete Mathematics and Theoretical Computer Science, 2007, Vol. 9 no. 1 (1), pp.333--352. ⟨10.46298/dmtcs.408⟩. ⟨hal-00964242⟩

Collections

TDS-MACS
118 Consultations
1020 Téléchargements

Altmetric

Partager

More