Cosmological Constant in LQG Vertex Amplitude

Muxin Han

To cite this version:

Muxin Han. Cosmological Constant in LQG Vertex Amplitude. Physical Review D, 2011, 84 (6), pp.064010. 10.1103/PhysRevD.84.064010 . hal-00964086

HAL Id: hal-00964086

https://hal.science/hal-00964086

Submitted on 5 Sep 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Cosmological Constant in LQG Vertex Amplitude

Muxin Han
Centre de Physique Théorique*, CNRS-Luminy Case 907, F-13288 Marseille, EU

Abstract

A new q-deformation of the Euclidean EPRL/FK vertex amplitude is proposed by using the evaluation of the Vassiliev invariant associated with a 4 -simplex graph (related to two copies of quantum $\operatorname{SU}(2)$ group at different roots of unity) embedded in a 3-sphere. We show that the large-j asymptotics of the q-deformed vertex amplitude gives the Regge action with a cosmological constant. In the end we also discuss its relation with a Chern-Simons theory on the boundary of 4-simplex.

PACS numbers: 04.60.Pp, 02.20.Uw

I. INTRODUCTION:

The spinfoam formalism is currently understood as a covariant formulation of Loop Quantum Gravity (LQG) [1-5]. In LQG community, it was commonly conjectured that one should make a q-deformation of the spinfoam amplitude (with quantum group) in order to implement the cosmological constant term in the theory [3, 6, 7]. Such a conjecture was suggested by the lesson from 3d gravity and 4d topological field theory. In 3d gravity, the Turaev-Viro model [8] is a deformation of the Ponzano-Regge model [9] by the quantum group $\mathrm{SU}_{q}(2)$ (q is a root of unity). The partition function of the Turaev-Viro model is finite, and its large spin asymptotics give the 3d Regge action with a positive cosmological constant [10]. In 4d, the Crane-Yetter model [11] is a deformation of $4 \mathrm{~d} \mathrm{SU}(2) \mathrm{BF}$ theory (the Ooguri model [12]) by $\mathrm{SU}_{q}(2)(q$ is a root of unity). The partition function of the Crane-Yetter model is finite and shown to be the partition function of 4 d $\mathrm{SU}(2) \mathrm{BF}$ theory with a cosmological constant [13].

For 4d quantum gravity, there are early pioneer works for q-deformed LQG [6]. In the spinfoam formulation, there are several proposals to make q-deformed spinfoam models, which are hoped to give the cosmological constant term in the semiclassical limit [14-17]. In this paper, we propose a new q-deformation of the Euclidean EPRL/FK vertex amplitude by using the evaluation of the Vassiliev invariant associated with a 4 -simplex graph (relats to the quantum group $\mathrm{SU}_{q^{+}}(2) \otimes \mathrm{SU}_{q^{-}}(2)$ with $q^{ \pm}$roots of unity). We also show that the large-j asymptotics of the q-deformed vertex amplitude gives the Regge action with cosmological constant. This result can be considered as an evidence supporting that the q-deformation of spinfoam amplitude implements the cosmological constant term in the framework of covariant LQG.

II. HEURISTIC DEFORMATION:

Before we come to the systematic q-deformation of the amplitude, we first present a heuristic deformation of EPRL/FK

[^0]vertex amplitude, to give an idea for obtaining the cosmological constant term in the spinfoam vertex amplitude.

Given a 4 -simplex σ, we label by $a, b=1, \cdots, 5$ the five tetrahedra on the boundary of the 4-simplex, and denote by the pair (a, b) the triangle shared by two tetrahedra a and b. We assume the Barbero-Immirzi parameter $0<\gamma<1$, the Euclidean EPRL/FK vertex amplitude can be written in coherent state representation [18] (\pm stands for the self-dual/anti-selfdual contribution):

$$
\begin{equation*}
A_{\sigma}\left(k_{a b}, n_{a b}\right):=(-1)^{\chi} \int \prod_{a=1}^{5} \mathrm{~d} g_{a}^{ \pm} \prod_{a<b} P_{a b}^{ \pm}\left(k_{a b}, g_{a}^{ \pm}, n_{a b}\right) \tag{1}
\end{equation*}
$$

where $(-1)^{\chi}$ is a sign defined by the diagrammatic calculus of $\mathrm{SU}(2)$ spin-network, $P_{a b}^{ \pm}$is a coherent propagator

$$
\begin{equation*}
P_{a b}^{ \pm}:=\left\langle j_{a b}^{ \pm},-n_{a b}\right|\left(g_{a}^{ \pm}\right)^{-1} g_{b}^{ \pm}\left|j_{a b}^{ \pm}, n_{b a}\right\rangle \tag{2}
\end{equation*}
$$

$g_{a}(a=1, \cdots, 5)$ are $2 \times 2 \mathrm{SU}(2)$ matrices, and $|j, n\rangle$ is a coherent state in the spin- j representation of $\mathrm{SU}(2)$ [19]. Here $\left\{k_{a b}, n_{a b}\right\}$ with $j_{a b}^{ \pm}=\frac{1 \pm \gamma}{2} k_{a b}$ and $n_{a b} \in S^{2}$ is a set of boundary data for a vertex amplitude. The vector $j_{a b} n_{a b}$ is an oriented area vector of the triangle (a, b) viewed at the tetrahedron a. The coherent state representation of EPRL/FK vertex amplitude is the starting point for the asymptotic analysis, and it turns out also to be useful in the analysis of quantum group spinfoam vertex.

FIG. 1: The Γ_{5}^{+}graph with one crossing between l_{31} and l_{42}.

Now we make a heuristic modification of the EPRL/FK vertex amplitude: We consider a 4 -simplex graph Γ_{5}^{+}(FIG 1). In FIG 1 we order the 5 nodes on the paper from left to right, and connect the nodes by oriented links. A link oriented from the node a to the node b is denoted by $l_{a b}$. We notice that there is a crossing between the links l_{31} and l_{42}, which motivate us to make the following modification of the coherent propagator
$P_{31}^{ \pm}$and $P_{42}^{ \pm}$. We define two operators $R^{ \pm}$on the $\mathrm{SU}(2)$ tensor representations $V_{j_{31}^{ \pm}} \otimes V_{j_{42}^{ \pm}}$respectively 1 :

$$
\begin{equation*}
R^{ \pm}:=\exp \left[\frac{ \pm 4 i}{(1 \pm \gamma)^{2}} \omega \sum_{j=1}^{3} X_{j}^{ \pm} \otimes X_{j}^{ \pm}\right] \tag{3}
\end{equation*}
$$

where ω is a real dimensionless parameter (a deformation parameter), and $X_{j}^{ \pm}$are self-dual/anti-self-dual generators of $\operatorname{Spin}(4)$ with commutator $\left[X_{j}^{ \pm}, X_{k}^{ \pm}\right]=i \epsilon_{j k l} X_{l}^{ \pm}$. We write formally that $R^{ \pm} \equiv \sum_{R^{ \pm}} R_{31}^{ \pm} \otimes R_{42}^{ \pm}$, and insert them by hand into the coherent propagators, i.e. we modify $P_{13}^{ \pm} P_{24}^{ \pm}$by

$$
\begin{align*}
{ }^{\omega} P_{31}^{ \pm}{ }^{\omega} P_{42}^{ \pm}= & \sum_{R^{ \pm}}\left\langle j_{31}^{ \pm},-n_{31}\right|\left(g_{3}^{ \pm}\right)^{-1} R_{31}^{ \pm} g_{1}^{ \pm}\left|j_{31}^{ \pm}, n_{13}\right\rangle \\
& \times\left\langle j_{42}^{ \pm},-n_{42}\right|\left(g_{4}^{ \pm}\right)^{-1} R_{42}^{ \pm} g_{2}^{ \pm}\left|j_{42}^{ \pm}, n_{24}\right\rangle \tag{4}
\end{align*}
$$

while we leave the other coherent propagators unchanged as Eq.(2). The modified (deformed) vertex amplitude is defined in the same way as Eq.(1) but with modified coherent propagator. We denote the modified vertex amplitude by $A_{\sigma}^{\omega}\left(k_{a b}, n_{a b}\right)$, which can written by

$$
\begin{equation*}
A_{\sigma}^{\omega}\left(k_{a b}, n_{a b}\right)=\int \prod_{a=1}^{5} \mathrm{~d} g_{a}^{ \pm} \mathcal{K}_{31,42}^{\omega} \prod_{a<b} P_{a b}^{ \pm} \tag{5}
\end{equation*}
$$

where $\mathcal{K}_{31,42}^{\omega}$ is a ratio

$$
\begin{equation*}
\mathcal{K}_{31,42}^{\omega}=\frac{\prod_{\epsilon= \pm}{ }^{\omega} P_{31}^{\epsilon}{ }^{\omega} P_{42}^{\epsilon}}{\prod_{\epsilon= \pm} P_{13}^{\epsilon} P_{24}^{\epsilon}} \tag{6}
\end{equation*}
$$

We can then expand Eq. (3) into power series of ω, which results in a power expansion of $\mathcal{K}_{31,42}^{\omega}$ in terms of the deformation parameter ω. A building block for constructing the power expansion of $\mathcal{K}_{31,42}^{\omega}$ is

$$
\begin{equation*}
\prod_{a b=31 ; 42} \frac{\left\langle j_{a b}^{ \pm},-n_{a b}\right|\left(g_{a}^{ \pm}\right)^{-1} X_{k_{1}}^{ \pm} \cdots X_{k_{n}}^{ \pm} g_{b}^{ \pm}\left|j_{a b}^{ \pm}, n_{b a}\right\rangle}{\left\langle j_{a b}^{ \pm},-n_{a b}\right|\left(g_{a}^{ \pm}\right)^{-1} g_{b}^{ \pm}\left|j_{a b}^{ \pm}, n_{b a}\right\rangle} \tag{7}
\end{equation*}
$$

which contributes the power expansion at the order ω^{n}.
By using the resolution of identity for coherent state $\operatorname{dim}(j) \int_{S^{2}} \mathrm{~d} n|j, n\rangle\langle j, n|=1_{j}$, we can compute

$$
\begin{align*}
& \frac{\left\langle j_{a b},-n_{a b}\right| g_{a}^{-1} X_{k_{1}} \cdots X_{k_{n}} g_{b}\left|j_{a b}, n_{b a}\right\rangle}{\left\langle j_{a b},-n_{a b}\right| g_{a}^{-1} g_{b}\left|j_{a b}, n_{b a}\right\rangle} \\
= & \frac{\operatorname{dim}\left(j_{a b}\right)^{n-1}}{\left\langle j_{a b},-n_{a b}\right| g_{a}^{-1} g_{b}\left|j_{a b}, n_{b a}\right\rangle} \int_{\left(S^{2}\right)^{n}} \mathrm{~d} n_{1} \cdots \mathrm{~d} n_{n} \\
& \times \exp \left[2 j_{a b}\left(\ln \left\langle-n_{a b}\right| g_{a}^{-1}\left|n_{1}\right\rangle+\cdots+\ln \left\langle n_{n}\right| g_{b}\left|n_{b a}\right\rangle\right)\right] \\
& \times j_{a b} \frac{\left\langle-n_{a b}\right| g_{a}^{-1} \sigma_{k_{1} \mid}\left|n_{1}\right\rangle}{\left\langle-n_{a b}\right| g_{a}^{-1}\left|n_{1}\right\rangle} \cdots j_{a b} \frac{\left\langle n_{n}\right| \sigma_{k_{n}} g_{b}\left|n_{b a}\right\rangle}{\left\langle n_{n}\right| g_{b}\left|n_{b a}\right\rangle} \tag{8}
\end{align*}
$$

[^1]where we have used the following identity:
\[

$$
\begin{align*}
& \left\langle j,-n_{1}\right| g_{1}^{-1} X_{k} g_{2}\left|j, n_{2}\right\rangle \\
= & j\left\langle-n_{1}\right| g_{1}^{-1} \sigma_{k} g_{2}\left|n_{2}\right\rangle\left\langle-n_{1}\right| g_{1}^{-1} g_{2}\left|n_{2}\right\rangle^{2 j-1} \tag{9}
\end{align*}
$$
\]

We scale the spin $j_{a b} \mapsto \lambda j_{a b}$ and study the large-j asymptotic behavior of the integral in Eq. (8) as $\lambda \rightarrow \infty$. The leading asymptotics is determined by the critical point of the action

$$
\begin{equation*}
S_{0}=2 j_{a b}\left[\ln \left\langle-n_{a b}\right| g_{a}^{-1}\left|n_{1}\right\rangle+\cdots+\ln \left\langle n_{n}\right| g_{b}\left|n_{b a}\right\rangle\right] \tag{10}
\end{equation*}
$$

The condition $\operatorname{Re} S_{0}=0$ gives the critical equations

$$
\begin{equation*}
-g_{a} n_{a b}=n_{1}=n_{2}=\cdots=n_{n}=g_{b} n_{b a} . \tag{11}
\end{equation*}
$$

The variations of the action $\delta S_{0} / \delta n_{k}$ vanishes automatically, once the above critical equations are satisfied. The asymptotics of Eq. 88 is given by the integrand evaluated at the critical point (critical equations). By using the following relation

$$
\begin{equation*}
\frac{\left\langle-n_{a b}\right| g_{a}^{-1} \vec{\sigma} g_{b}\left|n_{b a}\right\rangle}{\left\langle-n_{a b}\right| g_{a}^{-1} g_{b}\left|n_{b a}\right\rangle}=\frac{\tilde{n}_{b a}-\tilde{n}_{a b}+i \tilde{n}_{a b} \times \tilde{n}_{b a}}{1-\tilde{n}_{a b} \cdot \tilde{n}_{b a}} \tag{12}
\end{equation*}
$$

where $\tilde{n}_{a b}=g_{a} n_{a b}$, we obtain the following asymptotic formula:

$$
\begin{align*}
& \frac{\left\langle\lambda j_{a b},-n_{a b}\right| g_{a}^{-1} X_{k_{1}} \cdots X_{k_{n}} g_{b}\left|\lambda j_{a b}, n_{b a}\right\rangle}{\left\langle\lambda j_{a b},-n_{a b}\right| g_{a}^{-1} g_{b}\left|\lambda j_{a b}, n_{b a}\right\rangle} \\
\sim & \lambda j_{a b}\left(g_{b} n_{b a}\right)^{k_{1}} \cdots \lambda j_{a b}\left(g_{b} n_{b a}\right)^{k_{n}}[1+o(1 / \lambda)] \tag{13}
\end{align*}
$$

Since Eq. 7 7 is a product of two factors with $a b=31$ and $a b=42$, the building block in Eq. 77 scales as $\lambda^{2 n}$ as its leading large-j asymptotics. Moreover Eq. (7) contributes the expansion at the order ω^{n}, thus [$\left.\omega^{n} \times \mathrm{Eq}(7)\right]$ doesn't scale asymptotically if we propose a scaling of ω by $\omega \mapsto \omega / \lambda^{2}$.

From Eq. (13) we see that the asymptotic formula of a coherent state expectation value for $X_{k_{1}} \cdots X_{k_{n}}$ is given by simply replacing each \vec{X} by $\lambda j_{a b}\left(g_{b} \vec{n}_{b a}\right)$. Then we find that under the scaling $j_{a b} \mapsto \lambda j_{a b}$ and $\omega \mapsto \omega / \lambda^{2}$, the asymptotic formula for $\mathcal{K}_{31,42}^{\omega}$ as $\lambda \rightarrow \infty$ is obtained by considering the product $R^{+} R^{-}$ and replacing each $\vec{X}^{ \pm}$in $R^{+} R^{-}$by $\lambda j_{a b}^{ \pm} \vec{n}_{b a}^{ \pm}\left(\vec{n}_{b a}^{ \pm}=g_{b}^{ \pm} \vec{n}_{b a}\right)$:

$$
\begin{equation*}
\mathcal{K}_{31,42}^{\omega} \sim e^{i \omega V_{31,42}}[1+o(1 / \lambda)] \tag{14}
\end{equation*}
$$

where we denote

$$
\begin{equation*}
V_{31,42}:=k_{31} \vec{n}_{13}^{+} \cdot k_{42} \vec{n}_{24}^{+}-k_{31} \overrightarrow{n_{13}} \cdot k_{42} \overrightarrow{n_{24}} \tag{15}
\end{equation*}
$$

recall that $j_{a b}^{ \pm}=\frac{1 \pm \gamma}{2} k_{a b}$.
We write $\prod_{a<b} P_{a b}^{ \pm}=e^{S}$ in the deformed vertex amplitude A_{σ}^{ω} in Eq. [5], where S is a "spinfoam action" used in the spinfoam asymptotic analysis [18]

$$
\begin{equation*}
S=\sum_{a<b} \sum_{\epsilon= \pm} 2 j_{a b}^{\epsilon} \log \left\langle-n_{a b}\right|\left(g_{a}^{\epsilon}\right)^{-1} g_{b}^{\epsilon}\left|n_{b a}\right\rangle \tag{16}
\end{equation*}
$$

The spinfoam action S doesn't depend on ω. Thus under the scaling $k \mapsto \lambda k, \omega \mapsto \omega / \lambda^{2}$ and $\lambda \rightarrow \infty$, the e^{S} part of the
integrand is affected only by the scaling of the spins $k_{a b}$. The critical point of the action S under $\lambda \rightarrow \infty$ is analyzed in [18]. The critical equations from S

$$
\begin{equation*}
\sum_{b} k_{a b} n_{a b}=0, \quad g_{a}^{ \pm} n_{a b}=-g_{b}^{ \pm} n_{b a} \tag{17}
\end{equation*}
$$

imply that (i) the closure of each tetrahedron and (ii) two neighboring tetrahedron are glued with each other at a triangle. Note that the critical equations Eq. (17) from S are consistent with the critical equations Eq. (11) from S_{0}. Suppose we fix a set of boundary data $\left\{k_{a b}, n_{a b}\right\}$ corresponding to a nondegenerated flat 4-simplex Regge geometry, and also fix the dihedral angles between each pairs of neighboring tetrahedra (e.g. via imposing boundary state [20]), then there is a unique solution $\left(g_{a}^{+}, g_{a}^{-}\right)$for the above critical equations. The solution specifies uniquely a bivector geometry of the 4 -simplex up to an inversion. The bivector (at the center of 4 -simplex) for each triangle (a, b) is given by

$$
\begin{equation*}
B_{a b}(\sigma)=\left(B_{a b}^{+}, B_{a b}^{-}\right)= \pm k_{a b}\left(g_{a}^{+}, g_{a}^{-}\right)\left(n_{a b}, n_{a b}\right) \tag{18}
\end{equation*}
$$

Then one can see immediately the above $V_{31,42}$ evaluated at the critical point $\left(g_{a}^{+}, g_{a}^{-}\right)$gives precisely the 4 -volume of the 4-simplex σ (up to an overall constant)

$$
\begin{equation*}
\left.V_{31,42}\right|_{\text {critical }}=B_{31}^{+} \cdot B_{42}^{+}-B_{31}^{-} \cdot B_{42}^{-}=V_{\sigma} \tag{19}
\end{equation*}
$$

For a geometrical 4 -simplex, this expression of 4 -volume doesn't depend on the choice of triangle $(3,1)$ and $(4,2)$.

The asymptotics of the deformed vertex amplitude A_{σ}^{ω} is given by its integrand $\mathcal{K}_{31,42}^{\omega} e^{S}$ evaluated at the critical point satisfying both Eqs. (11) and (17) from both actions S and S_{0}. We have seen that the two critical equations Eqs. (11) and (17) are consistent with each other. The action S evaluated at the critical point gives the 4 -simplex Regge action $i S_{\text {Regge }}=i \ell_{p}^{2} \sum_{a<b} \gamma k_{a b} \Theta_{a b}$ without cosmological constant. Eq 14 , gives the asymptotic behavior of $\mathcal{K}_{31,42}^{\omega}$. Therefore we have the following large-j asymptotics

$$
\begin{equation*}
A_{\sigma}^{\omega} \sim\left(\frac{2 \pi}{\lambda}\right)^{\frac{D}{2}} \frac{e^{\operatorname{ind} H}}{\sqrt{|\operatorname{det} H|}} e^{i \lambda \sum_{a<b} \gamma k_{a b} \Theta_{a b}} e^{i \omega V_{\sigma}}[1+o(1 / \lambda)] \tag{20}
\end{equation*}
$$

under $k_{a b} \mapsto \lambda k_{a b}, \omega \mapsto \omega / \lambda^{2}$ and $\lambda \rightarrow \infty$, where H is the Hessian matrix of the spinfoam action S and D is the dimension of the integral. The above asymptotic formula manifests that the deformation parameter ω is proportional to the cosmological constant Λ in Regge gravity. Note that the above Regge action with Λ

$$
\begin{equation*}
S_{\text {Regge }, \Lambda}=\ell_{p}^{2} \sum_{a<b} \gamma k_{a b} \Theta_{a b}+\Lambda V_{\sigma} \tag{21}
\end{equation*}
$$

corresponds to the Regge calculus approximation of continuous curved geometry with flat 4-simplices.

We now discuss the physical meaning of the scaling $k_{a b} \mapsto$ $\lambda k_{a b}, \omega \mapsto \omega / \lambda^{2}$ and $\lambda \rightarrow \infty$, which leads us to the asymptotic formula Eq. 20. Given a cosmological constant $\Lambda=1 / \ell_{c}^{2}$ where ℓ_{c} is the cosmological length, the dimensionless parameter ω has to be interpreted as $\omega=\Lambda \ell_{p}^{2}=\ell_{p}^{2} / \ell_{c}^{2}$ from
the asymptotic formula Eq. 20). The spins $k_{a b}$ relate to the area $A_{a b}$ of the triangle shared by tetrahedra a and b by the relation $\gamma k_{a b}=A_{a b} / \ell_{p}^{2}$. Then the scaling $k_{a b} \mapsto \lambda k_{a b}$ can be understood as a scaling of the Planck length by $\ell_{p}^{2} \mapsto \lambda^{-1} \ell_{p}^{2}$ while keeping the area $A_{a b}$ fixed. The other scaling $\omega \mapsto \omega / \lambda^{2}$ combined with $\ell_{p}^{2} \mapsto \lambda^{-1} \ell_{p}^{2}$ results in the scaling of the cosmological length $\ell_{c}^{2} \mapsto \lambda \ell_{c}^{2}$. As $\lambda \rightarrow \infty$, we see that the asymptotic formula Eq. (20) is valid in the regime where the area $A_{a b}$ is much larger than the Planck area ℓ_{p}^{2} but much smaller than the cosmological area ℓ_{c}^{2}. The assumption that the cosmological length ℓ_{c} is much larger than the physical scale of the 4 -simplex is the reason why we can approximate the local geometry with a flat 4 -simplex given by the critical equations Eq. (17) and the boundary data $\left\{k_{a b}, n_{a b}\right\}$.

III. Q-DEFORMATION AND VASSILIEV INVARIANTS:

From the above derivation, we have seen that the expected cosmological constant term comes from the insertion of the operator $R^{ \pm}$in the vertex amplitude, which is responsible for the crossing in the spin-network graph Γ_{5}^{+}. Here we present a more systematic deformation of the EPRL/FK vertex amplitude by using the evaluation of Vassiliev invariants [21] (see also [13] for a brief introduction). The resulting q-deformed vertex amplitude gives has the same asymptotic behavior as the above heuristic deformation.

Let's recall Eq. 11 and carry out the integration over $g_{a}^{ \pm}$, we obtain

$$
\begin{equation*}
A_{\sigma}\left(k_{a b}, n_{a b}\right)=\sum_{\left\{i \frac{ \pm}{ \pm}\right\}}\left\{15 j j_{i_{a}^{ \pm}}^{ \pm} \prod_{a=1}^{5} f_{i_{a}^{ \pm}}\left(j_{a b}^{ \pm}, n_{a b}\right)\right. \tag{22}
\end{equation*}
$$

where $\{15 j\}_{i_{a}^{ \pm}}^{ \pm}$denotes two copies of $\mathrm{SU}(2) 15 \mathrm{j}$ symbol with spins $j_{a b}^{ \pm}$and intertwiners $i_{a}^{ \pm}$, and $f_{i a}^{ \pm}\left(j_{a b}^{ \pm}, n_{a b}\right)$ denotes two copies of $\operatorname{SU}(2)$ intertwiner $i_{a}^{ \pm}$in the coherent state representation.

We define a deformation of the vertex amplitude by simply replace the 15 j symbols in Eq. (22) by two q-deformed 15 j symbols with $q^{ \pm}$at different roots of unity. Therefore we define the q-deformed EPRL/FK vertex amplitude by

$$
\begin{equation*}
A_{\sigma}^{q}\left(k_{a b}, n_{a b}\right):=\sum_{\left\{i_{a}^{ \pm}\right\}}\left\{15 j j_{i_{a}^{ \pm}, q^{ \pm}}^{ \pm} \prod_{a=1}^{5} f_{i_{a}^{i}}\left(j_{a b}^{ \pm}, n_{a b}\right)\right. \tag{23}
\end{equation*}
$$

The q-deformed 15 j symbols are obtained from the evaluation of a 4-simplex spin-network with the corresponding Vassiliev invariant. Here we briefly describe the procedure for the construction.

Let X be a 1-dimensional oriented compact manifold (an oriented graph). A chord diagram with support X is defined by the union $C=D \cup X$, where D (dash lines) is a (non-planar) graph with end points on X, and the graph D has only univalent and trivalent vertices. The degree of the chord diagram C is defined by the half of the number of vertices in D. We define a vector space $\mathcal{A}_{n}(X)$ generated by all the chord diagrams with degree n, subject to the some relations [13, 21, 22]

The space of chord diagrams is used to define the universal Vassiliev invariant for the framed links. Given a deformation parameter $q=e^{i h}$, the Vassiliev invariant Z assigns to any framed link X a formal power series $Z(X)=\sum_{n=0}^{\infty} h^{n} Z_{n}(X)$, where the coefficients $Z_{n}(X) \in \mathcal{A}_{n}(X)$ is a linear combination of degree- n chord diagrams. Given the link X, we need three types of building blocks to construct $Z_{n}(X)$ to each order: (1) For each crossing in X we assign a braiding $R \in \mathcal{P}_{2}$; (2) For each maximum or minimum in X we assign a unknot $v^{-\frac{1}{2}} \in$ \mathcal{P}_{1}; (3) There is also an associator $\Phi \in \mathcal{P}_{3}$ [23]. Here \mathcal{P}_{n} denotes the space of the series of chord diagrams based on n lines in X. These building blocks are expressed as power series FIG 2 (In the exponential for R-matrix, the product of two chord diagrams is defined by placing one diagram on top of the other.)

$$
\begin{aligned}
& \left.R=\exp \frac{\mathrm{i} h}{2} \right\rvert\,-\cdots \\
& V=\left|-\frac{h^{2}}{12}\right| \vdots+\cdots \\
& \Phi=\left|\left|\left|-\frac{h^{2}}{12}\right|{\underset{v}{v}}\right|+\cdots\right.
\end{aligned}
$$

FIG. 2: The building blocks for Vassiliev invariant.

Given a compact Lie group G and a spin-network s based on the oriented graph X, for each chord diagram based on X, we can define the evaluation map $\Omega_{G, s}$ given by FIG 3 . Here X_{a} is a basis of the Lie algebra $\operatorname{Lie}(G)$ with structure constant $f_{a b c}$, and $t^{a b} X_{a} X_{b}$ is the quadratic casimir of $\operatorname{Lie}(G)$. It turns out that the evaluation $\Omega_{G, s}$ of links gives the same result as the Reshetikhin-Turaev evaluation of the link associated with the quantum group $U_{q}(G)$ [21, 24, 25].

FIG. 3: Evaluation of Vassiliev invariant.

For a 4-simplex $\mathrm{SU}(2)$ spin-network based on the graph Γ_{5}^{+}, the correspond 15 j symbol $\{15 j\}_{i_{a}, q}$ is given by the evaluation of FIG 4 with appropriate insertions of R-matrix, associators Φ, and unknots $\nu^{\frac{1}{2}}$. We evaluate FIG 4 for both self-dual and anti-self-dual sector, and insert them in the definition of the qdeformed vertex amplitude Eq.(23). As we did for the heuristic deformation A_{σ}^{ω}, we expand the q-deformed vertex amplitude A_{σ}^{q} into a power series of ω. For the braiding R-matrix responsible for the only crossing in FIG 4 , its evaluation coincides with Eq. 3) used in the heuristic deformation, if we

FIG. 4: The evaluation of 4-simplex graph via Vassiliev invariant.
choose the deformation parameter $q^{ \pm}=e^{i h^{ \pm}}$such that

$$
\begin{equation*}
h^{ \pm}= \pm \frac{8}{(1 \pm \gamma)^{2}} \omega \tag{24}
\end{equation*}
$$

In the following, we show that both the associator Φ and unknot v don't contribute the leading asymptotic behavior of A_{σ}^{q} under the scaling $k_{a b} \mapsto \lambda k_{a b}, \omega \mapsto \omega / \lambda^{2}$ and $\lambda \rightarrow \infty$. First of all, the $\mathrm{SU}(2)$ evaluation of unknot v can be expanded as a power series of h by (see e.g. [21])

$$
\begin{equation*}
v=\sum_{n=0}^{\infty} q_{n}(c) h^{2 n} \tag{25}
\end{equation*}
$$

where c is the quadratic casimir of $\operatorname{su}(2)$. the polynomial function q_{n} relates to the Bernoulli polynomial $B_{2 n+1}$ by

$$
\begin{equation*}
q_{n}\left(\frac{x^{2}-1}{2}\right)=\frac{2}{(2 n+1)!} \frac{B_{2 n+1}\left[\frac{1}{2} x+\frac{1}{2}\right]}{x} \tag{26}
\end{equation*}
$$

In the scaling of spins $k_{a b} \mapsto \lambda k_{a b}$, the quadratic casimir scales as λ^{2}. Then $q_{n}(c)$ scales as $\lambda^{2 n}$ since $B_{2 n+1}[\lambda x] \sim$ $\lambda^{2 n+1} B_{2 n+1}[x]$ as $\lambda \rightarrow \infty$. As a result each term $q_{n}(c) h^{2 n}$ in Eq. 25 scales as $\lambda^{-2 n}$ by taking into account the scaling $\omega \mapsto \omega / \lambda^{2}$. Thus the leading asymptotic behavior of A_{σ}^{q} only sees $v=1$ since all the higher order corrections only contribute $o(1 / \lambda)$-terms in Eq. 20) as $\lambda \rightarrow \infty$.

The perturbative expansion of the associator Φ can be presented in terms of chord diagrams in FIG 2, where the degreen chord diagram at each h^{n}-order is build by connecting the 3 -valent vertices of dashed lines in FIG[3] There are $2 n$ vertices in each degree- n diagram, in which there are m vertices are attached to the framed links. Thus $2 n-m$ is the number of internal 3-valent vertices and $2 n-m>0$ for a nontrivial chord diagram. When we scale of spins $k_{a b} \mapsto \lambda k_{a b}$ and $\lambda \rightarrow \infty$, the evaluation of each vertex attached to a framed link gives a factor of $\lambda j_{a b}^{ \pm} \vec{n}_{a b}^{ \pm}$as its leading asymptotics, since on each link the $\mathrm{su}(2)$ generator X_{a} is sandwiched by $\mathrm{SU}(2)$ coherent states. Thus for each degree- n diagram in the perturbative expansion of Φ, the scaling of spins $k_{a b} \mapsto \lambda k_{a b}$ leads to a scaling λ^{m} of the diagram, while the other scaling $\omega \mapsto \omega / \lambda^{2}$ contributes $h^{n} \mapsto \lambda^{-2 n} h^{n}$. Thus the overall scaling of each term is $\lambda^{-(2 n-m)}$, from which we see that the nontrivial diagrams in Φ only contributes to the $o(1 / \lambda)$-terms in the asymptotic formula as $\lambda \rightarrow \infty$.

The above power-counting shows that we can take $\Phi=1$ and $v=1$ for the asymptotic analysis of the q-deformed vertex amplitude A_{σ}^{q}. By the coincidence of the R-matrix between A_{σ}^{q} and A_{σ}^{ω}, the asymptotic analysis of A_{σ}^{q} reduces to
the previous analysis of heuristic deformation A_{σ}^{ω}, i.e. under the scaling $k_{a b} \mapsto \lambda k_{a b}, \omega \mapsto \omega / \lambda^{2}$ and $\lambda \rightarrow \infty, A_{\sigma}^{q}$ and A_{σ}^{ω} have the same asymptotic behavior. Thus we can write down the asymptotic formula of the q-deformed vertex amplitude with a given Regge boundary data:

$$
\begin{equation*}
A_{\sigma}^{q} \sim\left(\frac{2 \pi}{\lambda}\right)^{\frac{D}{2}} \frac{e^{\mathrm{ind} H}}{\sqrt{|\operatorname{det} H|}} e^{i \lambda \sum_{a<b} \gamma k_{a b} \Theta_{a b}} e^{i \omega V_{\sigma}}[1+o(1 / \lambda)] . \tag{27}
\end{equation*}
$$

Before conclusion, we would like to point out an interesting fact: there is another possibility to obtain the same asymptotics from another q-deformation. We use the deformation parameter $h^{ \pm}=\frac{8}{(1 \pm \gamma)^{2}} \omega$ instead of Eq. 24, but evaluate the the self-dual and anti-self-dual 15 j symbols on different graphs, i.e. we evaluate the self-dual sector on the Γ_{5}^{+}graph as before but evaluate the anti-self-dual sector on the Γ_{5}^{-}graph FIG 5 with the opposite crossing (with braiding R^{-1}) to the one in Γ_{5}^{+}. Then it is not hard to see that the resulting q-deformed vertex amplitude has the same asymptotic behavior as the above up to higher order in λ^{-1}.

FIG. 5:

IV. CONCLUSION AND DISCUSSION:

To summarize, in this paper we propose a new qdeformation of the Euclidean EPRL/FK spinfoam vertex amplitude. The concrete construction uses the evaluation of the Vassiliev invariant from 4-simplex graph. We also show that the asymptotics of the q-deformed vertex amplitude gives the Regge gravity with a cosmological constant (from Regge calculus using flat 4 -simplices) in the regime that the physical scale of the 4 -simplex is much greater than the Planck scale ℓ_{p} but much smaller than the cosmological area ℓ_{c}.

The Vassiliev invariants of links come from the Feymann diagrams of perturbative Chern-Simons theory, for evaluating the link observables [22, 24]. The q-deformation of the 15 j symbol employed above can be viewed as a Chern-Simons expectation value of a 4 -simplex spin-network. Moreover we suppose the boundary of the 4 -simplex under consideration is a 3 -sphere S^{3}, then the q-deformed vertex amplitude for this 4 -simplex is given by the following expectation value of a Chern-Simons theory (with gauge group $\operatorname{Spin}(4)=S U(2) \times$ $\mathrm{SU}(2)$) on the boundary 3-manifold:

$$
\begin{equation*}
A_{\sigma}^{q}=\int \Psi\left[A^{ \pm}\right] e^{\frac{2 \pi i}{h^{\dagger}} S_{C S}\left[A^{+}\right]+\frac{2 \pi i}{h^{-}} S_{C S}\left[A^{-}\right]} D A^{ \pm} \tag{28}
\end{equation*}
$$

where $S_{C S}[A]$ is the $\operatorname{SU}(2)$ Chern-Simons action, and $\Psi\left[A^{ \pm}\right]$ is a projective spin-network functions on $\operatorname{Spin}(4)$ holonomies [26] associated with a 4-simplex graph Γ_{5}^{+}(or two graphs $\Gamma_{5}^{ \pm}$) imbedded in the boundary 3 -sphere. Interestingly, this result also relates to an old idea by L. Smolin et al (see [6]).

In addition, although all the discuss in this paper concerns only a single 4 -simplex, the asymptotic analysis can be done also for a triangulation with arbitrary many 4 -simplices, which results in a Regge action with a cosmological constant (from the Regge calculus with flat simplices) on the triangulation. The detailed analysis will be reported in [27].

Finally we note that the scaling $k_{a b} \mapsto \lambda k_{a b}, \omega \mapsto \omega / \lambda^{2}$ used in this paper leads us to the Regge calculus with flat 4simplex, which is an approximation of curved geometry in presence of a cosmological constant. It would be interesting to find the relation between the q -deformed vertex amplitude and a curved 4 -simplex with constant curvature, in analogy with the 3d case (see e.g. [28]). We leave this point to the future research.

Acknowledgments

The author would like to thank W. Wieland for sharing his idea [29] about Chern-Simons theory, and thank L. Freidel for his comment on the early version of this paper. The author would also like to thank E. Bianchi, R. Coquereaux, K. Noui, A. Perez, S. Speziale, C. Rovelli, and M. Zhang for discussions and communications.
[1] T. Thiemann. Modern Canonical Quantum General Relativity (Cambridge University Press, Cambridge, 2007); C. Rovelli. Quantum Gravity (Cambridge University Press 2004)
[2] A. Ashtekar and J. Lewandowski. Class. Quant. Grav. 21 (2004) R53.
M. Han, W. Huang and Y. Ma. Int. J. Mod. Phys. D16 (2007) 1397-1474 arXiv:gr-qc/0509064|.
[3] C. Rovelli. arXiv:1102.3660] arXiv:1004.1780]
[4] J. Engle, E. Livine, R. Pereira and C. Rovelli. Nucl. Phys. B799 (2008) 136; Y. Ding, M. Han, and C. Rovelli. arXiv:1011.2149 [gr-qc]]
[5] L. Freidel and K. Krasnov. Class. Quant. Grav. 25 (2008) 125018
[6] L. Smolin. J. Math. Phys. 36 (1995) 6417-6455; S. Major and L. Smolin. Nucl. Phys. B473 (1996) 267-290; L. Smolin. arXiv:hep-th/0209079]
[7] E. Bianchi and C. Rovelli. arXiv:1105.1898
[8] V. G. Turaev and O. Y. Viro. Topology 31 (1992) 865
[9] G. Ponzano and T. Regge. Spect. Group Theo. Meth. Phys., ed. F.Bloch, North-Holland, New York (1968).
[10] S. Mizoguchi and T. Tada. Phys. Rev. Lett. 68 (1992) 17951796
[11] L. Crane and D. Yetter. Quantum topology, 120-130, Ser. Knots Everything. 3, World Sci. Publishing, River Edges, NJ, 1993
[12] H.Ooguri. Mod. Phys. Lett. A7 (1992) 2799-2810
[13] L. Freidel and K. Krasnov. Adv. Theor. Math. Phys. 2 (1999) 1183-1247
[14] K. Noui and P. Roche. Class. Quant. Grav. 20 (2003) 3175-3214
[15] M. Han. arXiv:1012.4216
[16] W. J. Fairbairn and C. Meusburger. arXiv:1012.4784]
[17] Y. Ding and M. Han. arXiv:1103.1597]
[18] J. W. Barrett, R. J. Dowdall, W. J. Fairbairn, H. Gomes, and F. Hellmann. J. Math. Phys. 50 (2009) 112504
[19] A. Perelomov. Generalized Coherent States and Their Applications. Berlin: Springer 1986
[20] E. Bianchi, E. Magliaro, and C. Perini. Phys. Rev. D82 (2010) 124031
[21] T. Q. Le, H. Murakami and J. Murakami. Compositio Math.

102 (1996) 42-64; T. T. Q. Le and J. Murakami. J. Pure Appl. Algebra 121 (1997) 271-291
[22] D. Bar-Natan. Topology 34 (1995) 423-472
[23] V. G. Drinfeld. Quasihopf algebras and the KniznikZamolodchikov equations, in Problems of modern quantum field theory, ed. A. Belavin et al. Springer (1990).
[24] D. Altschuler and L. Freidel. Comm. Math. Phys. 170 (1995) 41-62
[25] N. Reshetikhin and V. G. Turaev. Invent. Math. 103 (1991) 547597
[26] M. Dupuis and E. R. Livine. Phys. Rev. D82 (2010) 064044
[27] M. Han and M. Zhang. [to appear]
[28] Y. U. Taylor and C. T. Woodward. arXiv:math/0406228]
[29] W. Wieland. arXiv:1105.2330]

[^0]: *Unité mixte de recherche (UMR 6207) du CNRS et des Universités de Provence (Aix-Marseille I), de la Meditarranée (Aix-Marseille II) et du Sud (Toulon-Var); laboratoire affilié à la FRUMAM (FR 2291).

[^1]: ${ }^{1}$ The original EPRL/FK amplitude doesn't know about the embedding of the 4 -simplex spin-network, i.e. it doesn't depend on whether l_{31} is overcrossing or under-crossing l_{42}. However the deformed amplitude does know about the embedding, thanks to the operators $R^{ \pm}$.

