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Cosmological Constant in LQG Vertex Amplitude

Muxin Han
Centre de Physique Théorique®, CNRS-Luminy Case 907, F-13288 Marseille, EU

A new g-deformation of the Euclidean EPRL/FK vertex amplitude is proposed by using the evaluation of the
Vassiliev invariant associated with a 4-simplex graph (related to two copies of quantum SU(2) group at different
roots of unity) embedded in a 3-sphere. We show that the large-j asymptotics of the q-deformed vertex amplitude
gives the Regge action with a cosmological constant. In the end we also discuss its relation with a Chern-Simons

theory on the boundary of 4-simplex.

PACS numbers: 04.60.Pp, 02.20.Uw

I. INTRODUCTION:

The spinfoam formalism is currently understood as a co-
variant formulation of Loop Quantum Gravity (LQG) [1H3].
In LQG community, it was commonly conjectured that one
should make a g-deformation of the spinfoam amplitude (with
quantum group) in order to implement the cosmological con-
stant term in the theory [3] 16} [7]. Such a conjecture was sug-
gested by the lesson from 3d gravity and 4d topological field
theory. In 3d gravity, the Turaev-Viro model [8] is a deforma-
tion of the Ponzano-Regge model [9] by the quantum group
SU,4(2) (g is a root of unity). The partition function of the
Turaev-Viro model is finite, and its large spin asymptotics
give the 3d Regge action with a positive cosmological con-
stant [[10]. In 4d, the Crane-Yetter model [[11] is a deformation
of 4d SU(2) BF theory (the Ooguri model [12]) by SU,(2) (¢
is a root of unity). The partition function of the Crane- Yetter
model is finite and shown to be the partition function of 4d
SU(2) BF theory with a cosmological constant [[13]].

For 4d quantum gravity, there are early pioneer works for
g-deformed LQG [6]. In the spinfoam formulation, there
are several proposals to make g-deformed spinfoam models,
which are hoped to give the cosmological constant term in
the semiclassical limit [14H17]. In this paper, we propose a
new g-deformation of the Euclidean EPRL/FK vertex ampli-
tude by using the evaluation of the Vassiliev invariant asso-
ciated with a 4-simplex graph (relats to the quantum group
SU,+(2) ® SU,-(2) with ¢* roots of unity). We also show
that the large-j asymptotics of the g-deformed vertex ampli-
tude gives the Regge action with cosmological constant. This
result can be considered as an evidence supporting that the
g-deformation of spinfoam amplitude implements the cosmo-
logical constant term in the framework of covariant LQG.

II. HEURISTIC DEFORMATION:

Before we come to the systematic q-deformation of the am-
plitude, we first present a heuristic deformation of EPRL/FK
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vertex amplitude, to give an idea for obtaining the cosmolog-
ical constant term in the spinfoam vertex amplitude.

Given a 4-simplex o, we label by a,b = 1,---,5 the five
tetrahedra on the boundary of the 4-simplex, and denote by the
pair (a, b) the triangle shared by two tetrahedra a and b. We
assume the Barbero-Immirzi parameter 0 < y < 1, the Eu-
clidean EPRL/FK vertex amplitude can be written in coherent
state representation [18]] (+ stands for the self-dual/anti-self-
dual contribution):

5
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a<b

where (—1)Y is a sign defined by the diagrammatic calculus of
SU(2) spin-network, PZ, is a coherent propagator

P2, o= (2, =napl(82) ' 8517 ba) @)

gu(a=1,---,5) are 2 x 2 SU(2) matrices, and |j,n) is a co-
herent state in the spin-j representation of SU(2)[19]. Here
{kap, nap} With jjb = 1J"T"ka;, and ny, € S? is a set of boundary
data for a vertex amplitude. The vector j,,n, is an oriented
area vector of the triangle (a, b) viewed at the tetrahedron a.
The coherent state representation of EPRL/FK vertex ampli-
tude is the starting point for the asymptotic analysis, and it
turns out also to be useful in the analysis of quantum group
spinfoam vertex.
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FIG. 1: The 1"; graph with one crossing between /3 and ly5.

Now we make a heuristic modification of the EPRL/FK ver-
tex amplitude: We consider a 4-simplex graph I' (FIG. In
FIG[T]we order the 5 nodes on the paper from left to right, and
connect the nodes by oriented links. A link oriented from the
node a to the node b is denoted by [/,,. We notice that there
is a crossing between the links /3; and /4>, which motivate us
to make the following modification of the coherent propagator



P3, and Py,. We define two operators R* on the SU(2) tensor
representations Vj: ® Ve respectively':

. 3
+ +4i + +
R* :=exp T iy)2wZXj ® X 3)

J=1

where w is a real dimensionless parameter (a deformation
parameter), and Xj* are self-dual/anti-self-dual generators of
Spin(4) with commutator [X;T', X;] = iejuX;. We write for-
mally that R* = }g- RS, ® RY,, and insert them by hand into
the coherent propagators, i.e. we modify P}, P35, by

“P3 Py = Z <j§1,—n31|(g§)_'R3ilgT|j§1,n13>
Ri

X (Ji —nal(@) Ringilifone) @)

while we leave the other coherent propagators unchanged as
Eq.(2). The modified (deformed) vertex amplitude is defined
in the same way as Eq.(T]) but with modified coherent propaga-
tor. We denote the modified vertex amplitude by A%(kup, nap),
which can written by

5
AG(kap, nap) = fl_[ dgz K31 4 l_[ Pay )
a=1 a<b
where K3, ,, is a ratio

wpeE wWpe
[Te=x “P5, “Pj,
€ € :

[Te=s P15P5,

We can then expand Eq.(3) into power series of w, which re-
sults in a power expansion of K%, ,, in terms of the deforma-
tion parameter w. A building block for constructing the power

expansion of K3} ,, is

w —
7<‘31,42 -

(6)
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which contributes the power expansion at the order w".
By using the resolution of identity for coherent state
dim(}) st dn|j,n){j,n| = 1;, we can compute

(Jab» —nablgz Xt - Xt, @bl ab a)
(abs —Nab|82" 8bljabs Mba)
_ dim(jap)"”!
* (Jabs —Nablg 86l jabs Mba) Jis2y
X exp[2/ay (Il Im) + -+ + 10 (malgylnna)) |
<—nab|g;10k1 |”1> Aok, golnva)
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dn; ---dn,
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! The original EPRL/FK amplitude doesn’t know about the embedding of
the 4-simplex spin-network, i.e. it doesn’t depend on whether /31 is over-
crossing or under-crossing ls». However the deformed amplitude does
know about the embedding, thanks to the operators R*.

where we have used the following identity:

(. ~milgy" Xgaljna)
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We scale the spin j,; — 1j,, and study the large-j asymptotic
behavior of the integral in Eq.(§) as 4 — co. The leading
asymptotics is determined by the critical point of the action

S0 = 2jas |In(=naplgg i) + - +In (mlgplnpa)| — (10)
The condition ReS( = 0 gives the critical equations
—8allap = N1 =N2 =+ =Ny = ZpNpg- (11)

The variations of the action 85 (/dn; vanishes automatically,
once the above critical equations are satisfied. The asymp-
totics of Eq.(8) is given by the integrand evaluated at the crit-
ical point (critical equations). By using the following relation

<_nah|g;1&gb|nba> B

(—nalgz' gslnpa)

Flba - ﬁah + iﬁab X ﬁba

— (12)
I- Nap * Npa

where 7i,, = guhqp, We obtain the following asymptotic for-
mula:
</ljab’ —nap|gy X, -+ + Xi, &bl jians nba>
</1jab’ _nub|g;lgbl/ljabs nba>
~ Ajar(8oma)" - - Ajan(gompa) " [1+ 0(1/ )] (13)

Since Eq.(7) is a product of two factors with ab = 31 and
ab = 42, the building block in Eq. scales as 4> as its lead-
ing large-j asymptotics. Moreover Eq.(7) contributes the ex-
pansion at the order ", thus [w"xEq(7)] doesn’t scale asymp-
totically if we propose a scaling of w by w > w/A>.

From Eq.(I3) we see that the asymptotic formula of a co-
herent state expectation value for X, - - - X, is given by simply
replacing each X by Aju(gp7ha). Then we find that under the
scaling ju» — Aju and w — w/A%, the asymptotic formula for

K3\ .42 a8 A — oo is obtained by considering the product R*R™

and replacing each X*in R*R™ by Aj it (it = g5 ipa):
Kiaz ~ € [1+0(1/2)] (14)
where we denote
Virar = kaiitys - kaoityy — kit s - Kaoity. 15)

recall that j7, = 1%ykab.

We write [[,, P, = ¢S in the deformed vertex amplitude
A% in Eq.(5)), where S is a “spinfoam action” used in the spin-
foam asymptotic analysis [18]]

§= Zd; ; 25 log <—nab|(82)_182|nbu> (16)

The spinfoam action S doesn’t depend on w. Thus under the
scaling k — Ak, w = w/A*> and 1 — oo, the €5 part of the



integrand is affected only by the scaling of the spins k,,. The
critical point of the action S under 1 — oo is analyzed in [[18].
The critical equations from §

Z kapnay = 0, gainab = _ginba o))
b

imply that (i) the closure of each tetrahedron and (ii) two
neighboring tetrahedron are glued with each other at a trian-
gle. Note that the critical equations Eq.(I7) from S are consis-
tent with the critical equations Eq.(TI)) from S. Suppose we
fix a set of boundary data {k,, n,,} corresponding to a non-
degenerated flat 4-simplex Regge geometry, and also fix the
dihedral angles between each pairs of neighboring tetrahedra
(e.g. via imposing boundary state [20]), then there is a unique
solution (g, g7) for the above critical equations. The solu-
tion specifies uniquely a bivector geometry of the 4-simplex
up to an inversion. The bivector (at the center of 4-simplex)
for each triangle (a, b) is given by

Buy(0) = (B, By = +kan(8y 5 82 )(Mabs ab) (18)

Then one can see immediately the above V34, evaluated at
the critical point (g7, g;) gives precisely the 4-volume of the
4-simplex o (up to an overall constant)

Vara|

= B;l 'BZz —B;, B, =Vs (19)

critical
For a geometrical 4-simplex, this expression of 4-volume
doesn’t depend on the choice of triangle (3, 1) and (4, 2).

The asymptotics of the deformed vertex amplitude A i
given by its integrand K3 42e evaluated at the critical p01nt
satisfying both Eqs.(TT) and (T7) from both actions S and
So. We have seen that the two critical equations Eqs.(TT)
and are consistent with each other. The action S eval-
uated at the critical point gives the 4-simplex Regge action
iSRegge = ifﬁ > a<h Ykap®qp without cosmological constant.
Eq gives the asymptotic behavior of K3 ,,. Therefore we
have the following large-j asymptotics

1ndH

_ " Lid < YkabOuw LiwVe
¢ e [T+ o(1/D] (20)
| det H|

~ ()7

under kg, — Akgy, W — w/A* and 1 — oo, where H is the
Hessian matrix of the spinfoam action S and D is the dimen-
sion of the integral. The above asymptotic formula manifests
that the deformation parameter w is proportional to the cos-
mological constant A in Regge gravity. Note that the above
Regge action with A

Sreggen = 6 ) VkarOup + AV 1)

a<b

corresponds to the Regge calculus approximation of continu-
ous curved geometry with flat 4-simplices.

We now discuss the physical meaning of the scaling k,;, —
Akyp, w0 = w/A? and A — oo, which leads us to the asymptotic
formula Eq.. Given a cosmological constant A = 1/¢?
where £, is the cosmological length, the dimensionless pa-
rameter w has to be interpreted as w = A, = £, /€ from

the asymptotic formula Eq.(20). The spins k, relate to the
area A, of the triangle shared by tetrahedra a and b by the
relation yk,, = A /flz,. Then the scaling k., — Ak, can be
understood as a scaling of the Planck length by 6127 - /l‘lflz,
while keeping the area A, fixed. The other scaling w +— w/A>
combined with £2 - 47! 2 results in the scaling of the cosmo-
logical length £2 +— A%, As 1 — oo, we see that the asymp-
totic formula Eq.(20) is valid in the regime where the area
Agp 1s much larger than the Planck area 512, but much smaller
than the cosmological area £2. The assumption that the cos-
mological length ¢, is much larger than the physical scale of
the 4-simplex is the reason why we can approximate the local
geometry with a flat 4-simplex given by the critical equations
Eq. and the boundary data {kyp, ngp}-

III. Q-DEFORMATION AND VASSILIEV INVARIANTS:

From the above derivation, we have seen that the expected
cosmological constant term comes from the insertion of the
operator R* in the vertex amplitude, which is responsible for
the crossing in the spin-network graph I';. Here we present a
more systematic deformation of the EPRL/FK vertex ampli-
tude by using the evaluation of Vassiliev invariants [21] (see
also [13]] for a brief introduction). The resulting q-deformed
vertex amplitude gives has the same asymptotic behavior as
the above heuristic deformation.

Let’s recall Eq. and carry out the integration over g, we
obtain

5
Aglleasna) = Y AUS I | | Fir Gy ) (22)
{iz} a=1

where {15 j};;l denotes two copies of SU(2) 15j symbol with
spins j», and intertwiners i;, and fi:(j%, ,nq) denotes two
copies of SU(2) intertwiner i in the coherent state represen-
tation.

We define a deformation of the vertex amplitude by sim-
ply replace the 15j symbols in Eq.(22) by two g-deformed 15j
symbols with ¢* at different roots of unity. Therefore we de-
fine the g-deformed EPRL/FK vertex amplitude by

Al eay nap) = D (1S )% . ]—[m}a,,,nab) (23)
{iz} =

The g-deformed 15j symbols are obtained from the evaluation
of a 4-simplex spin-network with the corresponding Vassiliev
invariant. Here we briefly describe the procedure for the con-
struction.

Let X be a 1-dimensional oriented compact manifold (an
oriented graph). A chord diagram with support X is defined
by the union C = DUX, where D (dash lines) is a (non-planar)
graph with end points on X, and the graph D has only univa-
lent and trivalent vertices. The degree of the chord diagram C
is defined by the half of the number of vertices in D. We de-
fine a vector space A,(X) generated by all the chord diagrams
with degree n, subject to the some relations [13} 21} 22]]



The space of chord diagrams is used to define the universal
Vassiliev invariant for the framed links. Given a deformation
parameter ¢ = e, the Vassiliev invariant Z assigns to any
framed link X a formal power series Z(X) = )" h"Z,(X),
where the coeflicients Z,(X) € A,(X) is a linear combination
of degree-n chord diagrams. Given the link X, we need three
types of building blocks to construct Z,(X) to each order: (1)
For each crossing in X we assign a braiding R € $,; (2) For
each maximum or minimum in X we assign a unknot Vi€
P1; (3) There is also an associator ® € P53 [23]. Here P,
denotes the space of the series of chord diagrams based on
n lines in X. These building blocks are expressed as power
series FIG (In the exponential for R-matrix, the product of
two chord diagrams is defined by placing one diagram on top
of the other.)

reen 2
v=|-sp e

2
o= |- H)

v

FIG. 2: The building blocks for Vassiliev invariant.

Given a compact Lie group G and a spin-network s based
on the oriented graph X, for each chord diagram based on X,
we can define the evaluation map Qg ; given by FIG[3] Here
X, is a basis of the Lie algebra Lie(G) with structure constant
Jfabe, and "X, X, is the quadratic casimir of Lie(G). It turns
out that the evaluation Qg ; of links gives the same result as
the Reshetikhin-Turaev evaluation of the link associated with
the quantum group U,(G) [21} 24} 25].

] ]
<@ |e-®

FIG. 3: Evaluation of Vassiliev invariant.

For a 4-simplex SU(2) spin-network based on the graph I'Z,
the correspond 15j symbol {15};, , is given by the evaluation
of FIGH] with appropriate insertions of R-matrix, associators
@, and unknots v2. We evaluate FIG for both self-dual and
anti-self-dual sector, and insert them in the definition of the g-
deformed vertex amplitude Eq.(23). As we did for the heuris-
tic deformation A%, we expand the g-deformed vertex ampli-
tude AY into a power series of w. For the braiding R-matrix
responsible for the only crossing in FIGH] its evaluation co-
incides with Eq.@ used in the heuristic deformation, if we

FIG. 4: The evaluation of 4-simplex graph via Vassiliev
invariant.

choose the deformation parameter g* = ¢ such that

L8
T(lxy)?

+

= (24)

In the following, we show that both the associator @ and
unknot v don’t contribute the leading asymptotic behavior of
AY under the scaling ky, — Akgp, 0 w/A% and 1 - oo.
First of all, the SU(2) evaluation of unknot v can be expanded
as a power series of i by (see e.g. [21]))

V= auen” (25)
n=0

where c is the quadratic casimir of su(2). the polynomial func-
tion g, relates to the Bernoulli polynomial Bj,.; by

¥ -1 3 2 Bopi1 [%x"'%] %6
P\ )T 21y X (26)

In the scaling of spins k,, +— Ak, the quadratic casimir
scales as A2. Then g,(c) scales as A%" since By,i[Ax] ~
A1y, 1[x] as 1 — oo. As a result each term g,(c)h>"
in Eq. scales as 172" by taking into account the scaling
w + w/A?. Thus the leading asymptotic behavior of A only
sees v = 1 since all the higher order corrections only con-
tribute o(1/4)-terms in Eq.(20) as 1 — oo.

The perturbative expansion of the associator @ can be pre-
sented in terms of chord diagrams in FIG[2] where the degree-
n chord diagram at each A"-order is build by connecting the
3-valent vertices of dashed lines in FIGAl There are 2n ver-
tices in each degree-n diagram, in which there are m vertices
are attached to the framed links. Thus 2n — m is the number of
internal 3-valent vertices and 2n—m > 0 for a nontrivial chord
diagram. When we scale of spins k,, +— Ak, and 4 — oo,
the evaluation of each vertex attached to a framed link gives
a factor of Aj5 i as its leading asymptotics, since on each
link the su(2) generator X, is sandwiched by SU(2) coherent
states. Thus for each degree-n diagram in the perturbative ex-
pansion of @, the scaling of spins k,;, — Ak, leads to a scaling
A" of the diagram, while the other scaling w + w/A? con-
tributes 4" > A=2"}". Thus the overall scaling of each term is
A~C=m from which we see that the nontrivial diagrams in ®
only contributes to the o(1/1)-terms in the asymptotic formula
as A — oo.

The above power-counting shows that we can take ® = 1
and v = 1 for the asymptotic analysis of the q-deformed ver-
tex amplitude AZ. By the coincidence of the R-matrix be-
tween AL and A%, the asymptotic analysis of AZ reduces to



the previous analysis of heuristic deformation A2, i.e. under
the scaling ko, +— kg, @ = w/A> and 1 — oo, AL and AY
have the same asymptotic behavior. Thus we can write down
the asymptotic formula of the q-deformed vertex amplitude
with a given Regge boundary data:

ede

= il Xac YkarOuw LiwVe
€ eV [1+o(1/D)]. (27)
| det H|

q 2_” 2
Ae ~ ()
Before conclusion, we would like to point out an interesting
fact: there is another possibility to obtain the same asymp-
totics from another g-deformation. We use the deformation
parameter h* = %w instead of Eq., but evaluate the the
self-dual and anti-self-dual 15j symbols on different graphs,
i.e. we evaluate the self-dual sector on the I'{ graph as before
but evaluate the anti-self-dual sector on the I'; graph FIG
with the opposite crossing (with braiding R™") to the one in Is.
Then it is not hard to see that the resulting q-deformed vertex
amplitude has the same asymptotic behavior as the above up
to higher order in 27!
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FIG. 5:

IV. CONCLUSION AND DISCUSSION:

To summarize, in this paper we propose a new (-
deformation of the Euclidean EPRL/FK spinfoam vertex am-
plitude. The concrete construction uses the evaluation of the
Vassiliev invariant from 4-simplex graph. We also show that
the asymptotics of the g-deformed vertex amplitude gives the
Regge gravity with a cosmological constant (from Regge cal-
culus using flat 4-simplices) in the regime that the physical
scale of the 4-simplex is much greater than the Planck scale
¢, but much smaller than the cosmological area £..

The Vassiliev invariants of links come from the Feymann
diagrams of perturbative Chern-Simons theory, for evaluating
the link observables [22| [24]. The g-deformation of the 15j
symbol employed above can be viewed as a Chern-Simons
expectation value of a 4-simplex spin-network. Moreover we
suppose the boundary of the 4-simplex under consideration
is a 3-sphere S3, then the q-deformed vertex amplitude for
this 4-simplex is given by the following expectation value of
a Chern-Simons theory (with gauge group Spin(4) = SU(2) x
SU(2)) on the boundary 3-manifold:

Af = f WIA*] e Ses AT ESes AT p g+ (28)

where S cs[A] is the SU(2) Chern-Simons action, and W[A*]
is a projective spin-network functions on Spin(4) holonomies
[26] associated with a 4-simplex graph I'Z (or two graphs I'S)
imbedded in the boundary 3-sphere. Interestingly, this result
also relates to an old idea by L. Smolin et al (see [6]]).

In addition, although all the discuss in this paper concerns
only a single 4-simplex, the asymptotic analysis can be done
also for a triangulation with arbitrary many 4-simplices, which
results in a Regge action with a cosmological constant (from
the Regge calculus with flat simplices) on the triangulation.
The detailed analysis will be reported in [27].

Finally we note that the scaling k,, — Akgp, W — w]A?
used in this paper leads us to the Regge calculus with flat 4-
simplex, which is an approximation of curved geometry in
presence of a cosmological constant. It would be interesting
to find the relation between the q-deformed vertex amplitude
and a curved 4-simplex with constant curvature, in analogy
with the 3d case (see e.g. [28]). We leave this point to the
future research.
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