
HAL Id: hal-00964111
https://hal.science/hal-00964111

Submitted on 12 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Covariant Loop Quantum Gravity, Low Energy
Perturbation Theory, and Einstein Gravity with High

Curvature UV Corrections
Muxin Han

To cite this version:
Muxin Han. Covariant Loop Quantum Gravity, Low Energy Perturbation Theory, and Einstein Grav-
ity with High Curvature UV Corrections. Physical Review D, 2014, 89 (12), pp.124001. �10.1103/Phys-
RevD.89.124001�. �hal-00964111�

https://hal.science/hal-00964111
https://hal.archives-ouvertes.fr


Covariant loop quantum gravity, low-energy perturbation theory,
and Einstein gravity with high-curvature UV corrections

Muxin Han
Centre de Physique Théorique, CNRS UMR7332, Aix-Marseille Université and Université de Toulon,
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A low-energy perturbation theory is developed from the nonperturbative framework of covariant loop
quantum gravity (LQG) by employing the background-field method. The resulting perturbation theory is a
two-parameter expansion in the semiclassical and low-energy regime. The two expansion parameters are
the large spin and small curvature. The leading-order effective action coincides with the Regge action,
which well approximates the Einstein-Hilbert action in the regime. The subleading corrections organized
by the two expansion parameters give the modifications of the Regge action in the quantum and high-
energy regime from LQG. The perturbation theory developed here shows for the first time that covariant
LQG produces the high-curvature corrections to Einstein-Regge gravity. This result means that LQG is not
a naive quantization of Einstein gravity; rather, it provides the UVmodification. The result of the paper may
be viewed as the first step toward understanding the UV completeness of LQG.

DOI: 10.1103/PhysRevD.89.124001 PACS numbers: 04.60.Pp

I. COVARIANT LQG AND THE SEMICLASSICAL
LOW-ENERGY REGIME

The nonperturbative covariant formulation of loop quan-
tum gravity (LQG) adapts the idea of path integral quan-
tization to the framework of LQG [1]. In the formulation, a
spinfoam amplitude AðKÞ is defined on a given simplicial
manifold K for the transition of boundary quantum
3-geometries (spin-network states in LQG).1 The spinfoam
amplitude sums over the history of spin networks, and
suggests a foam-like quantum spacetime structure.
In this paper, a low-energy perturbation theory is devel-

oped from the nonperturbative framework of LQG. The
perturbation theory explains how classical gravity emerges
from the group-theoretic spinfoam formulation, and provides
the high-energy (high-curvature) and quantum corrections.
Here we show that an effective action can be derived
after perturbatively integrating/summing over all types of
spinfoam degrees of freedom fJf ∈ IrrepðSUð2ÞÞ; gve ∈
SLð2;CÞ; zvf ∈ CP1g around a geometrical background
configuration. The leading-order effective action coincides
with theRegge action,whichwell approximates theEinstein-
Hilbert action in the low-energy regime.
Importantly, in the subleading contributions, the pertur-

bation theory developed here shows for the first time that
covariant LQG produces the high-curvature corrections to
the Einstein-Regge action, which modifies the UV behavior
of Einstein gravity. It is the first time that a systematic
method is developed to compute the high-curvature cor-
rections from a full LQG framework.

The discussion here focuses on the Lorentzian spinfoam
amplitude proposed by Engle, Pereira, Rovelli, and Livine
(EPRL) [2]. The nonperturbative construction of the EPRL
spinfoam amplitude is purely (quantum-)group-theoretic.
As one of the representations [3], the EPRL spinfoam
amplitude reads

AðKÞ ¼
X
Jf

dJf tr

�Y
e

Pinv
e

�
: ð1Þ

Pinv
e is an invariant projector onto a certain subspace of the

SLð2;CÞ intertwiners associated to each tetrahedron e inK.
Here f labels a triangle in K, e labels a tetrahedron, and v
labels a 4-simplex. Jf is the SU(2) spin assigned to each
triangle. dJ is the dimension of the SU(2) irrep with spin J.
The above nonperturbative spinfoam amplitude is finite in
the quantum-group version [4], which includes the cos-
mological constant in LQG [5].
The EPRL spinfoam amplitude can be written in the

following path-integral-like form (see Ref. [6] for a
derivation):

AðKÞ ¼
X
Jf

dJf

Z
SLð2;CÞ

dgve

Z
CP1

dzvfeS½Jf;gve;zvf �; ð2Þ

where gve is a SLð2;CÞ group variable associated with each
dual half-edge. zvf is a two-component spinor. The spin-
foam action S given by

S½Jf; gve; zvf� ¼
X
ðe;fÞ

fJfVf½gve; zvf� þ iγJfKf½gve; zvf�g;

ð3Þ
1The spinfoam amplitude A is a H-valued function on the

space of triangulations, where H is the boundary Hilbert space
and H ¼ C if the manifold has no boundary.
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where the shorthand notations Vf and Kf are defined by

Vf ≡ ln ½hZvef; Zv0efi2hZv0ef; Zv0efi−1hZvef; Zvefi−1�;
Kf ≡ ln ½hZvef; ZvefihZv0ef; Zv0efi−1�; ð4Þ

with Zvef ¼ g†vezvf. γ ∈ R is the Barbero-Immirzi
paramter.
Practically, we apply the background-field method to

Eq. (2) and consider the perturbations of the spinfoam
variables around a given background configuration [spin-
foam data ðJf; gve; zvfÞ on K].2 The perturbative expansion
is performed in the semiclassical and low-energy regime.
Such a regime can be specified in the following way: the
existing semiclassical results suggest that the semiclassical
geometry emerging from the spinfoam is discrete with a
(triangle-area) spacing αf ¼ γJfl2

P [6,9–11]. Herewe focus
on the regime where the area scale αf is much greater than
the Planck scale l2

P, but much smaller than the mean
curvature radius L2 of the semiclassical geometry, i.e.,

l2
P ≪ αf ≪ L2: ð5Þ

Equation (5) is a four-dimensional analog of the semi-
classical regime in canonical LQG [12]. The relation l2

P ≪
αf comes fromℏ → 0 and implies the semiclassicality.αf ≪
L2 implies the low-energy approximation, since it requires
that the mean wavelength of the gravitational fluctuation is
much larger than the lattice scale. Adapting Eq. (5) to the
spinfoam formulation, l2

P ≪ αf can be implemented by
Jf ≫ 1 for all f, while αf ≪ L2 means that the deficit angle
jΘfj ≪ 1 for all f, because jΘfj ∼ αf=L2½1þ oðαf=L2Þ�
[13]. In the following, the perturbative analysis of the
spinfoam amplitude AðKÞ is performed with respect to a
certain background spinfoam configuration in the semi-
classical low-energy regime (5). The analysis results in a
low-energy effective action, whose leading contribution
coincides with the Einstein-Hilbert action. The expansion
parameters J−1f and Θf organize, respectively, the quantum
and high-energy curvature corrections.

II. SEMICLASSICAL APPROXIMATION AND
SIMPLICIAL GEOMETRY

Let us consider the spinfoam amplitude in the regime
l2
P ≪ αf. We write Eq. (2) as AðKÞ ¼ P

Jf dJfAJfðKÞ and
focus on the sum over fluctuations of Jf in the large-J
regime. The partial amplitude AJfðKÞ has been defined by
collecting the (g, z) integrals in Eq. (2). The spins Jf ≡ λjf
are large for all f, where λ ≫ 1 is the mean value of Jf. By
the linearity of S½Jf; gve; zvf� in Jf, the stationary phase

analysis is employed to study the asymptotic behavior of
the partial amplitude AJfðKÞ where Jf is uniformly large.
Such an analysis has been developed in Refs. [6,9–11]. In
the asymptotics, the leading contribution of AJfðKÞ comes
from the spinfoam critical configurations, i.e., the solutions
of ℜS ¼ 0 and ∂gS ¼ ∂zS ¼ 0. It turns out that each
critical configuration is interpreted as a certain type of
geometry on K. Moreover, the critical configurations also
know if the manifold is oriented and time-oriented [6]. As a
result, the critical configurations are classified according to
their geometrical interpretations and the information about
orientations:
TABLE I.

Vf Kf

Lorentz time-oriented 0 εsgnðV4ÞΘf
Lorentz time-unoriented iεπ εsgnðV4ÞΘf
Euclidean iε½sgnðVE

4 ÞΘE
f þ πnf� 0

Vector iΦf 0

In Table I, The first two classes of critical configurations
give the Lorentzian simplicial geometries onK. Each critical
configuration ðjf; gve; zvfÞ in the first two classes is equiv-
alent to a set of geometrical data ð�vElðvÞ; εÞ [6] with
ε ¼ �1. ElðvÞ is a cotetrad on K (where the edge vectors
satisfy some conditions), up to an overall sign �v in each
4-simplex. ElðvÞ determines the oriented volume
V4ðvÞ ¼ det ðEI

lðvÞÞ. The local spacetime orientation is
defined by sgnðV4Þ. ElðvÞ also determines uniquely a spin
connection Ωe ∈ SOð1; 3Þ along each dual edge e. The
critical configuration gives a locally time-oriented spacetime
if the corresponding spin connection along a closed loop
Ωf ¼ Q

e⊂∂f Ωe ∈ SOþð1; 3Þ. Additionally, the last two
classes of critical configurations give the Euclidean simpli-
cial geometry and degenerate vector geometry onK. It turns
out that Vf andKf defined in Eq. (4) take different values in
each class of critical configurations, as is shown in the above
table. Here Θf (ΘE

f ) denotes the Lorentzian (Euclidean)
deficit angle, Φf denotes the vector-geometry angle,
and nf ∈ f0; 1g.

III. LOW-ENERGY APPROXIMATION

Here we consider the perturbations of the spinfoam

variables around a critical configuration ðj∘f; g∘ve; z∘vfÞ in
the first class, which corresponds to the globally oriented
and time-oriented Lorentzian simplicial geometry with

sgnðV∘ 4Þ ¼ 1, ϵ
∘ ¼ −1 globally. It turns out that Einstein

gravity is recovered from the perturbations around such a

background. The background deficit angles jΘ∘ fj ≪ 1 since
we are interested in the low-energy perturbations. The

background spins J
∘
f ¼ λj

∘
f, with λ ≫ 1, for the semi-

classical approximation.
2See Refs. [7,8] for an early study of the spinfoam amplitude

using the effective action.
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The partial amplitude can be written as AjfðKÞ ¼
exp λW½jf�, where W½jf� is an effective action obtained
by integrating out the ðgve; zvfÞ variables in Eq. (2). W½jf�
is computed in a neighborhood at the background

ðj∘f; g∘ve; z∘vfÞ by generalizing the method of computing
the effective action to the case of a complex action [14]
(sometimes called the almost-analytic machinery). The
general procedure is summarized in the following.
Let Sðj; xÞ, j ∈ Rk, x ∈ RN be a smooth function in a

neighborhood of ðj∘; x∘Þ. We suppose that ℜ½Sðj; xÞ� ≤ 0,

ℜ½Sðj∘; x∘Þ� ¼ 0, δxSðj
∘
; x
∘Þ ¼ 0, and δ2x;xSðj

∘
; x
∘Þ is nondegen-

erate. We denote by Sðj; zÞ, j ∈ Ck, z ¼ xþ iy ∈ Cn an
(nonunique) almost-analytic extension of Sðj; xÞ to a

complex neighborhood of ðj∘; x∘Þ. The equations of motion
δzS ¼ 0 define an almost-analytic manifold M in a neigh-

borhood of ðj∘; x∘Þ, which is of the form z ¼ ZðjÞ. OnM and
inside the neighborhood, there is a positive constant C such
that for j ∈ Rk

−ℜ½Sðj; zÞ� ≥ CjℑðzÞj2; z ¼ ZðjÞ: ð6Þ

We have the following asymptotic expansion for the
integral:

Z
eλSðj;xÞuðxÞdx ∼ eλS½j;ZðjÞ�

�
1

λ

�N
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
2πi

S00½j; ZðjÞ�
�s

×
X∞
s¼0

�
1

λ

�
s
½Ls ~u�ðZðjÞÞ;

where uðxÞ ∈ C∞
0 ðKÞ is a compact support function on K

inside the domain of integration. N is the number of
independent x variables, which is the same as the number
of holomorphic z variables. The differential operator Ls of
order 2s operates on an almost-analytic extension ~uðzÞ of
uðxÞ and evaluates the result at z ¼ ZðjÞ. The branch of the
square root is defined by requiring

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð2πi=S00½j; ZðjÞ�Þp

to deform continuously to 1 under the homotopy,

ð1 − sÞ 2πi
S00½j; ZðjÞ� þ sI ∈ GLðn;CÞ; s ∈ ½0; 1�: ð7Þ

Note that the asymptotic expansions from two different
almost-analytic extensions of the pair Sðj; xÞ, uðxÞ are
different only by a contribution bounded by CKλ

−K for
all K ∈ Zþ.
In our case the spinfoam action is an analytic func-

tion in a neighborhood at ðj∘f; g∘ve; z∘vfÞ. We write
S½jf; gve; ~gve; zvf; ~zvf� as the analytic continuation of the
action S½jf; gve; zvf� in a complex neighborhood at

ðj∘f; g∘ve; z∘vfÞ. Then, by the above procedure, we obtain
the following effective action after integrating out gve, zvf:

W½jf� ¼ S½jf; gveðjÞ; ~gveðjÞ; zvfðjÞ; ~zvfðjÞ� þ � � � ; ð8Þ

where � � � stands for the subleading contributions of oð1=λÞ.
The leading contribution of W½j� is given by evaluating
S at the solution fgveðjÞ; ~gveðjÞ; zvfðjÞ; ~zvfðjÞg≡ ZðjÞ of
∂gS ¼ ∂ ~gS ¼ ∂zS ¼ ∂ ~zS ¼ 0. In a neighborhood of spins

at j
∘
f, the real part of S½jf;ZðjÞ� is nonvanishing and

negative unless jf ¼ j
∘
f, where ZðjÞ reduces to the real

value g
∘
ve, z

∘
vf.

The leading contribution S½jf;ZðjÞ� can be analyzed by
a Taylor expansion in perturbations sf ¼ jf − j

∘
f,

S ¼ i

�X
f

γj
∘
fΘ
∘
f þ

X
f

γΘ
∘
fsf þ

X
f;f0

Wf;f0sfsf0 þ oðs3Þ
�
:

ð9Þ

The computations of the above coefficients at different
orders are given in Ref. [15]. In particular, Wf;f0 is local in
the sense that it vanishes unless f; f0 belong to the same
tetrahedron e.
The above result is for the partial amplitude AjfðKÞ. In

order to compute AðKÞ, we implement the sum over

perturbations sf inside a neighborhood at j
∘
f. The spinfoam

amplitude is written as AðKÞ ∼P
sf dλðj∘fþsfÞ

exp λW½j∘f þ
sf� and is studied perturbatively. The Poisson resummation
formula can be applied to the sum over the perturbations sf,
which results in the following perturbative expression
for AðKÞ:

eiλ
P

f
γj
∘
fΘ
∘
f
X
kf∈Z

Z
½dsf�eiλ½

P
f
ðγΘ

∘
f−4πkfÞsfþ

P
f;f0 Wf;f0sfsf0þoðs3Þ�þ���; ð10Þ

where again � � � stands for the subleading contributions
in 1=λ.
The above discussion considers the large-J regime for

the spinfoam amplitude for the semiclassical approxima-
tion. Now we implement the low-energy approximation.

The low-energy regime is achieved when the background
configuration ðj∘f; g∘ve; z∘vfÞ is such that Θ

°

f ≪ 1.
Firstly, let us consider the integralswith kf ≠ 0 in Eq. (10)

and apply the stationary phase analysis as λ ≫ 1. The
equation of motion from S½jf;ZðjfÞ� is given by
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0 ¼ ∂jfSjZðjÞ þ ∂jfZ∂ZSjZðjÞ ¼ ∂jfSjZðjÞ; ð11Þ

where ∂ZSjZðjÞ ¼ 0 because ZðjÞ is the solution of
∂gS¼∂ ~gS¼∂zS¼∂ ~zS¼0. The conditionℜS½jf;ZðjfÞ� ¼
0 implies the perturbation sf ¼ 0whereZðjÞ reduces to g∘ve,
z
∘
vf. Taking into account both the equations of motion and

ℜS ¼ 0 gives us that γΘ
∘
f − 4πkf ¼ 0 for kf ≠ 0, which

cannot be satisfied in the low-energy regimewhere jΘ∘ fj ≪ 1

[with γ ∼ oð1Þ or less]. As a result, all the integrals with
k ≠ 0 in Eq. (10) are exponentially decaying, according to
the principle of stationary phase analysis [16].
We thus focus on the integral with kf ¼ 0 in Eq. (10),

Z
½dsf�eiλ½

P
f;f0 γΘ

∘
fsfþ

P
f
Wf;f0sfsf0þoðs3Þ�þ���: ð12Þ

We denote by jΘ∘ j ≪ 1 the mean value of the background

deficit angle andΘ
∘
f ¼ Θ

∘
Δf. The two-dimensional space of

ðλ;Θ∘ Þ may be viewed as the parameter space for our
perturbation theory, where the semiclassical and low-

energy regime is located in λ ≫ 1, jΘ
∘
j ≪ 1. Now a new

parameter is defined by β≔λΘ
∘
, or a coordinate trans-

formation is defined from ðλ;Θ∘ Þ to ðλ; βÞ, where β is
treated as independent of λ. Then Eq. (12) readsZ

½dsf�eiλ½
P

f;f0 Wf;f0sfsf0þoðs3Þ�eiβγ
P

f
Δfsfþ���: ð13Þ

Again the stationary phase analysis is applied as
λ ≫ 1. We find that sf ¼ 0 is a solution of both
∂sf ½

P
f;f0Wf;f0sfsf0 þoðs3Þ�¼0 and ℜ½Pf;f0 Wf;f0sfsf0 þ

oðs3Þ� ¼ 0. Note that ℜ½Pf;f0Wf;f0sfsf0 þ oðs3Þ� ¼ ℜS

since i
P

fγΘ
∘
fsf is purely imaginary. The standard sta-

tionary phase formula [16] leads to the following result
from Eq. (13) in the neighborhood of the background spins

j
∘
f (sf ¼ 0):

X∞
n¼0

ð1=λÞnLn½eiβγ
P

f
Δfsfþ����sf¼0 ¼

X∞
n¼0

X2n
r¼0

ðγrβr=λnÞfn;r:

ð14Þ

Ln is a differential operator of order 2n (in ∂sf ) where all the
interactions from the Lagrangian are encoded (see Ref. [16]
for a general expression). Applying the differential operator

Ln to e
iβγ
P

f
Δfsf gives the power-counting result in Eq. (14).

The coefficients fn;r are functions of λ and ðj∘f; g∘ve; z∘vfÞ,
which are regular as λ → ∞.3 By inserting Eq. (14) into

Eq. (10) and recalling β ¼ λΘ
∘
, the following expansion for

AðKÞ is obtained:

AðKÞ ∼ eiλ
P

f
γj
∘
fΘ
∘
f
X∞
n¼0

X2n
r¼0

ðγrΘ
∘ r
=λn−rÞfn;r; ð15Þ

where the exponentially decaying contributions have been
neglected. We can read from the above result an effective

action Ieffðj
∘
f; g

∘
ve; z

∘
vfÞ by expressing AðKÞ ∼ exp iIeff ,

where the effective action at the background ðj∘f; g∘ve; z∘vfÞ
is an expansion with respect to Θ

∘
and λ−1,

iIeff ¼ λ

�
i
X
f

γj
∘
fΘ
∘
f þ

γ2

4

X
f;f0

W−1
f;f0Θ

∘
fΘ
∘
f0 þ oðγ3Θ∘ 3; λ−1Þ

�
:

ð16Þ

The derivation of the above expression will be given in the
next section. The coefficientW−1

f;f0 is the inverse ofWf;f0 in
Eq. (9). Wf;f0 has been computed in Ref. [15]. Wf;f0 is
nonzero only when f, f0 belong to the same tetrahedron e,

Wf;f0 ¼
2ð1þ 2iγ − 4γ2 − 2iγ3Þ

5þ 2iγ
n̂tefX

−1
e n̂ef0 ; ð17Þ

where Xij
e ≡P

f jfð−δij þ n̂iefn̂
j
ef þ iεijkn̂kefÞ. Here the

unit 3-vector n̂ef determined by ðj∘f; g∘ve; z∘vfÞ is the normal
vector of the triangle f in the frame of the tetrahedron e
[6,15]. Although Wf;f0 is local in f, f0, the inverse W−1

f;f0 is
nonlocal in general; it may be nonzero for far away f, f0. So

the γ2Θ
∘ 2

term is a nonlocal curvature correction in Ieff .
Moreover, a systematic method was developed in Ref. [15]

to compute in principle all the γrΘ
∘ r

corrections.

IV. SEMICLASSICAL LOW-ENERGY
EFFECTIVE ACTION

Let us understand the expansion in Ieff in a more detailed
way. We focus on the integral with kf ¼ 0 in Eq. (10). The
integrals with nonzero kf can be analyzed in the same way.
We apply the technique of the almost-analytic machinery to
the action

S½sf� ¼ i
X
f

γj
∘
fΘ
∘
fþ

X
f

iγΘ
∘
fsfþ

X
f;f0

Wf;f0sfsf0 þoðs3Þ;

with ℜðSÞ ≤ 0 by Eq. (6).

3If the λ−1-corrections are neglected, the γΘ
∘
expansion of Ieff is

analytic in a neighborhood at γΘ
∘
¼ 0, by the analyticity of the

spinfoam action [15].
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If we consider the action S½sf�≡ S½γΘ∘ f; sf� where γΘ
∘
f

is treated as a parameter here, we find

γΘ
∘
f ¼ 0 and sf ¼ 0 ⇒ ℜðSÞ ¼ 0 and δsfS ¼ 0:

ð18Þ

The critical point γΘ
∘
f ¼ 0, sf ¼ 0 for the action S½γΘ

∘
f; sf�

fulfills the assumption of the almost-analytic machinery.

We apply the almost-analytic machinery to S½γΘ∘ f; sf� by
analytically continuing sf to the complex variables. S is an
analytic function of sf, and so the equation of motion

δsfS ¼ 0 gives an analytic manifold sf ¼ ZfðγΘ
∘
fÞ at least

locally. The integral (12) is expressed as an asymptotic
expansion,

eλS½γΘ
∘
f;ZfðγΘ

∘
fÞ�
�
1

λ

�Nf
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
2πi

δ2sf;sf0SjγΘ° f;ZfðγΘ
°

fÞ

�vuut �
1þo

�
1

λ

��
:

ð19Þ

The leading effective action S½γΘ
∘
f; ZfðγΘ

∘
fÞ� has the

property [following from Eq. (6)] that

ℜðS½γΘ∘ f; ZfðγΘ
∘
fÞ�Þ ≤ −CjℑðZfðγΘ

∘
fÞÞj

2
: ð20Þ

We can compute more concretely the expression of the

effective action S½γΘ∘ f; ZfðγΘ
∘
fÞ� as a power series of γΘ

∘
f.

We expand the action S½γΘ∘ f; sf� at the first-order solution
(in γΘ

∘
f) from the equation of motion δsfS ¼ 0,

sf ¼ −
i
2

X
f0
W−1

f;f0γΘ
∘
f0 : ð21Þ

If we define yf ≡ sf þ i
2

P
f0W

−1
f;f0γΘ

∘
f0 , then the expansion

of the action reads

λS½γΘ∘ f; yf� ¼ iλ
X
f

γj
∘
fΘ
∘
f

þ λ

�
1

4

X
f;f0

W−1
f;f0γΘ

∘
fγΘ

∘
f0 þ oððγΘ∘ fÞ3Þ

�

þ λ

�X
f

½oððγΘ∘ fÞ2Þ�yf þ
X
f;f0

½2Wf;f0

þ oðγΘ∘ fÞ�yfyf0 þ oðy3fÞ
�

The equation of motion δyfS½γΘ
∘
f; yf� with respect to yf

gives an oððγΘ∘ fÞ2Þ correction to the original approximating
solution yf ¼ 0, i.e.,

yf ¼ oððγΘ∘ fÞ2Þ or sf ¼−
i
2

X
f0

W−1
f;f0γΘ

∘
f0 þoððγΘ∘ fÞ2Þ:

If we expand the action S½γΘ∘ f; sf� at the new approxi-
mating solution and iterate the above procedure, we
more accurately approximate the exact solution of

δsfS½γΘ
∘
f; sf� ¼ 0 and obtain the exact solution sf as a

power series of γΘ
∘
f,

sf ¼ ZfðγΘ
∘
fÞ ¼

X∞
n¼1

αf;f1;���;fnγΘ
∘
f1 � � � γΘ

∘
fn ; ð22Þ

where the series has a finite convergence radius since we

know that ZfðγΘ
∘
fÞ is analytic.

Evaluating the action S½γΘ
∘
f; sf� at this exact solution

gives

S½γΘ∘ f; ZfðγΘ
∘
fÞ� ¼ i

X
f

γj
∘
fΘ
∘
f þ

X∞
n¼2

βðnÞf1;���;fnγΘ
∘
f1 � � � γΘ

∘
fn ;

where in particular the quadratic-order coefficient is
given by

βð2Þf1;f2
¼ 1

4
W−1

f1f2
: ð23Þ

The expression of the matrix Wf1;f2 is given in Eq. (17).
As a result, when γΘ

∘
f is small,

S½γΘ∘ f; ZfðγΘ
∘
fÞ� ¼ i

X
f

γj
∘
fΘ
∘
f þ

1

4

X
f;f0

W−1
f;f0γΘ

∘
fγΘ

∘
f0

þ oððγΘ∘ fÞ3Þ: ð24Þ

Following the same procedure for the kf ≠ 0 branches in
Eq. (10), we obtain that in general

Sk½γΘ
∘
f − 4πkf; ZfðγΘ

∘
f − 4πkfÞ�

¼ i
X
f

γj
∘
fΘ
∘
f þ

1

4

X
f;f0

W−1
f;f0 ðγΘ

∘
f − 4πkfÞðγΘ

∘
f0 − 4πkfÞ

þ oððγΘ∘ f − 4πkfÞ3Þ: ð25Þ

In general Sk has a negative real part coming from the terms

of quadratic and higher order in ðγΘ∘ f − 4πkfÞ. By Eq. (20),
the exponential eλSk in the asymptotic expansion Eq. (19)
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for generic k decays exponentially unless γΘ
∘
f from the

background data ðj∘f; g∘ve; z∘vfÞ is close to one of
f4πkf∶kf ∈ Zg. The nondecaying eλSk requires that the
negative real part of λSk does not become large when

λ ≫ 1, which imposes a nontrivial restriction on γΘ
°

f, i.e.,
for a constant C ∼ oð1Þ,

jγΘ∘ fj ≤ Cλ−1=2 mod 4πZ: ð26Þ

If we assume γΘ
∘
f is small and the bound (29) is satisfied,

the above analysis lets us obtain a perturbative effective
action for the spinfoam state sum AðKÞ,

AðKÞ ∼ eλIeffðj
∘
f;g

∘
ve;z

∘
vfÞ; ð27Þ

where the leading-order contribution to the effective action

Ieff is given by a power series of γΘ
∘
f,

Ieff ¼ i
X
f

γj
∘
fΘ
∘
f þ

1

4

X
f;f0

W−1
f;f0γΘ

∘
fγΘ

∘
f0 þ oððγΘ∘ fÞ3Þþ

−
Ng;z − Nf

2λ
ln λþ o

�
1

λ

�
: ð28Þ

Θ
∘
f is the deficit angle of the background simplical

geometry from ðj∘f; g∘ve; z∘vfÞ. Thus the above expression
of the effective action is a curvature expansion whose
leading order is the Regge action.

V. DISCUSSION

There are several remarks for the effective action (16)
or (28):

(i) Low-energy effective action as curvature expansion:

The terms ∝ λðγΘ
∘
Þr≥2 are understood as the high-

energy correction to the leading-order iλ
P

fγj
∘
fΘ
∘
f,

since the jΘ∘ j ≪ 1 implements the low-energy
approximation.4 Therefore, as a power series of

Θ
∘
, Ieff is understood as a low-energy effective action

from covariant LQG. The deficit angle Θ
∘
∼ αR,

where α is the mean (area) spacing of the lattice

given by the background data ðj∘f; g∘ve; z∘vfÞ, R is the
mean curvature of the background. Thus the effec-
tive action Ieff can be viewed as a curvature
expansion, where the high-energy corrections are
given by α2γ2R2 þ α3γ3R3 þ � � �, with α being the

(effective) coupling constant of the high-derivative
interactions.

(ii) Two-parameter expansion: There are two parameters
involved in the expression of the effective action Ieff ,

i.e., λ ≫ 1 andΘ
∘
≪ 1 (or αwith dimension −2). 1=λ

counts the quantum corrections, while Θ
∘

(or α)
counts the high-energy corrections. The two expan-
sion parameters implement the semiclassical low-
energy regime l2

P ≪ α ≪ L2.
(iii) Restriction of Θ

∘
: The effective action iIeff has a

negative real part, which is contained in the terms of

higher curvature [15], i.e.,ℜ½iIeff �¼λℜ½1
4
W−1γ2Θ

∘ 2þ
oðγ3Θ∘ 3Þþ����≤0, where � � � stands for the terms
suppressed by 1=λ. This negative real part of the
exponential would have given an exponentially

decaying factor in AðKÞ if γΘ
∘
was of oð1Þ, which

is not our case because Θ
∘
≪ 1. The nondecaying

AðKÞ requires that ℜ½iIeff � does not become large
when λ ≫ 1, which results in a nontrivial bound for

the deficit angle Θ
∘
, i.e.,

jΘ
∘
j ≤ γ−1λ−

1
2: ð29Þ

The situation is illustrated in Fig. 1. The red region in

Fig. 1 illustrates the space (in the coordinates λ and Θ
∘
)

of background configurations ðJ∘f; g∘ve; z∘vfÞ, which
validates the two-parameter expansion of the effective

action Ieff . If Θ
∘
is beyond the bound (29), where the

approximation (14) is invalid, the integral (12) is
exponentially decaying as λ ≫ 1 by the same argu-
ment for k ≠ 0 integrals. Thus the red region in Fig. 1
illustrates the semiclassical low-energy effective de-
grees of freedom from the above approximation.

(iv) Einstein-Hilbert action: After the restriction (29), the

leading contribution in Ieff , iλ
P

f γj
∘
fΘ
∘
f, is the

Regge action of general relativity (GR) as a func-
tional of the edge lengths determined by

FIG. 1 (color online). The Einstein sector of spinfoam
configurations.

4The terms linear to γΘ
∘
are suppressed by λ−1 except the

leading Regge action.
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ðj∘f; g∘ve; z∘vfÞ (by identifying γλj
∘
f ¼ αf=l2

P to be the
area of the triangle f in Planck units). Moreover,

given that that Θ
∘
f ∼ αf=L2 ≪ 1

5 and that Ieff is a
power series in αf, the leading-order contribution is
essentially the Einstein-Hilbert action on a smooth
manifold M, i.e., as a functional (see, e.g.,
Ref. [13]),

iλ
X
f

γj
∘
fΘ
∘
f ¼ i

l2
P

Z
M

d4x
ffiffiffiffiffiffi
−g∘

q
R½g∘αβ�

× ½1þ oðαf=L2Þ�; ð30Þ

where g
∘
αβ is the Lorentzian metric approximated by

the simplicial geometry from ðj∘f; g∘ve; z∘vfÞ. Therefore,
Ieff can be written as

Ieff ¼
1

l2
P

Z
M

d4x
ffiffiffiffiffiffi
−g∘

q
R½g∘αβ�

× ½1þ oðαRÞ þ oð1=λÞ�; ð31Þ

where the leading contribution is the Einstein-Hilbert
action. Such a result immediately follows from the fact
that the leading-order effective action is the Regge
action from the semiclassical low-energy expansion.
In this sense, the diffeomorphism invariance on M is
then recovered as an approximated symmetry in the
leading order of the semiclassical and low-energy
approximation. However, it remains to be seen
whether the theory can recover a continuum theory
with diffeomeorphism invariance beyond the leading
order or even nonperturbatively.

(v) Small Barbero-Immirzi parameter: Once γ ≪ 1, the
interesting regime γ−1 ≪ λ ≤ γ−2 appears in Fig. 1.
γ−1 ≪ λ is required for l2

P ≪ αf. As λ ≪ γ−2 and
due to Eq. (29), AðKÞ is not decaying even without

the restriction of Θ
∘
. Even a finite Θ

∘
is admitted in

Eq. (16) without requiring Θ
∘
≪ 1. Indeed, each Θ

∘
is

accompanied by a γ in Ieff [and in Eq. (12) origi-
nally], where γ appears as an effective scaling of the
deficit angle. One may choose β ¼ λγ in Eq. (13) as
γ ≪ 1. Thus in the regime γ−1 ≪ λ ≤ γ−2, Ieff can be
formulated as Eq. (16) with a finite deficit angle,
where the leading order is the Regge action in
general. Sending γ → 0 effectively neglects the
higher-curvature corrections. The analysis here

may explain the spinfoam graviton propagator
calculations [17–19] and the analysis in Ref. [20],
which was the first to motivate γ ≪ 1.

(vi) Flatness: λ → ∞ asymptotically is another interest-
ing regime in Fig. 1, where the deficit angle is so

restricted that onlyΘ
∘ ¼ 0 (flat geometry) is allowed.

It is related to the “flatness problem” in the spinfoam
formulation discussed in Ref. [21]. However, the
flatness problem disappears here for any finite λ ≫ 1
via the low-energy perturbation theory. It is an open
question as to how to interpret the regime where the
spins are too large, as it seems to give a lattice
spacing scale that is semiclassically too large,
αf ∼ λl2

P, and it contradicts the observation of
smooth spacetime. In order to remove the regime,
a spin cutoff may be introduced via q-deformation
[4], which produces a relatively large bare cosmo-
logical constant [5].

The above discussion considers the fluctuations of
spinfoam variables that touch a single critical configuration

ðj∘f; g∘ve; z∘vfÞ. The fluctuations touching many critical
configurations ðjf; gve; zvfÞc result in a sum of the above
perturbative expression of AðKÞ over all the critical
configurations. The red region in Fig. 1—which we call
the Einstein sector, NE—is a subspace of spinfoam
configurations, in which all the critical configurations
are interpreted as a globally oriented and time-oriented
Lorentzian geometry [with sgnðV4Þ ¼ 1, ε ¼ −1 globally].
When the fluctuations of the spinfoam variables are
considered within NE, the perturbative expression of the
spinfoam amplitude is then given by

AðKÞ ¼
X

ðjf;gve;zvfÞc∈NE

e
i

l2
P

R
M

d4x
ffiffiffiffi−gp

R½gαβ �×½1þoðαRÞþoð1=λÞ�
;

ð32Þ

where gαβ is the Lorentzian metric approximated by
ðjf; gve; zvfÞc. Equation (32) makes sense because the
perturbations at a geometrical critical configuration (which
is globally Lorentzian, oriented, and time-oriented) only
touch the geometrical critical configuration of the same
type. From Eq. (32) we see that the contributions to AðKÞ
from the perturbations within NE are given by the func-
tional integration of the Einstein-Hilbert action (with a
discrete measure) plus the high-energy and quantum
corrections. The leading contributions to AðKÞ inNE come
from the critical configurations ðjf; gve; zvfÞc, which give
gαβ satisfying the Einstein equation (with high-energy and
quantum corrections).
The above discussion can be generalized straightfor-

wardly to the analysis of correlation functions. In the
Einstein sector NE, the perturbative result of the spinfoam
correlation function coincides with the corresponding

5Given ðj∘f; g∘ve; z∘vfÞ with nontrivial mean curvature radius, in
order to obtain Eq. (31) a large triangulation is needed, e.g., if the

size of K measured by ðj∘f; g∘ve; z∘vfÞ is of the same order as the
curvature radius L, the number of simplices is at least of the order
N ∼ L4=α2 ≫ 1.
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perturbative correlation function from Einstein gravity or
Regge gravity, up to curvature and quantum corrections.
The corrections of higher order in curvature (in deficit

angle) modify the Einstein-Regge gravity in the high-energy
regime. It is interesting to further investigate these high-
curvature terms predicted fromcovariant LQG, in order to see
if LQG can provide aUV completion of perturbative Einstein
gravity. The origin of high-curvature terms is the sum over
non-Regge-like spins (the spins that cannot be viewed as
Regge areas) in the spinfoam amplitude. The non-Regge-like
spins are the extraUV degrees of freedom in addition to those
from GR predicted by LQG. Their dynamics may be studied
via the action (9) to see if they regulate Einstein gravity in the
UV. Beside the UV corrections, the physical implication of
quantum 1=λ corrections is also an open issue to be under-
stood in the future. It may be important to understand the
implications from both UVand quantum corrections in order
to see if there exists a continuum limit of the theory beyond
the leading-order effective action.
Finally, we remark that the work carried out in the present

paper concerns the perturbation theory of covariant LQG
when the background is chosen in the Einstein sectorNE. An
analysis beyond the Einstein sector NE can also be carried
out. There exist other different sectors—well separated from
NE—where a similar analysis results in leading-order
effective actions that are different from Einstein gravity.
As was shown in Refs. [6,9,11], there are other possible

backgrounds (vacuum) corresponding to (i) nondegenerated
Lorentzian geometry with a nonuniform orientation, or
(ii) Lorentzian geometry, Euclidean geometry, or degenerate
geometry, or a mixture of the three types. It is not yet
understood if the contribution from the Einstein sector is
dominating the spinfoam amplitude in the semiclassical low-
energy regime, or if all types of background contribute in a
democratic way. The same type of perturbative expansion
can be carried out in principle for those types of geometries
which do not correspond to the usual Einstein gravity at
leading order. We refer the reader to Refs. [15,22] for some
discussions.However, the physical implication of other types
of backgrounds are thus far unclear, and this remains to be
investigated in the future. It is possible that we may need a
mechanism to stablize our theory in the semiclassical low-
energy regime to the vacua in the Einstein sector. Such a
mechanism is an open issue to be understood in the future.
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