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Abstract The numerical approximation of one-dimensional relativistic Dirac wave
equations is considered within the recent framework consisting in deriving local scat-
tering matrices at each interface of the uniform Cartesian computational grid. For a
Courant number equal to unity, it is rigorously shown that such a discretization pre-
serves exactly theL2 norm despite being explicit in time. This construction is well-
suited for particles for which the reference velocity is of the order ofc, the speed of
light. Moreover, whenc diverges, that is to say, for slow particles (the characteristic
scale of the motion is non-relativistic), Dirac equations are naturally written so as to
let a “diffusive limit” emerge numerically, like for discrete 2-velocity kinetic models.
It is shown that an asymptotic-preserving scheme can be deduced from the aforemen-
tioned well-balanced one, with the following properties: it yields unconditionally a
classical Schrödinger equation for free particles, but ithandles the more intricate case
with an external potential only conditionally (the grid should be such thatc∆x→ 0).
Such a stringent restriction on the computational grid can be circumvented easily in
order to derive a seemingly original Schrödingerscheme still containing tiny relativis-
tic features. Numerical tests (on both linear and nonlinearequations) are displayed.

Keywords Dirac equation· One-dimensional relativistic quantum mechanics·
Asymptotic-preserving and well-balanced numerical methods

Mathematics Subject Classification (2000)MSC 35Q41· 65M06· 81Q05

1 Introduction

The fundamental equation of relativistic quantum mechanics is the Dirac equation
which combines the special theory of relativity with quantum effects; see also [36,
42] for an application within the Jackiw-Tetelboim ”R=T” model of 1+ 1 general
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relativity. In one space dimension, the dynamics of such spin-1
2 particles is described

by a 2-componentspinorwave-function but nevertheless display interesting features.

1.1 Scalar and vector potentials in linear 1+1 Dirac systems

In 1D, the Dirac equation for a relativistic particle of massm > 0 moving in an
external potentialV(x) ∈ R2 reads, whereH0 stands for the “free Hamiltonian”,

i∂tΨ = [H0+V(x)]Ψ, H0 =

(

−icσ1∂x ·+
mc2

h̄
σ3 ·
)

.

The vectorΨ(t,x) ∈ C2 is usually called aDirac spinor. By neglecting magnetic
fields, the remaining external potentialV is split into:

V =Vt +σ1Ve+σ2Vp+σ3Vs,

whereVe, the so-called space-term can always be absorbed by means ofa gauge trans-
form. The other componentsVt , Vp andVs are referred to as the time-potential, scalar
and pseudo-scalar terms, respectively. Hereafter, the focus will be drawn onto the case
Vp ≡ 0, Vs,Vt are real scalar functions ofx∈ R. To fix ideas, the termVs may corre-
spond to a confining potential, like a space-dependent effective mass of an electron
[23], whereasVt , the so–called Lorentz time-potential cannot have a confining effect
because of the Klein paradox [7] (see also [14,15,39,41,42,45]). Parametersc > 0
andσi , i = 1,2,3, denote the speed of light and classical Pauli matrices, respectively:

σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0
0 −1

)

.

1.2 Conservation of theL2-norm and non-relativistic limit

In the context of quantum mechanics applications, the preservation of theL2 norm
is important because it is related to the conservation of theprobability of presence
for particles. For the linear Dirac equations, the Crank-Nicolson scheme is a popu-
lar choice [1,2] because, by Cayley’s theorem [22,21], it preserves exactly thisL2

norm: here we show in§2.2 that the well-balanced approach [18] allows to improve
on what is explained in [46] by furnishing an original, less costly, explicit scheme
endowed with the same preservation property. An original MUSCL-type reconstruc-
tion [19] is presented, too, in§2.3. This is numerically illustrated on both linear and
nonlinear benchmarks: see§4.1 and§4.2, respectively. Usually, such well-balanced
discretizations deliver automatically asymptotic-preserving (AP) schemes when the
limiting process only retains flux terms, like in [18,20]: here, by studying the non-
relativistic limit of Dirac equations with several potentials [5], we see that this is not
true anymore when these zero-order potential terms survivein the limit. Indeed, it is
shown in§3.3 and§3.4 that despite the second order finite difference is uncondition-
ally recovered, obtaining the correct contribution of the potential asks for a stringent
restriction on the computational grid. The somewhat simpler case of non-relativistic
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limit of free particles (including explicit schemes) is studied in §3.3. However, it is
possible to circumvent it and the correct asymptotic behavior is achieved. Numer-
ical validations are shown in§4.3. Existing asymptotic-preserving strategies were
mostly developed in order to handle the classical limit of both linear and non-linear
Schrödinger equations: see [9,13]. a strong convergence result for free particles is
furnished in Appendix A.

2 Derivation of L2-conservative well-balanced approximations

It appears that the presentation advocated in [18], and which relies on the use of local
scattering matrices, is closely related to ideas publishedin other contexts, see [4,12].

2.1 Computation of local scattering matrices

Accordingly, we start with a model slightly more involved than what appears in [46]:

∂tΨ + c

(
0 1
1 0

)

∂xΨ =− i
h̄

{

m(x)c2
(

1 0
0 −1

)

+Vt(x)

}

Ψ. (2.1)

DenotingΨ = (ψ+,ψ−), one diagonalizes the convective part of (2.1) by means of
Riemann invariants, which reduce to diagonal variables by linearity. The resulting
problem reads, for̄h= 1 andc2 being lumped into the space-dependent massm(x),

ζ± =
1
2
(ψ+±ψ−), ∂tζ±± c∂xζ± =−i (m(x)ζ∓+Vt(x)ζ±) , (2.2)

In order to derive a set of piecewise-constant numerical approximationsζ ∆x
± , one

deduces from [46] that the right-hand side must be upwinded if the explicit Euler
time-integrator is used. Following [18], Chapter 8, the first step for building a well-
balanced scheme for (2.2) is to consider the wave equation for which low-order terms
are “localized” on a uniform grid with a space-step∆x:

∂tζ±± c∂xζ± =−i∆x ∑
j∈Z

(m(x)ζ∓+Vt(x)ζ±)δ(x− x j− 1
2
), (2.3)

where shorthand notationx j = j∆x is used forj ∈ Z, together withtn = n∆ t, n∈ N

and∆ t is a time-step constrained by a Courant numberν = c∆ t
∆x . Piecewise constant

approximationsζ ∆x
± are defined by values generated by a time-marching process:

ζ ∆x
± (tn,x j) = ζ n

j ,± ∈ C.

The presence of Dirac masses at each interfacex j− 1
2

yields the following scheme:

ζ n+1
j ,+ = ζ n

j ,+− c∆ t
∆x

(ζ n
j ,+− ζ n

j− 1
2 ,+

), ζ n+1
j ,− = ζ n

j ,−+
c∆ t
∆x

(ζ n
j+ 1

2 ,−
− ζ n

j ,−). (2.4)

Coupling zero-order terms are treated by means of jump relations induced by the
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x jx j− 1
2

x j+ 1
2

ζ n
j ,± ζ n

j+1,±ζ n
j−1,±

ζ n
j−1,+

ζ n
j ,−

ζ n
j ,+

ζ n
j+1,−

ζ n
j− 1

2 ,+

ζ n
j− 1

2 ,−
ζ n

j+ 1
2 ,−

ζ n
j+ 1

2 ,+

1

Fig. 2.1 Schematic view of the scheme (2.4) with Riemann problems for(2.3) and standing waves.

Dirac masses inserted in (2.3). Formal consistency comes from a weak convergence,

∆x ∑
j∈Z

δ(x− x j− 1
2
) = ∆x ∑

j∈Z
δ
(

x− ( j − 1
2
)∆x

)

⇀ 1 as ∆x→ 0.

This way, interface valuesζ n
j∓ 1

2 ,±
are deduced fromζ n

j∓1,± by means of local scatter-

ing matrices (see Fig. 2.1) which expression is given below.

Lemma 2.1 For any j∈ Z, ∆x> 0, the smooth solutioñζ±(x) of the boundary-value
problem for the stationary equations in x∈ (0,∆x), with ζ̃+(0) = ζ̃ L

+, ζ̃−(∆x) = ζ̃ R
−,

±c∂xζ̃± =−i
(

m(x j− 1
2
)ζ̃∓+Vt(x j− 1

2
)ζ̃±
)

,

satisfies the following relation, with constant values Vt =
Vt (xj− 1

2
)

c , ω =
m(x

j− 1
2
)

c :

(
ζ̃+(∆x)
ζ̃−(0)

)

=

(
exp(i∆xVt)
cosh(∆xω) −i tanh(∆xω)

−i tanh(∆xω) exp(−i∆xVt)
cosh(∆xω)

)(
ζ̃+(0)

ζ̃−(∆x)

)

. (2.5)

The 2× 2 matrix in (2.5) is thescattering matrixfor (2.4): it relates theoutgoing
statesζ̃∓(0/∆x) to theincoming ones̃ζ±(0/∆x). These states are said to be incoming
because they are prescribed onincoming characteristicspointing inside the domain.
One may factorize this matrix with sech(ω∆x) = 1

cosh(ω∆x) , the hyperbolic secant:

S(x) = sech(ω∆x)

(
exp(i∆xVt) −i sinh(∆xω)

−i sinh(∆xω) exp(−i∆xVt)

)

, Sj± 1
2

def
= S(x j± 1

2
).

Proof: The computation is standard because the stationary equations are linear,
only the forward/backward boundary data make it differ froma usual ODE system:

c
d
dx

(
ζ̃+
ζ̃−

)

=−i

(
Vt ω
−ω −Vt

)(
ζ̃+
ζ̃−

)

.
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By means of a diagonalization process and a logarithmic integration, one finds:

ζ̃+(∆x) = exp(i∆xVt)
[

ζ̃+(0)cosh(ω∆x)− iζ̃−(0)sinh(ω∆x)
]

,

ζ̃−(∆x) = exp(i∆xVt)
[

iζ̃+(0)sinh(ω∆x)+ ζ̃−(0)cosh(ω∆x)
]

.
(2.6)

In the second equation, the unknown isζ̃−(0), hence the system becomes:

ζ̃−(0) = exp(−Vt∆x)
cosh(ω∆x) ζ̃−(∆x)− i tanh(ω∆x)ζ̃+(0),

ζ̃+(∆x) = exp(i∆xVt)ζ̃+(0)
[

cosh(ω∆x)− sinh2(ω∆x)
cosh(ω∆x)

]

− iζ̃−(∆x) tanh(ω∆x).

By rearranging terms, one finds easily (2.5). �

2.2 Hyperbolic rotation,L2-estimate and convergence

In the special case for whichVt ≡ 0, one observes that the relations (2.6) imply that
ζ̃±(∆x) (right states) result from the action of ahyperbolic rotationonto ζ̃±(0) (left
states). Planar hyperbolic rotations are sometimes called“Lorentz transformations”.

Going back to the general caseVt 6≡ 0, the scheme (2.4) rewrites:

ζ n+1
j ,+ = (1− ν)ζ n

j ,++ ν
(

exp(i∆xVt(xj− 1
2
))

cosh(∆xω
j− 1

2
) ζ n

j−1,+− i tanh(∆xωj− 1
2
)ζ n

j ,−

)

ζ n+1
j ,− = (1− ν)ζ n

j ,−+ ν
(

exp(−i∆xVt(xj+ 1
2
))

cosh(∆xω
j+ 1

2
)

ζ n
j+1,−− i tanh(∆xωj+ 1

2
)ζ n

j ,+

) (2.7)

Let’s hereafter denoteSj− 1
2

the 2× 2 scattering matrix appearing in (2.4): in the
particular case where the Courant numberν = 1, which means that the computational
grid is chosen so thatc∆ t = ∆x (like in [46]), ζ n+1

j ,± are the scattering values from the

data ofζ n
j∓1,±. Thus a simple criterion for the preservation of theL2 norm reads:

Lemma 2.2 Assume Vt(x)∈ L∞∩L2(R) is a real function and c∆ t = ∆x, there holds:

∀n∈ N, ‖ζ ∆x(tn, ·)‖L2(R) = ‖ζ ∆x(0, ·)‖L2(R).

Remark 2.1The preservation of theL2 norm with an explicit scheme like (2.7) isnot
straightforward: indeed, stable upwind discretizations with Courant numbersν < 1
always contain a certain amount ofnumerical viscositywhich, in the nonlinear case,
dissipate enoughentropyto prevent oscillation onset in the numerical solution. Math-
ematical entropies being just convex functions, in the context of quantum mechanics
applications which ask for conservation of the probabilityof presence, the scheme
must moreoverpreserve(and not dissipate) a particular entropy, theL2-norm.

Proof:The property is equivalent to stating that for anyj ∈ Z, the scattering matrix
Sj− 1

2
is unitary. By multiplying it by the complex conjugate of itstranspose, it is

straightforward to check that one recovers the identity matrix of R2. Hence:

(

ζ n+1
j ,+ ζ n+1

j−1,−

)∗
(

ζ n+1
j ,+

ζ n+1
j−1,−

)

=
(
ζ n

j ,+ζ n
j−1,−

)∗(
S∗

j− 1
2

)T
Sj− 1

2

(
ζ n

j ,+
ζ n

j−1,−

)

,
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which directly yields|ζ n+1
j ,+ |2+ |ζ n+1

j−1,−|2 = |ζ n
j ,+|2+ |ζ n

j−1,−|2. To derive the uniform
estimate, it remains to multiply by∆x and to sum onj ∈ Z. ⊓⊔

Thanks to the linearity of the system (2.1), the aforementioned conservation of
the L2 norm, which yields weak compactness inL2, is enough to ensure the weak
convergence of a subsequence of approximate solutionsζ ∆x

± toward the exact ones
[43] for smoothVt . Moreover, by uniqueness of the limit, all the sequence converges.
More accurate bounds are established in§A where strongL2

loc convergence is shown.

2.3 A MUSCL-type reconstruction compatible with the S-matrix

TheL2-preservation property rigorously holds only for a Courantnumberν = 1, thus
one may want to make the scheme (2.7) less vulnerable to the damage of numer-
ical dissipation. One standard way to proceed is to set up theso–called MUSCL-
reconstruction, relying on a conveniently limited piecewise-linear extrapolation of
the cell-average valuesζ n

j ,±. One issue is that such piecewise-linear data ask now

x jx j−1 x j+1

∆x
2c

∆t − ∆x
2c

(Sj− 1
2
) Sj+ 1

2

∆x

2

Fig. 2.2 Schematic view of the MUSCL reconstruction and scattering matrices

for the resolution of “Generalized Riemann Problems” (GRP)at each interfacex j± 1
2
,

see [6,44]: even in cases where it is doable, it doesn’t fit with treating the right-hand
side by means of S-matrices. However, a new type of MUSCL scheme was devised
in [19] and, along with heavy notation, it proceeds as follows:

1. Reconstruction: given the sequence of spinors(ζ n
j ,±) j∈Z ∈C2, one first performs a

linear interpolation. At both borders of each cellCj = (x j− 1
2
,x j+ 1

2
), the following

values are derived by means of local slopesσn
j and a slope-limiterφ : R→ [0,2],

ζ n,R
j− 1

2 ,±
= ζ n

j ,±−
σn

j ∆x

2
, ζ n,L

j+ 1
2 ,±

= ζ n
j ,±+

σn
j ∆x

2
.
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More precisely, mass conservation is ensured with the choice:

ζ n,R
j− 1

2 ,±
= ℜ (ζ n

j ,±)−
φ(rn

j )

2 ℜ
(

ζ n
j+1,±− ζ n

j ,±

)

+iℑ (ζ n
j ,±)− i

φ(r̃n
j )

2 ℑ
(

ζ n
j+1,±− ζ n

j ,±

)

,
φ(r) =

r + |r|
1+ |r| ,

and the ratios to which slope-limiters are applied are,

rn
j =

ℜ
(

ζ n
j+1,±− ζ n

j ,±

)

ℜ
(

ζ n
j ,±− ζ n

j−1,±

) , r̃n
j =

ℑ
(

ζ n
j+1,±− ζ n

j ,±

)

ℑ
(

ζ n
j ,±− ζ n

j−1,±

) .

Finally, the reconstructed interface states read, for eachcell Cj :

ζ n,R
j− 1

2 ,±
= ζ n

j ,±− φ(rn
j )

2 ℜ
(

ζ n
j+1,±− ζ n

j ,±

)

− i
φ(r̃n

j )

2 ℑ
(

ζ n
j+1,±− ζ n

j ,±

)

,

ζ n,L
j+ 1

2 ,±
= ζ n

j ,±+
φ(rn

j )

2 ℜ
(

ζ n
j+1,±− ζ n

j ,±

)

+ i
φ(r̃n

j )

2 ℑ
(

ζ n
j+1,±− ζ n

j ,±

)

.

2. Fluxes computation: Yet we have discontinuities at both the centerx j and inter-
facesx j± 1

2
: assuming the right-hand side of (2.2) is again localized only at inter-

faces, the formulation (2.3) still holds. Thus the discontinuities at the centerx j are
simply advected until they reach the interfacesx j± 1

2
, and there they are scattered

by the S-matrix: see Fig. 2.2. Observe that (2.7) can be put ina matrix form as:
(

ζ n+1
j ,+

ζ n+1
j−1,−

)

= (1− ν)
(

ζ n
j ,+

ζ n
j−1,−

)

+ νSj− 1
2

(
ζ n

j−1,+
ζ n

j ,−

)

, ν =
c∆ t
∆x

. (2.8)

So, by taking into account the (new) discontinuity at the cell’s center,
(

ζ n+1
j ,+

ζ n+1
j−1,−

)

=

(
ζ n

j ,+
ζ n

j−1,−

)

−min(ν , 1
2)










ζ n,L

j+ 1
2 ,+

ζ n,R
j− 1

2 ,−



−Sj− 1
2




ζ n,L

j− 1
2 ,+

ζ n,R
j+ 1

2 ,−











+max(0,ν − 1
2)










ζ n,R

j+ 1
2 ,+

ζ n,L
j− 1

2 ,−



−Sj− 1
2




ζ n,R

j− 1
2 ,+

ζ n,L
j+ 1

2 ,−










.

3. Overall algorithm: Hence, by linearity, one can form the following 2 states,

ζ̃ n
j+ 1

2 ,+
= min(ν , 1

2)ζ
n,L
j+ 1

2 ,+
−max(0,ν − 1

2)ζ
n,R
j+ 1

2 ,+
,

ζ̃ n
j+ 1

2 ,−
= min(ν , 1

2)ζ
n,R
j+ 1

2 ,−
−max(0,ν − 1

2)ζ
n,L
j+ 1

2 ,−
,

(2.9)

and the MUSCL scheme rewrites in a slightly less involved form:

(

ζ n+1
j ,+

ζ n+1
j−1,−

)

=

(
ζ n

j ,+
ζ n

j−1,−

)

−










ζ̃ n

j+ 1
2 ,+

ζ̃ n
j− 1

2 ,−



−Sj− 1
2




ζ̃ n

j− 1
2 ,+

ζ̃ n
j+ 1

2 ,−










. (2.10)

The scheme (2.9)–(2.10) will be tested in§4.2.2.
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3 Asymptotic-Preserving property for non-relativistic li mit

The numerical time-marching scheme (2.7) is well adapted tothe case wherec is
of the order of the characteristic scale of the computational grid, that is to say, for
relativistic particles. In case the particles (usually represented with wavepackets en-
dowed with a particulargroup velocity) move much slower, the aforementioned com-
putational grids, for whichc∆ t ≃ ∆x, don’t really fit thus one is interested to explore
the behavior of the numerical process (2.7) in the limitc→+∞.

3.1 Formal non-relativistic limit of 1D Dirac equation

Hereafter we consider the particular case of (2.1) with a mass m> 0 independent of
x. In order to study the non-relativistic limit of a Dirac particle with (positive) energy
E ≃ mc2, one retains only the slower time-variation like exp(−i(E −mc2)t/h̄) by
considering the rescaled quantities,ψ̃±(t,x) = exp(imc2t/h̄)ψ±(t,x), which satisfy:

∂t ψ̃++ c∂xψ̃− =
i
h̄

Vt(x)ψ̃+, ∂t ψ̃−+ c∂xψ̃+ = 2i
mc2

h̄
ψ̃−+

i
h̄

Vt(x)ψ̃−.

When c diverges, the second equation is dominated by the rule,ψ̃− = h̄
2imc∂xψ̃+,

which, once inserted in the first one, yields the classical Schrödinger equation:

i∂t ψ̃++
h̄2

2m
∂xxψ̃+ =Vt(x)ψ̃+. (3.1)

The rigorous theory of non-relativistic limits of linear multidimensional Dirac equa-
tion with external potential is given in [5,23].

3.2 Rescaled diagonal variables and local scattering matrix

With a slight abuse of notation, we still denote the Riemann invariants associated with
the “rescaled spinor”ζ± = 1

2(ψ̃+±ψ̃−). A new (small) parameterε = 1
c is introduced

for ease of reading, and a rescaled system is derived:

∂tζ±± 1
ε

∂xζ± = 2i

(

± m
ε2 (ζ+− ζ−)+

Vt(x)
2

ζ±
)

. (3.2)

By substitutingVt
2 →Vt and following the same roadmap as in Lemma 2.1, one gets:

Lemma 3.1 Let Vt > 0, ε > 0 and consider the boundary-value problem on x∈
(0,∆x), associated with the stationary equations of (3.2), with incoming dataζ̃+(0),
ζ̃−(∆x): if one defines the following quantity,

λε =
√

(εVt +m/ε)2− (m/ε)2 →
√

2Vtm, ε → 0,
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1. the local scattering matrix reads:

S=
1

Dε

(

− im
ελε

sin(2λε∆x) 1
1 − im

ελε
sin(2λε∆x)

)

. (3.3)

where Dε = cos(2λε∆x)− i εVt+m/ε
λε

sin(2λε∆x).

2. Moreover, S is unitary:(S∗)TS is the2×2 identity matrix.

Proof:The proof of (i) proceeds by integrating the following ODE system:

1
ε

d
dx

(
ζ̃+
ζ̃−

)

= 2i

( m
ε2 +Vt − m

ε2
m
ε2 −( m

ε2 +Vt)

)(
ζ̃+
ζ̃−

)

, x∈ (0,∆x).

By means of a standard diagonalization procedure, one finds that±λε are correspond-
ing eigenvalues and a tedious logarithmic integration delivers:
(

ζ̃+(∆x)
ζ̃−(∆x)

)

=

(

cos(2λε∆x)+ i εVt+m/ε
λε

sin(2λε∆x) − im
ελε

sin(2λε∆x)
im
ελε

sin(2λε∆x) cos(2λε∆x)− i εVt+m/ε
λε

sin(2λε∆x)

)(
ζ̃+(0)
ζ̃−(0)

)

.

Sinceζ̃−(∆x) belongs to the incoming boundary data, the second line must be in-
verted in order to derive the expression of the outgoing state ζ̃−(0):

ζ̃−(0) =
ζ̃−(∆x)− im

ελε
sin(2λε∆x)ζ̃+(0)

cos(2λε∆x)− i εVt+m/ε
λε

sin(2λε∆x)
.

When pluggingζ̃−(0) into the expression of̃ζ+(∆x), a simplification occurs:

ζ̃+(∆x) =

=1
︷ ︸︸ ︷

cos2(2λε∆x)+

=1
︷ ︸︸ ︷
(
(εVt +m/ε)2

λ 2
ε

− (m/ε)2

λ 2
ε

)

sin2(2λε∆x)

cos(2λε∆x)− i εVt+m/ε
λε

sin(2λε∆x)
ζ̃+(0)

−
im
ελε

sin(2λε∆x)

cos(2λε∆x)− i εVt+m/ε
λε

sin(2λε∆x)
ζ̃−(∆x).

It is now straightforward to derive the expression of the scattering matrix. Now, for
proving (ii), one just computes(S∗)TSand simplifies the expression ofDε ·D∗

ε :

(S∗)TS=
1

cos2(2λε∆x)+
(εVt +m/ε)2

(εVt +m/ε)2− (m/ε)2
︸ ︷︷ ︸

=1+ (m/ε)2

λ 2
ε

sin2(2λε∆x)

×




1+ (m/ε)2

λ 2
ε

sin2(2λε∆x) 0

0 1+ (m/ε)2

λ 2
ε

sin2(2λε∆x)



 .
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With this expression, one deduces easily that(S∗)TS is the 2×2 identity matrix.�

3.3 The special case of free particles

In the former calculation, it appears that a source of complication is the interaction of
both source terms, namely the particle’s massm and the time-potentialVt . However,
one may restrict attention to the simpler case of non-relativistic limit of free particles,
for whichVt ≡ 0. Clearly, this assumption implies thatλε = 0, hence cos(2λε∆x) = 1

and εVt+m/ε
λε

sin(2λε∆x) = 2∆xm
ε . The (constant) scattering matrixSsimplifies into:

S=
1

1−2im∆x/ε

(
1 −2im∆x/ε

−2im∆x/ε 1

)

.

3.3.1 Asymptotic-Preserving implicit schemes

One can follow the early computations in [20] dealing with the diffusive regime: it
consists in observing that the outgoing states rewrite in the equivalent form,







ζ̃+(∆x) = ζ̃−(∆x)+ 1
1−2i∆xm/ε

(

ζ̃+(0)− ζ̃−(∆x)
)

,

ζ̃−(0) = ζ̃+(0)+ 1
1−2i∆xm/ε

(

ζ̃−(∆x)− ζ̃+(0)
)

.

Inserting these scattering states into the expression of the scheme (2.4) yields:






ζ n+1
j ,+ = ζ n

j ,+− ∆ t
ε∆x(ζ

n+1
j ,+ − ζ n+1

j ,− )+ ∆ t
ε∆x−2i∆x2m

(

ζ n+1
j−1,+− ζ n+1

j ,−

)

,

ζ n+1
j ,− = ζ n

j ,−+ ∆ t
ε∆x(ζ

n+1
j ,+ − ζ n+1

j ,− )+ ∆ t
ε∆x−2i∆x2m

(

ζ n+1
j+1,−− ζ n+1

j ,+

)

,
(3.4)

In order to shed light onto the numerical dynamics ofψ̃n
j ,+, one sums up both lines

of this scheme and unconditionally obtains that, in the limit ε → 0,

iψ̃n+1
j ,+ = iψ̃n

j ,+− ∆ t
2∆x2m

(

ψ̃n+1
j+1,+−2ψ̃n+1

j ,+ + ψ̃n+1
j−1,+

)

,

a consistent finite-difference approximation of the classical Schrödinger equation,
treated implicitly because the explicit Euler scheme is unconditionally unstable [10].

Remark 3.1Based on the results of [1,2,32,33], it may be a better choiceto use a
second-order Crank-Nicolson time-integrator (instead ofan implicit Euler method)
in (3.4) in order to preserve theL2-norm of the (piecewise constant) numerical ap-
proximationψ̃∆x

+ . The computations become more involved, though, as one can see:






ζ n+1
j ,+ + ∆ t

2ε∆x(ζ
n+1
j ,+ − ζ n+1

j ,− )− ∆ t/2
ε∆x−2i∆x2m

(

ζ n+1
j−1,+− ζ n+1

j ,−

)

= ζ n
j ,+− ∆ t

ε2∆x(ζ
n
j ,+− ζ n

j ,−)+
∆ t/2

ε∆x−2i∆x2m

(

ζ n
j−1,+− ζ n

j ,−

)

,

ζ n+1
j ,− − ∆ t

2ε∆x(ζ
n+1
j ,+ − ζ n+1

j ,− )− ∆ t/2
ε∆x−2i∆x2m

(

ζ n+1
j+1,−− ζ n+1

j ,+

)

= ζ n
j ,−+ ∆ t

2ε∆x(ζ
n
j ,+− ζ n

j ,−)+
∆ t/2

ε∆x−2i∆x2m

(

ζ n
j+1,−− ζ n

j ,+

)

.

(3.5)
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3.3.2 An explicit and conditionally stable AP scheme ?

The derivation of Asymptotic-Preserving schemes is usually all about the behavior,
as a small parameter goes to zero, of discrete derivativesin the space variable, x. The
discretization in time being kept as the Euler forward method, for instance. In the
present context, this raises an issue because applying straightforwardly such an ele-
mentary time-integrator leads to unconditional instability: in the former subsection,
we thus chose to set up time-implicit schemes for the sake of stability, but a drawback
is their CPU cost. Hence one may wonder whether it may be possible to proceed, like
in [20], in such a way that a stable time-explicit scheme for the Schrödinger equation
can be recovered in the limitε → 0. Basically, explicit, or barely implicit (i.e. not
asking for inversions of linear systems) methods essentially reduce to:

– Leapfrog or Dufort-Frankel methods, which are not self-starting, [3,33,47]
– Euler forward method, but perturbed by supplementary dissipation, [10,34]

Setting up the AP process described in (3.4) within either Leapfrog or Dufort-Frankel
time-integration methods appears to produce only numerical instability. However,
the second strategy, based on supplementary diffusion terms can lead to stable algo-
rithms, so we present it now, following both [10,34].

1. the following forward-Euler scheme (compare with (3.4))is unstable,






ζ n+1
j,+ −ζ n

j,+
∆ t + 1

ε∆x(ζ
n+1
j ,+ − ζ n+1

j ,− ) = 1
ε∆x−2i∆x2m

(

ζ n
j−1,+− ζ n

j ,−

)

,

ζ n+1
j,− −ζ n

j,−
∆ t − 1

ε∆x(ζ
n+1
j ,+ − ζ n+1

j ,− ) = 1
ε∆x−2i∆x2m

(

ζ n
j+1,−− ζ n

j ,+

)

,
(3.6)

at least because, by formally imposingε = 0 and summing, an unstable discretiza-
tion of the free Schrödinger equation arises. However, it has the advantage of
being easy to implement since the implicit part can be inverted analytically.

2. one may think that this instability comes exclusively from the change of equa-
tion’s type in the limitε → 0, and so that modifying the time-differentiation like
in [10,34] can fix this issue. Keeping finite-differences in space, one substitutes:

ζ n+1
j ,± − ζ n

j ,±
∆ t

 
ζ n+1

j ,± − ζ n
j ,±

∆ t
(
1+∆ t(α − iβ)

) or
ζ n+1

j ,± − ζ n
j ,±

∆ t +∆x2(α − iβ)
.

According to [10], the second choice leads to CFL restrictions in∆ t ≃ O(∆x4),
which is prohibitively costly, so we restrict ourselves to the first one, less demand-
ing on∆ t, even if it can become unstable for∆ t,∆x becoming very small.

3. within our notation, there is supplementary diffusion ifβ >0, but it is needed only
for small values ofε, so we propose the following modified time-differentiation,

ζ n+1
j ,± − ζ n

j ,±
∆ t
(
1+∆ t(α − iβ)(1− εγ)

) , 0< γ ≤ 1, (3.7)

meaning that diffusion is activated only asε ≪ 1. It remains to plug it inside (3.6).
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Position densities were computed with the resulting scheme(3.6)–(3.7),β = 1 and
ε = 1,0.1,0.01, see Fig. 3.1. Initial data was sampled on a uniform grid of28 points,

ζ±(t = 0,x) =
1
2

exp
(
i tanh(x)− (x/4)2) , x∈ (−16,16).

The data for Schrödinger, treated with the second-order Leapfrog method, is thus
2ζ±(t = 0, ·). Numerical position densities become closer asε is decreased, up to
ε ≃ 0.001 where convergence stalls because of diffusion. Accordingly, one cannot

Fig. 3.1 Position densities generated by (3.6)–(3.7) at timet = 0.5 for ε = 1,0.1,0.01 (left) and time-
growth of theL2 difference between them and Leapfrog approximation for thefree Schödinger equation.

really speak about explicit AP schemes because the scheme obtained in the limit
ε → 0 doesn’t match exactly the numerical approximation one gets, for instance, out
of a Leapfrog discretization: it still contains the supplementary diffusion which is
necessary for stability. Hencewe shall not push the study of such conditionally
stable explicit Asymptotic-Preserving discretizations any further .

3.4 Difficulties with the complete case

In the general caseVt 6≡ 0, the full scattering matrix (3.3) must be considered, and
the eigenvalueλε strongly couples both the source termsm/ε2 andεVt : in order to
ease the reading, we shall limit ourselves to the case of aconstant time-potential
Vt > 0 because it already highlights most of the corresponding issues. Thanks to
this simplifying assumption, the scattering matrixS is still independent of the index
j ∈ Z (the modifications necessary for handling a space-dependent time-potential are
straightforward) and the outgoing states read now:






ζ̃+(∆x) = ζ̃−(∆x)+ 1
Dε

(

ζ̃+(0)−
[

cos(2λε∆x)− iεVt
λε

sin(2λε∆x)
]

ζ̃−(∆x)
)

,

ζ̃−(0) = ζ̃+(0)+ 1
Dε

(

ζ̃−(∆x)−
[

cos(2λε∆x)− iεVt
λε

sin(2λε∆x)
]

ζ̃+(0)
)

.

Clearly, these expressions split naturally between a first part which generates the
second-order divided difference (like in the preceding section), and a second one
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which contains the time-potential term. Plugging into the upwind scheme (2.4),







ζ n+1
j ,+ = ζ n

j ,+− ∆ t
ε∆x(ζ

n+1
j ,+ − ζ n+1

j ,− )

+ ∆ t
εDε ∆x

(

ζ n+1
j−1,+− cos(2λε∆x)ζ n+1

j ,−

)

+ i∆ t
εDε ∆x

εVt
λε

sin(2λε∆x)ζ n+1
j ,−

ζ n+1
j ,− = ζ n

j ,−+ ∆ t
ε∆x(ζ

n+1
j ,+ − ζ n+1

j ,− )

+ ∆ t
εDε ∆x

(

ζ n+1
j+1,−− cos(2λε∆x)ζ n+1

j ,+

)

+ i∆ t
εDε ∆x

εVt
λε

sin(2λε∆x)ζ n+1
j ,+

(3.8)

Taking into account thatλε = O(1) uniformly in ε, there are 2 singular limits:

1. the termcos(2λε∆x)
εDε ∆x behaves as follows asε → 0,

cos(2λε∆x)

∆x
[

ε cos(2λε∆x)− i ε2Vt+m
λε

sin(2λε∆x)
] → 1

∆x
[

ε −2i∆xmtan(2λε∆x)
2λε ∆x

] .

Assuming thatλε∆x→ 0 as∆x → 0, which is immediate thanks to the uniform
bound onλε , one sees that this term is endowed with the correct behaviorbecause

tan(2λε∆x)
2λε∆x

→ 1, ∆x→ 0.

2. the termεVt sin(2λε∆x)
ελε Dε ∆x behaves as follows asε → 0,

Vt sin(2λε∆x)
[
∆xλε cos(2λε∆x)− i∆x

(
εVt +

m
ε
)

sin(2λε∆x)
] → 2Vt

[

2∆xλε
cos(2λε ∆x)
sin(2λε ∆x) −2i ∆xm

ε

] .

Now, still assuming thatλε∆x→ 0 as∆x→ 0, one sees that 2∆xλε
tan(2λε∆x) → 1, as ex-

pected. But the imaginary term 2i m∆x
ε doesn’t vanish unlessm∆x≤ ε1+α , α > 0,

which is a stringent restriction on the computational grid.Surprisingly, in order to
correctly recover the potential term in the non-relativistic limit, one must impose
a restriction on∆x/ε. This phenomenon seems to be new: it doesn’t manifest
itself in the diffusive limits previously investigated: see [20,18].

Fortunately, the issue raised by the imaginary term displaying an incorrect behavior
in the limit ε → 0 can be easily circumvented by substitutingDε by ℜ (Dε) in the
denominator, its real part (which is endowed with the correct behavior asε → 0 in
absence of restrictions on∆x). Another fix may be the following one:

Dε  D̃ε = cos(2λε∆x)− i
εVt +max(1, 1

ε )m

λε
sin(2λε∆x).
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A simple asymptotic-preserving scheme in the non-relativistic limit of (3.2) is de-
duced from (3.8) by,







ζ n+1
j ,+ = ζ n

j ,+− ∆ t
ε∆x(ζ

n+1
j ,+ − ζ n+1

j ,− )

+ ∆ t
εDε ∆x

(

ζ n+1
j−1,+− cos(2λε∆x)ζ n+1

j ,−

)

+ i∆ t
ε ℜ (Dε)∆x

εVt
λε

sin(2λε∆x)ζ n+1
j ,−

ζ n+1
j ,− = ζ n

j ,−+ ∆ t
ε∆x(ζ

n+1
j ,+ − ζ n+1

j ,− )

+ ∆ t
εDε ∆x

(

ζ n+1
j+1,−− cos(2λε∆x)ζ n+1

j ,+

)

+ i∆ t
ε ℜ (Dε)∆x

εVt
λε

sin(2λε∆x)ζ n+1
j ,+

(3.9)

thanks to the fact thatℜ (Dε) retains only the correct (real) part of the denominator.

Remark 3.2For theL2-norm, a mid-point time-integrator for (3.9) is an appealing
choice thanks to the Cayley theorem. If the time-potential is not constant inx, the
scheme (3.9) involves both valuesVt(x j± 1

2
) acting on eachζ n

j ,∓, respectively. Numer-

ical computations involving a Crank-Nicolson time-integrator like (3.5) are in§4.3.

The formal Schrödinger limit is obtained by adding both equations of (3.9),

ψ̃n+1
j = ψ̃n

j −
∆ t

εDε∆x

(

ψ̃n+1
j−1 −2cos(2λε∆x)ψ̃n+1

j + ψ̃n+1
j−1

)

+
i∆ t sin(2λε∆x)

ℜ (Dε)λε∆x

(
Vt

2
ψ̃n+1

j

)

,

Dε = cos(2λε∆x)− i

(
εVt +m/ε

λε

)

sin(2λε∆x).

under the innocuous conditionsε → 0,λε∆x→ 0 (and after re-substitutingVt → Vt
2 ).

Such a first-order “implicit Euler” discretization, which appears to bean original
Schr̈odinger scheme containing tiny relativistic features, dissipates theL2 norm.

Proposition 1 Assume the time-potential Vt ∈ L∞(R) is a real smooth function, then
the scheme (3.10) is asymptotic-preserving in the non-relativistic limit ε → 0.

Proof:With the former computations at hand, there are 2 cases to look at:

– Assume first that the time-potentialVt(x) ≥ 0, the main novelty is that bothλε
andDε depend on space and one must consider:







λε(x j− 1
2
) =

√

(εVt(x j− 1
2
)+m/ε)2− (m/ε)2 ∈ R,

Dε(x j− 1
2
) = cos

(

2λε(x j− 1
2
)∆x
)

− i
εVt(xj− 1

2
)+m/ε

λε (xj− 1
2
) sin

(

2λε(x j− 1
2
)∆x
)

.
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The scheme (3.9) is amended as follows:






ζ n+1
j ,+ = ζ n

j ,+− ∆ t
ε∆x(ζ

n+1
j ,+ − ζ n+1

j ,− )

+ ∆ t
εDε (xj− 1

2
)∆x

(

ζ n+1
j−1,+− cos(2λε(x j− 1

2
)∆x)ζ n+1

j ,−

)

+ i∆ t
ε ℜ (Dε (xj− 1

2
))∆x

εVt(xj− 1
2
)

λε(xj− 1
2
) sin(2λε(x j− 1

2
)∆x)ζ n+1

j ,−

ζ n+1
j ,− = ζ n

j ,−+ ∆ t
ε∆x(ζ

n+1
j ,+ − ζ n+1

j ,− )

+ ∆ t
εDε (xj+ 1

2
)∆x

(

ζ n+1
j+1,−− cos(2λε(x j+ 1

2
)∆x)ζ n+1

j ,+

)

+ i∆ t
ε ℜ (Dε (xj+ 1

2
))∆x

εVt(xj+ 1
2
)

λε(xj+ 1
2
) sin(2λε(x j+ 1

2
)∆x)ζ n+1

j ,+

(3.10)

Thanks to the smoothness ofx 7→Vt(x), the interface coefficients are still consis-
tent becauseVt(x j∓ 1

2
)−Vt(x j)→ 0 strongly as∆x→ 0.

– In caseVt(x) has no definite sign, it can happen thatλε(x j− 1
2
) becomes purely

imaginary for somej ∈ Z. But this doesn’t create any substantial issue because
all the (circular) trigonometric relations which were usedformerly still hold for
(hyperbolic) trigonometric functions: for allx∈R,

cos(ix) =
exp(i2x)+exp(−i2x)

2
= cosh(x),

sin(ix) =
exp(i2x)−exp(−i2x)

2i
= i sinh(x),

thus one recovers cos2(ix)+ sin2(ix) = 1, together with all the limits asx→ 0.

�

4 Numerical results in various settings

4.1 A test-case for linear problems

Here we simply aim at displaying the behavior of the explicitscheme (2.7) on a
standard test-case for (2.1) involving both a pseudo-scalar and a time potential. More
precisely, the pseudo-scalar termVs(x) = αx2

2 has a confinement effect, free from the
Klein paradox. The time potential corresponds to a wall modeled by means of an
indicator function,Vt(x) = 3

2χ1.25<x<1.75. Initial data forζ±(t = 0,x) read
√

1

σ
√

2π
exp

(

− (x+1.5)2

2σ2

)

, σ = 0.125.

The computational domain isx∈ (−3,3) andN= 28 points are used to grid it. On Fig.
4.1, results are shown at different times with a Courant number ν = 1, allowing for
an exact (up to machine accuracy) conservation of theL2 norm. We show the moduli
added to the pseudo-scalar potential,Vs(x)+ |ζ+|2+ |ζ−|2 in order to emphasize its
effects on the wave packet’s dynamics.Zitterbewegungis observed especially when
the movement is interrupted by the wall, and a small tunneling effect takes place.
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Fig. 4.1 Snapshots of (2.7) att = 0,1.54,2.08,3.54 of a pulse on a parabola hitting a wall withc= 1.

4.2 Formal extension to nonlinear problems

4.2.1 Well-balanced upwind scheme

Following some examples displayed in [8], we intend to test the scheme (2.7) against
exact solutions of a nonlinear Dirac equation (compare with(2.1), no time-potential):

∂tΨ +

(
0 1
1 0

)

∂xΨ + i

(
1+ |ψ−|2−|ψ+|2
−1+ |ψ+|2−|ψ−|2

)

·Ψ = 0. (4.1)

According to [1,2,8], this equation admits a family of exactsolutions given by:

ψ+(t,x) = exp(−iΛ t)A(x), ψ−(t,x) = i exp(−iΛ t)B(x),

whereΛ ∈ (−1,1), µ =
√

1−Λ 2, µA = µ
√

2(1+Λ ) µB = µ
√

2(1−Λ ), and

A(x) = µA
cosh(µx)

1+Λ cosh(2µx)
, B(x) = µB

sinh(µx)
1+Λ cosh(2µx)

.

In order to tackle (4.1) by means of (2.7), it suffices therefore to cancel the time-
potentialVt and to include the nonlinearity|ψ−|2− |ψ+|2, “frozen at each timetn”,
in the pseudo-scalar potentialVs. This yields a “nonlinearly varying mass” instead
of the linear space-varying massm(x) showing up in (2.1). Numerical results for the
modulus ofΨ with N = 29 points griding the intervalx ∈ (−32,32) and a Courant
number equal to 1,∆ t = ∆x, are displayed on Fig. 4.2, left. The timeT = 2π

Λ is
chosen so that the exact solutions are equal to the initial data. Hence, despite the
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Fig. 4.2 Solution of (4.1) forT = 2π
Λ , Λ =

√
3
4 (left), L2-norm change (right).

aforementioned derivations don’t rigorously extend to nonlinear cases, it is found
numerically that the scheme (2.7) behaves rather correctlyon these exact solutions,
theL2 norm is conserved too, up to machine accuracy (see Fig. 4.2, right).

4.2.2 Testing the well-balanced (WB) MUSCL extension

As said before, theL2-preservation property holds essentially forν = 1, that is, in the
absence of numerical diffusion (Lemma 2.2). One may wonder whether the MUSCL
reconstruction (2.9)–(2.10) is able to improve this situation. Of course, as explained
in Remark 2.1, theL2 norm corresponds to an entropy for the semi-linear hyperbolic
system (see [48,49] for applications of hyperbolic techniques to Dirac systems) thus
it is dissipated by finite-difference methods for the sake ofstability in the presence of
steep gradients. On the left of Fig. 4.3, we display the sensitivity of the time-evolution
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Fig. 4.3 Relative dissipation ofL2-norm forν = 0.9,0.65,0.4 and∆x= 2−8 (left), growth ofL2 errors for
4 decreasing values of∆x= 2−7,2−8,2−9,2−10 butν = 0.8 kept constant (right), both functions of time.

of theL2 norm with respect to the Courant number for both the upwind (2.7) and the
MUSCL (2.9)–(2.10) schemes on the semilinear problem (4.1). The improvement in
terms ofL2-norm is of the order of 15% roughly, so this type of numericalscheme
is too much dissipative for Courant numbers below 0.8. On the right of Fig. 4.3, we
show that, forν = 0.8 theL2-error grows linearly in time while displaying some
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oscillations. Moreover, the decay of these errors when∆x passes from 2−7 to 2−10

appears to be linear, too. The parameters were kept identical to those of Fig. 4.2.

4.3 Non-relativistic limit and Asymptotic-Preserving (AP)

We confront numerically the scheme (3.9) against a direct Schrödinger computation:
more precisely, a Crank-Nicolson time-integrator is applied both to (3.2), with the
same numerical fluxes leading to (3.9), and to the usual non-relativistic equation,

i∂tψ+
1

2m
∂xxψ =Vt(x)ψ, Vt(x) =

x2

2
, (4.2)

in the domainx∈ (−5,5) with N = 29 grid points. Initial data correspond to a Gaus-
sian pulse centered inx= − 5

4 and with wave numberk = 1. Numerical densities of
presence are nearly identical as soon asε < 0.001 and they roughly match the ones
generated by the direct Schrödinger computation (see Fig.4.4, bottom line). Oppo-
sitely, when the Dirac equation is in relativistic regimeε ≃ 1, noticeable differences
show up as, for small time, the initial pulse splits into 2 components (Fig. 4.4, top,
left), and despite the potential’s effect, the numerical solutions are quite different at
later time (Fig. 4.4, top, right). This was to be expected as the solutions for Dirac and

Fig. 4.4 Comparison of Crank-Nicolson results on both (3.2) and Schrödinger equation (4.2) atT = 1
(left), T = 3 (right) and forε = 1 (top),ε = 0.01 (bottom).

Schrödinger equations have no reason to look like each other in relativistic regime.
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Following Remark 3.2, a Crank-Nicolson approach of the type(3.5) was implemented
for this benchmark in order to show its numerical stability even in the presence of a
singular limitε → 0; practically, it seems that simulating the “relaxing system” (3.2)
is less demanding in terms of numerical boundary conditions. We chose to implement
Neumann boundary conditions, even if it is of little importance because the quantum
particle is unable to reach the borders in presence of the steep parabolic potential (this
situation is similar to the one of Fig. 4.1).

5 Conclusion

The classical defect of finite-difference methods in the context of quantum mechanics
is their numerical viscosity which generally perturbs theL2-norm of the approximate
solution (one remedy is the setup of second-order implicit time-integrators [22,32,
46]). Here we showed that, at least in the relativistic scaling, the well-balanced ap-
proach yields a numerical scheme (2.7) on an inhomogeneous linear problem which
preserves exactly theL2-norm while being completely explicit in time. When it comes
to the (singular) non-relativistic limit of this scheme, there are 2 different situations:

1. for free particles (no external time-potential), the well-balanced scheme (2.7) can
be reformulated into an asymptotic-preserving one (3.8) bymimicking former
computations designed in the context of discrete kinetic models [20],

2. for particles submitted to an external time-potential, the coupling between differ-
ent source terms leads to a “strange imaginary term” inDε which produces an
incorrect behavior on the potentialonly (the Laplacian term is always correct).
However, it is easy to fix this issue by taking the real part of thisDε coefficient.

A very different strategy for quantum mechanics equations,better suited forL2-norm
preservation, is the split-step methods [17,26,33]; thesealgorithms too can furnish
asymptotic-preserving strategies in the non-relativistic limit, see Remark 4.3 in [26].
This scheme has all the strengths and weaknesses which characterize the Fourier-
based time-splitting schemes:

– Spectral accuracy andL2-norm conservation on periodic smooth solutions;
– Possible issues to reproduce Jost ”distorted plane wave” solutions (the ones which

constitute the continuous spectrum of the stationary operator) in a scattering en-
vironment [16]. Reflection/transmission coefficients may result flawed unless a
fine grid is used with potentialsV(x) being either oscillating (see [29], page 183)
or sharply-varying (thus inducing high frequencies).

Multi-dimensional problems are usually handled by dimensional splitting, but it is
delicate matters in case one wants to reproduce accurately wave interactions in a
context of weak solutions. A first step may be to consider the simpler case of so-
called ”massless Dirac equations” for which the 4-component spinor reduces to a
2-component one, see for instance [37].

Acknowledgements The author thanks Dr. S. Malaguti (Ferrara) for having suggested this problem.
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A DiscreteH1(R)-bounds and strong convergence of free particles

Lemma A.1 Assume c∆ t ≤ ∆x, x 7→Vt(x),Vs(x) being Lipschitz andζ±(t = 0, ·)∈H1(R), then numerical
approximations generated by (2.7 satisfy:

∀n∈ N, ‖ζ ∆x(tn, ·)‖L2(R) ≤ ‖ζ ∆x(0, ·)‖L2(R).

If moreover,∂xVt = ∂xVs ≡ 0, then:

∀n∈N, ‖∂xζ ∆x(tn, ·)‖L2(R) ≤ ‖∂xζ ∆x(0, ·)‖L2(R).

Proof:Hereafter we denote|ζ±|=
√

|ζ+|2+ |ζ−|2 the Euclidian vectorial norm and recall that|Sj+ 1
2
ζ±|.

– As a consequence of the compact writing (2.8), one has

(

ζ n+1
j,+

ζ n+1
j−1,−

)

= (1−ν )
(

ζ n
j,+

ζ n
j−1,−

)

+νSj− 1
2

(
ζ n

j−1,+
ζ n

j,−

)

,

and deduces easily anL2 estimate forν ≤ 1 because each scattering matrixSj− 1
2
, j ∈ Z, is unitary.
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The first step is just Minkowski’s inequality and linearity of the L2 norm for 0≤ ν ≤ 1. The second
one is the S-matrix being unitary. The third is shifting sum’s indexes in order to produce

∑
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.

This reordering of the sums is specific to theL2 norm; therefore one needs both the S-matrix being
unitary and the ability to rearrange the summation in order to derive the final estimate.

– When the scattering matrix is space-dependent, this doesn’t automatically yield an estimate on the
divided-differences: indeed, one sees on Fig. 4.1 that the presence of external potentials can increase
the Lipschitz constant of the numerical approximations. One begins by “triangulating” as follows:

(

ζ n+1
j+1,+− ζ n+1
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ζ n+1
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[
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2
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2
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j,−

)

.
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Then, one proceeds as before:
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We denoted byLipx(S) the Lipschitz constant inx of the S-matrix, which depends on the Lipschitz
constant of bothVt(x) (the time potential) andVs(x) (the pseudo-scalar term). One cannot deduce a
discreteH1 estimate because of that last term. However, ifVt andVs are constant,Lipx(S)≡ 0 and:
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. (A.1)

⊓⊔
Lemma A.1 states that theL2-norm (a particular entropy) is dissipated in time as soon asthe Courant

numberν < 1 by the upwind finite-differencing process. This is generally seen as a drawback for such a
method; however, in certain circumstances and for short-time computations, dissipation can be interesting
when an initial data oscillating at a frequency close to the grid’s cutoff frequencyπ/∆x is prescribed.
These data usually induce wave-packets endowed with flawed group velocities (see [35,50] and references
therein) of the order of∆x and energy conservation implies that they never disappear.Instead, running
a numerical scheme containing a little bit of numerical viscosity allows to progressively smoothen high
frequencies and restore wave-packets with group velocities compatible with the computational grid.

Lemma A.2 Under the hypotheses of Lemma A.1, assume both Vt ,Vs are constant, then:

∀n∈ N, ‖ζ ∆x(tn+1, ·)− ζ ∆x(tn, ·)‖L2(R) ≤ c∆ t
{

‖∂xζ ∆x(0, ·)‖L2(R)+Lip∆x(S)‖ζ ∆x(0, ·)‖L2(R)

}

.
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Proof:It consists in evaluating the size of the time-variation andtaking advantage of previousH1 estimates:
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Now, from the expression (2.5), one sees that for anyj ∈ Z, if ∆x= 0, Sj− 1
2
= Id, the identity matrix.

Hence|Id −Sj− 1
2
| ≤ ∆x·Lip∆x(S) and this is enough to ensure time-equicontinuity thanks to (A.1). ⊓⊔

Lemmas A.1 and A.2 allow to conclude that strong convergenceholds inL2
loc(R

+
∗ ×R) (and almost

everywhere) as∆x→ 0, c∆ t ≤ ∆x for free particles of constant massmwithout external potential.
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