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Abstract The numerical approximation of one-dimensional relativi®irac wave
equations is considered within the recent framework céingisn deriving local scat-
tering matrices at each interface of the uniform Cartes@mputational grid. For a
Courant number equal to unity, it is rigorously shown thattsa discretization pre-
serves exactly the? norm despite being explicit in time. This construction isliwe
suited for particles for which the reference velocity is lo¢ torder ofc, the speed of
light. Moreover, whert diverges, that is to say, for slow particles (the charasteri
scale of the motion is non-relativistic), Dirac equations maturally written so as to
let a “diffusive limit” emerge numerically, like for discte 2-velocity kinetic models.
Itis shown that an asymptotic-preserving scheme can becgeldtom the aforemen-
tioned well-balanced one, with the following propertidsyields unconditionally a
classical Schrodinger equation for free particles, biaitdles the more intricate case
with an external potential only conditionally (the grid st be such thatAx — 0).
Such a stringent restriction on the computational grid cariblcumvented easily in
order to derive a seemingly original Schrodinger schernfi€shtaining tiny relativis-
tic features. Numerical tests (on both linear and nonlirggrations) are displayed.

Keywords Dirac equation One-dimensional relativistic quantum mechanics
Asymptotic-preserving and well-balanced numerical mdtho

Mathematics Subject Classification (20000MSC 35Q41: 65M06- 81Q05

1 Introduction

The fundamental equation of relativistic quantum meclaiiche Dirac equation
which combines the special theory of relativity with quanteffects; see also [36,
42] for an application within the Jackiw-Tetelboim "R=T" mel of 1+ 1 general
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2 Laurent Gosse

relativity. In one space dimension, the dynamics of such-%marticles is described
by a 2-componergpinorwave-function but nevertheless display interesting fiestu

1.1 Scalar and vector potentials in linear 1+1 Dirac systems

In 1D, the Dirac equation for a relativistic particle of mass> 0 moving in an
external potentia¥/ (x) € R? reads, wherélg stands for the “free Hamiltonian”,

. _ mcé

iGW = [Ho+V(X)|¥, Ho = (—|c010X-+T03 )
The vector®(t,x) € C? is usually called &irac spinor. By neglecting magnetic
fields, the remaining external potentialis split into:

V =W + 01Ve + 02Vp + 03V,

whereVg, the so-called space-term can always be absorbed by meaggage trans-
form. The other component, V, andVs are referred to as the time-potential, scalar
and pseudo-scalar terms, respectively. Hereafter, thesfadl be drawn onto the case
Vp =0, Vs, are real scalar functions ofe R. To fix ideas, the terrivs may corre-
spond to a confining potential, like a space-dependentteffemass of an electron
[23], wheread#, the so—called Lorentz time-potential cannot have a cardieffect
because of the Klein paradox [7] (see also [14,15,39,445p,Parameters > 0
andg;, i = 1,2,3, denote the speed of light and classical Pauli matricepgively:

01 0 —i 10
2=\10) %2=\lio) 9=lo0o-1)

1.2 Conservation of the2-norm and non-relativistic limit

In the context of quantum mechanics applications, the pratien of theL? norm

is important because it is related to the conservation ofptlobability of presence
for particles. For the linear Dirac equations, the Cranké¥8on scheme is a popu-
lar choice [1,2] because, by Cayley’s theorem [22,21], éserves exactly thik?
norm: here we show i§2.2 that the well-balanced approach [18] allows to improve
on what is explained in [46] by furnishing an original, lessstly, explicit scheme
endowed with the same preservation property. An original3@U-type reconstruc-
tion [19] is presented, too, igR.3. This is numerically illustrated on both linear and
nonlinear benchmarks: s€d.1 and§4.2, respectively. Usually, such well-balanced
discretizations deliver automatically asymptotic-presey (AP) schemes when the
limiting process only retains flux terms, like in [18,20]:reeby studying the non-
relativistic limit of Dirac equations with several poteais [5], we see that this is not
true anymore when these zero-order potential terms suinitiee limit. Indeed, it is
shown in§3.3 and§3.4 that despite the second order finite difference is unitiomel
ally recovered, obtaining the correct contribution of tfiegntial asks for a stringent
restriction on the computational grid. The somewhat simgdese of non-relativistic
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limit of free particles (including explicit schemes) is died in §3.3. However, it is
possible to circumvent it and the correct asymptotic bedraig achieved. Numer-
ical validations are shown if4.3. Existing asymptotic-preserving strategies were
mostly developed in order to handle the classical limit afhdnear and non-linear
Schradinger equations: see [9,13]. a strong convergeggdtrfor free particles is
furnished in Appendix A.

2 Derivation of L2-conservative well-balanced approximations
It appears that the presentation advocated in [18], andhwrieiges on the use of local
scattering matrices, is closely related to ideas publish@ther contexts, see [4,12].

2.1 Computation of local scattering matrices

Accordingly, we start with a model slightly more involvedithwhat appears in [46]:

atW+C<2é> 0X‘P——i—ﬁ{m(x)c2<é_ol> +vt(x)}w. @2.1)

Denoting¥ = (Y, Y_), one diagonalizes the convective part of (2.1) by means of
Riemann invariants, which reduce to diagonal variablesitgality. The resulting
problem reads, foh = 1 andc? being lumped into the space-dependent nmass,

(e = %(‘Mi Yo), 0deFcokls =—-i(MX){++U (X)), (2.2)

In order to derive a set of piecewise-constant numericar@pmationsZ4*, one
deduces from [46] that the right-hand side must be upwindididei explicit Euler
time-integrator is used. Following [18], Chapter 8, thetfatep for building a well-
balanced scheme for (2.2) is to consider the wave equatiamfich low-order terms
are “localized” on a uniform grid with a space-stég:

(s £Coxy = —iAxEZ (M(X){x +Mi(X){s) O(x— Xj,%), (2.3)

IE

where shorthand notatiof) = jAx is used forj € Z, together witht" = nAt, ne N

andAt is a time-step constrained by a Courant number %. Piecewise constant

approximationg£* are defined by values generated by a time-marching process:
jA:X(tn,Xj) = ZJr!i € C

The presence of Dirac masses at each interi?gge yields the following scheme:

cAt .

cAt
Q=g - @ T ) =g @, )| 24)

Coupling zero-order terms are treated by means of jumpioelatinduced by the
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Fig. 2.1 Schematic view of the scheme (2.4) with Riemann problem§X@®) and standing waves.

Dirac masses inserted in (2.3). Formal consistency conoes & weak convergence,
AXEZ(S(X—X 1) AXEZ6< j——AX>41 as Ax—0.

This way, interface valueén . are deduced fronfjl., , by means of local scatter-
ing matrices (see Fig. 2. 1) WhICh expression is given below.

Lemma 2.1 For any j€ Z, Ax > 0, the smooth solutioaﬁjE x) of the boundary-value
problem for the stationary equations inex(0,Ax), with {;(0) = Z+, {_(Ax) = R

icdxfi =—i ( (x )Z¢ +W( X )

Ve(x. 1) m(X.

i-
c

(Glon)- (B lmwe)(Zoy o

satisfies the following relation, with constant valugs\/

Z_(0) —itanHAxw) % {_(AX)

The 2x 2 matrix in (2.5) is thestattering matrixfor (2.4): it relates theoutgoing

states(+ (0/AXx) to theincoming oneg. (0/Ax). These states are said to be incoming

because they are prescribedionoming characteristicpointing inside the domain.

One may factorize this matrix with se@hAx) = Wlamx)' the hyperbolic secant:
B exp(iAx\t) —isinh(Axw) def

S0 = sectiwAx) <—isinh(Axw) exp(—iAx\) Sixy = SXz3)-

Proof: The computation is standard because the stationary eqsai®@ linear,
only the forward/backward boundary data make it differ framsual ODE system:

a($)=-(%5)(¢)
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By means of a diagonalization process and a logarithmigraten, one finds:

€+(Ax) = exp(iAX\M) Zj(O) costwAX) — iNZ,(O) sinhwAx)| 26)
{—(Ax) = exp(iAx\M) |i{+(0) sinh(wAX) + {—(0) cosiwAXx) | .
In the second equation, the unknowrfis(O), hence the system becomes:
(0) = BT (aX) —itani{waxX) 4 (0),
{1 (8%) = expliax)Z. (0) [cosHwax) - %] ~iZ_(AxX)tanH wAX).
By rearranging terms, one finds easily (2.5). O

2.2 Hyperbolic rotationl?-estimate and convergence

In the special case for which = 0, one observes that the relations (2.6) imply that

{+(AXx) (right states) result from the action ofhgperbolic rotationonto {. (0) (left

states). Planar hyperbolic rotations are sometimes célleentz transformations”.
Going back to the general cage 0, the scheme (2.4) rewrites:

o exp(iAx\A(Xjf%)) n . n
= (1 )E, v T j1’+—|tanI"(Aij%)Zj,)
exp(fiAx\A(Xil))

2.7)
Z”“ (1-v)q] +V(waj+1§ [41- —itani{Axw, )ZH)
2

Let's hereafter denots 1 the 2x 2 scattering matrix appearing in (2.4): in the

particular case where the Courant numbers 1, which means that the computational
grid is chosen so thatAt = Ax (like in [46]), Z”*l are the scattering values from the

data of{%, .. Thus a simple criterion for the preservation of ttfenorm reads:
Lemma 2.2 Assume Mx) € L°NL?(R) is a real function and 4t = Ax, there holds:
vneN, I ) lem) = 1270 Iz

Remark 2.1The preservation of thie? norm with an explicit scheme like (2.7) it
straightforward: indeed, stable upwind discretizationthwourant numbers < 1
always contain a certain amountmfimerical viscosityvhich, in the nonlinear case,
dissipate enougéntropyto prevent oscillation onset in the numerical solution. Mat
ematical entropies being just convex functions, in the exindf quantum mechanics
applications which ask for conservation of the probabitifypresence, the scheme
must moreovepreserveland not dissipate) a particular entropy, ttfenorm.

Proof: The property is equivalent to stating that for ang Z, the scattering matrix
ij% is unitary. By multiplying it by the complex conjugate of itianspose, it is
straightforward to check that one recovers the identityrinaf R2. Hence:

Zn+1

(ZHHZHH ) <Zn+l,> = (Zjn,+Zjnfl,f)* (Sjl%)TSJ*% < JnlnlJr) ’
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which directly yield§ {2+ [ _[2 =[P, |2+ |¢" ;_[*. To derive the uniform
estimate, it remains to multiply b&x and to sum orj e Z. O
Thanks to the linearity of the system (2.1), the aforemeribconservation of
the L? norm, which yields weak compactnesslif, is enough to ensure the weak
convergence of a subsequence of approximate solufi@higoward the exact ones
[43] for smoothvt. Moreover, by uniqueness of the limit, all the sequence eages.
More accurate bounds are establisheglAnwhere strond-2 . convergence is shown.

2.3 A MUSCL-type reconstruction compatible with the S-rmatr

Thel2-preservation property rigorously holds only for a Counantberv = 1, thus

one may want to make the scheme (2.7) less vulnerable to tinagiaof numer-
ical dissipation. One standard way to proceed is to set usthealled MUSCL-
reconstruction, relying on a conveniently limited piecegviinear extrapolation of
the cell-average valuaﬁfi. One issue is that such piecewise-linear data ask now

Fig. 2.2 Schematic view of the MUSCL reconstruction and scatteriragrices

for the resolution of “Generalized Riemann Problems” (GRRach interfaceji%,
see [6,44]: even in cases where it is doable, it doesn't fi wéating the right-hand
side by means of S-matrices. However, a new type of MUSCLmeehwas devised
in [19] and, along with heavy notation, it proceeds as fokow

1. Reconstructiargiven the sequence ofspmoilzﬁ“i jez € C?, one first performs a
linear interpolation. At both borders of each c(éjl_( EERTE 1), the following

values are derived by means of local slopgsand a slope—limiteqo ‘R —10,2],

U“Ax ”Ax

2 ZJ =t 2

Z- 7Zj:t
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More precisely, mass conservation is ensured with the ehoic

R o)
S <z,i>—T'D( Pas—d)

o(r) = r+r|
(Zj,i) (ZHli Zj,i) ’ 1+|r|
and the ratios to which slope-limiters are applied are,
L0 (¢rae-20) L0 (erae-2s)
= n n ) =
- (Zi,i - ijl,i) (ZJ s 1i)
Finally, the reconstructed interface states read, for eatiC;:
R
Zjn;%i = Zjni (ZJ+1i j i) (ZJ+1i Zj,j:) )
L
Zjn;r%,i :i:+ (ZJ+1i J:i:) (ZJ+1i Zj,:i:)'

2. Fluxes computatiariet we have discontinuities at both the centgand inter-
facesxjil: assuming the right-hand side of (2.2) is again localizelgt ahinter-
faces, the formulation (2.3) still holds. Thus the discouifies at the centes; are
simply advected until they reach the mterfa«x?f%l and there they are scattered

by the S-matrix: see Fig. 2.2. Observe that (2. 7) can be panmatrix form as:

n+1 n n o
<Z?+1l,> =) <Z,-”J’1+,) VS 3 <ijjrjl’+) N )

So, by taking into account the (new) discontinuity at thé'seénter,

n,L n,L
Zn+1 n Z 1 Z',l‘
n+l = _nJ’jL —min(v, 2) Jnj,LF\‘Z'Jr _ijl Jr1.R7"Jr
Zj 1- j—1,— Zj7;7 2 Z-+;7
R i
T ¢
pma0y - 3)¢ | HET) -8y | b
-3 +3.-
3. Overall algorithmHence, by linearity, one can form the following 2 states,
n — mi 1y7nL _1y7nR
g =minv G S S 2.9)
n — mi 1\7n, _1\7n .
j+%,* - mln(V7 Z)ZJ 2’ ma)(o v )ZJ+%’75

and the MUSCL scheme rewrites in a slightly less involvedfor

n+1 n n n
(zij}l )Z( e )_ ;Jn+j+ ~S- Zjn >l 10

=3~ j+3.-

NI

The scheme (2.9)—(2.10) will be testedsh2.2.
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3 Asymptotic-Preserving property for non-relativistic li mit

The numerical time-marching scheme (2.7) is well adaptetthéocase where is

of the order of the characteristic scale of the computatignd, that is to say, for
relativistic particles. In case the particles (usuallyresgented with wavepackets en-
dowed with a particulagroup velocity move much slower, the aforementioned com-
putational grids, for whicltAt ~ Ax, don't really fit thus one is interested to explore
the behavior of the numerical process (2.7) in the lionit +oo.

3.1 Formal non-relativistic limit of 1D Dirac equation

Hereafter we consider the particular case of (2.1) with asmas 0 independent of
X. In order to study the non-relativistic limit of a Dirac piate with (positive) energy
E ~ m&, one retains only the slower time-variation like éxp(E — m&)t/h) by
considering the rescaled quantiti€s, (t,x) = exp(imct /) g (t, x), which satisfy:

i .mc i
Oy +co_ = ﬁVt X P, o +cod, = 2'?1117 + ﬁVt xX)P-.
When ¢ diverges, the second equation is dominated by the ile= Zi—ﬁmdxlp+,
which, once inserted in the first one, yields the classicar&tinger equation:
2

A+ oGl =V (3.1)

The rigorous theory of non-relativistic limits of linear tidimensional Dirac equa-
tion with external potential is given in [5, 23].

3.2 Rescaled diagonal variables and local scattering matri

With a slight abuse of notation, we still denote the Riemaaiiants associated with
the “rescaled spinor.. = %(llbr +@_). Anew (small) parameter= % isintroduced
for ease of reading, and a rescaled system is derived:

alxl02. =2 (ig—";m—zw@zi) | (3.2)

By substituting\g — V4 and following the same roadmap as in Lemma 2.1, one gets:

Lemma 3.1 Let \f > 0, € > 0 and consider the boundary-value problem o x
(0,Ax), associated with the stationary equations of (3.2), witbming datal, (0),
{_(Ax): if one defines the following quantity,

/\g:\/(e\/t+m/£)2—(m/e)2—> vV 2vim, €—0,
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1. the local scattering matrix reads:

S_i(—;—’/{lsin(Z)\sAx) 1 ) 3.3)

D¢ 1 _W sin(2A:AX)

where Qb = cog2A:Ax) — EV‘*”‘/E Sin(2A:AX).
2. Moreover, S'is umtary(S*)TS |s the2 x 2 identity matrix.

Proof:The proof of (i) proceeds by integrating the following ODE&m:

sdx(?) 2( ::Vt ~(m %;'Vt))(§+)’ x e (0,4%).

By means of a standard diagonalization procedure, one firads-A; are correspond-
ing eigenvalues and a tedious logarithmic integratiorvees:

(Z+(AX))_ cos(ZAgAx)+iWsin(2/\£Ax) — 2 sin(2A:AX)
{(Ax) )~ M sin(2AcAx) cog2A:AX) — i E45VE sin(2),AX)

Sincef, (Ax) belongs to the incoming boundary data, the second line meugt-b
verted in order to derive the expression of the outgoinge<tatO):

> o - (A%) — B sin(2A:A%)Z, (0)

- Coq2A:AX) — Msm(Z/\gAx)'

When pluggingf,(O) into the expression of, (Ax), a simplification occurs:
-1

=1

005(2/\ Ax) 5Vt+m/a SIn(Z)\ Ax)
e SIN(2A:AX) i
© cog2AeAx) — i M sin(24,4) {-(Bx).

{4 (Ax) = 2, (0)

It is now straightforward to derive the expression of thetterang matrix. Now, for
proving (i), one just computelS') T Sand simplifies the expression bt - D}
1
(e +m/g)?
(eVt +m/€)%— (m/g)?

_q (ve?
=1+57

(1+ ”‘/5 (V) Sir? (24 Ax) 0 )
X .

(S)Ts=
Sir2(2A:AX)

COF(2A:AX) +

0 1+ (e sir? (22, A)
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With this expression, one deduces easily {18} Sis the 2x 2 identity matrix.C]

3.3 The special case of free particles

In the former calculation, it appears that a source of cocagihn is the interaction of
both source terms, namely the particle’s masand the time-potentidl. However,
one may restrict attention to the simpler case of non-ré#it limit of free particles,
for which\; = 0. Clearly, this assumption implies that= 0, hence ca2A:Ax) = 1

andMsm(Z/\ AX) = ZAX"‘ . The (constant) scattering mati®simplifies into:

B 1 1 —2imAx/€
~ 1-2imAx/e \ —2imAx/¢ 1 '

3.3.1 Asymptotic-Preserving implicit schemes

One can follow the early computations in [20] dealing witle diffusive regime: it
consists in observing that the outgoing states rewriteéretuivalent form,

8 (8%) = L (8% + oy (£:(0) - “AX))
£(0) = £1(0) + s (L0~ 2.(0).

Inserting these scattering states into the expressioreaf¢theme (2.4) yields:

n+1 _ 7n n+1 n+1 n+1 n+1
Z = S+ EAX(Z Z ) eAX— 2|Ax2m ZJ 1+ Z )

(3.4)
Zn+1 Zn EAX(Zn+1 Zjntl) e 2|Ax2m Zjnilli_zml ’

In order to shed light onto the numerical dynamicslq{er, one sums up both lines
of this scheme and unconditionally obtains that, in thetlini= 0,

n+1 __ ;7N n+1 n+1 n+1
”1’ 'ij,+ 2Ax2m ("I’J+1,+ - 2’1] + ij*l,‘f’) ’
a consistent finite-difference approximation of the clealsSchrodinger equation,

treated implicitly because the explicit Euler scheme isaindiitionally unstable [10].

Remark 3.1Based on the results of [1,2,32,33], it may be a better chmiaese a
second-order Crank-Nicolson time-integrator (insteadmfimplicit Euler method)
in (3.4) in order to preserve the?-norm of the (piecewise constant) numerical ap-
proximatiomllfx. The computations become more involved, though, as oneezan s

n+1 n+1 n+1 At/2 n+1 n+1
Z + 2£AX(Z Zj.s )~ taxziaem (ijlﬁ - Zj,f )
n n At/2 n n
= Z £2A><(ZJﬁL N ZJ}*) T eAx_2iaxm ( -1+ Zj-ﬁ) ’
n+1 n+1 n+1 At)2 n+1 n+1
Zj, ZeAx(Z Zj-f )— eAX—2iAX2m (ZHl - Z )

_ A2
—Zﬂ,+m(5ﬂ+—5ﬂ,)+mﬂ( . ZH)

(3.5)
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3.3.2 An explicit and conditionally stable AP scheme ?

The derivation of Asymptotic-Preserving schemes is uguallabout the behavior,
as a small parameter goes to zero, of discrete derivatithe space variablex. The
discretization in time being kept as the Euler forward mdihfor instance. In the
present context, this raises an issue because applyingtgfcawardly such an ele-
mentary time-integrator leads to unconditional inst&ailin the former subsection,
we thus chose to set up time-implicit schemes for the sakibiiy, but a drawback
is their CPU cost. Hence one may wonder whether it may be Iplessi proceed, like
in [20], in such a way that a stable time-explicit scheme lier $chrodinger equation
can be recovered in the limi& — 0. Basically, explicit, or barely implicitie. not
asking for inversions of linear systems) methods esséntiadiuce to:

— Leapfrog or Dufort-Frankel methods, which are not selfistg, [3,33,47]
— Euler forward method, but perturbed by supplementary pésin, [10, 34]

Setting up the AP process described in (3.4) within eithexdfeog or Dufort-Frankel
time-integration methods appears to produce only numleinssability. However,
the second strategy, based on supplementary diffusiorsteam lead to stable algo-
rithms, so we present it now, following both [10, 34].

1. the following forward-Euler scheme (compare with (3i8))nstable,

it 1l 7n+l 1 n n
R0 = mokm (G- )
Zn+17:_n ( . )
- G- (Zn+1 MYy =L __ (¢, —-Q"

At ~ &Ax Ji— eAX—2iAx2m \ " j+1,— I+ )0

atleast because, by formally imposiag: 0 and summing, an unstable discretiza-
tion of the free Schrodinger equation arises. Howeverag the advantage of
being easy to implement since the implicit part can be ircanalytically.

2. one may think that this instability comes exclusivelynfrthe change of equa-
tion’s type in the limite — 0, and so that modifying the time-differentiation like
in [10,34] can fix this issue. Keeping finite-differencesjrase, one substitutes:

Zn+1 jni Zn+1 n Zn+1 n
— r .
At At(1+At(a |B)) At+Ax2( |B)

According to [10], the second choice leads to CFL restrigtion At ~ O(Ax*),
which is prohibitively costly, so we restrict ourselveshe first one, less demand-
ing onAt, even if it can become unstable fAt, Ax becoming very small.

3. within our notation, there is supplementary diffusiofi it- 0, but it is needed only
for small values o€, so we propose the following modified time-differentiation

Zn+l n

At(1+At( |B)(1 gY))’

O<y<l1, (3.7)

meaning that diffusion is activated only & 1. It remains to plug it inside (3.6).
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Position densities were computed with the resulting sch€&h&—(3.7),8 =1 and
£=1,0.1,0.01, see Fig. 3.1. Initial data was sampled on a uniform gri2fqfoints,

{+(t=0,x) = }exp(|tanr(x (x/4)?),  x€(-16,16).
The data for Schrodinger, treated with the second-ordapfreg method, is thus

2{.(t = 0,-). Numerical position densities become closereas decreased, up to
€ ~ 0.001 where convergence stalls because of diffusion. Acogigi one cannot

Fig. 3.1 Position densities generated by (3.6)—(3.7) at ttme0.5 for € = 1,0.1,0.01 (left) and time-
growth of thel? difference between them and Leapfrog approximation fofixe Schodinger equation.

really speak about explicit AP schemes because the schetamedh in the limit
€ — 0 doesn’t match exactly the numerical approximation ons,det instance, out
of a Leapfrog discretization: it still contains the supptartary diffusion which is
necessary for stability. Henage shall not push the study of such conditionally
stable explicit Asymptotic-Preserving discretizations ay further .

3.4 Difficulties with the complete case

In the general casé # 0, the full scattering matrix (3.3) must be considered, and
the eigenvalu@; strongly couples both the source termge? andeV;: in order to
ease the reading, we shall limit ourselves to the caseanfistant time-potential
Vit > 0 because it already highlights most of the correspondisges. Thanks to
this simplifying assumption, the scattering matfiss still independent of the index
j € Z (the modifications necessary for handling a space-dep¢tidespotential are
straightforward) and the outgoing states read now:

~(8%),

Zo(0X) = ¢ (Ax)+D (£:(0)— [cos2:ax) — R sin(22.4x)] ¢
£:(0)+ & (- (8% [cos2r:8%) - 'EVt Y sin(22:4%)] ..(0)).

(0

Clearly, these expressions split naturally between a figst which generates the
second-order divided difference (like in the precedingtise¢, and a second one
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which contains the time-potential term. Plugging into tpavind scheme (2.4),

Zn+1 ZJ - sAx (Zn+1 Zjn’tl)
+ (zpql+ — cOg2A:Ax) zjrjtl)
+ o SE sin(2A:AX)
Zn+l ZJ SAX(ZnJrl Zn+1)
+ (zpjllf — cos 244X
+ o S Sin(2A:AX)

(3.8)

Taking into account that, = O(1) uniformly in g, there are 2 singular limits:

1. the term% behaves as follows a&s— 0,
cog2A.AX) R 1
Ax|ecos2reax) — I sin2A:Ax) | Ax e - 2AxmGRN

Assuming thatA;Ax — 0 asAx — 0, which is immediate thanks to the uniform
bound on\,, one sees that this term is endowed with the correct behbeimause

tan(2A:Ax)
— 1 A 0.
2AsAX b X
2. the term% behaves as follows a&s— 0,
Vi sin(2A¢Ax) . PAY
[AxAe COY2A:AX) —iAX (EV; + T) sin(2A:AX)| {mmag?ﬁgeﬁz) 2j Axm

Now, still assuming that;Ax — 0 asAx — 0, one sees th:ﬁ% — 1, as ex-

pected. But the imaginary ternh% doesn’t vanish unlegsAx < e179 a > 0,
which is a stringent restriction on the computational g8drprisingly, in order to
correctly recover the potential term in the non-relatigisimit, one must impose

a restriction onAx/e. This phenomenon seems to be new: it doesn’t manifest
itself in the diffusive limits previously investigated:esf20, 18].

Fortunately, the issue raised by the imaginary term disptagn incorrect behavior
in the limit € — O can be easily circumvented by substituting by O (D¢) in the
denominator, its real part (which is endowed with the cdrtehavior ass — 0 in
absence of restrictions atix). Another fix may be the following one:

e\/t +max1,1)m

&

Sin(2A¢AX).
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A simple asymptotic-preserving scheme in the non-relgtiivilimit of (3.2) is de-
duced from (3.8) by,

Zn+l ZJ - £Ax (Zn+1 Zntl)
ngAx (Zjn+11+ - COiZ}‘EAX) Zlntl)
+ et g Sin(2AeAX)
Zn+1 Zn gAX(Zn+1 Zn+1)
i (41— cos2r:80] )

v
+ e ('SE)AX 24 sin(2A gAx)Z””

(3.9)

thanks to the fact thdfl (D, ) retains only the correct (real) part of the denominator.

Remark 3.2For theL2-norm, a mid-point time-integrator for (3.9) is an appeglin
choice thanks to the Cayley theorem. If the time-potensialot constant irx, the
scheme (3.9) involves both valu‘aﬁxji%) acting on eaclij%, respectively. Numer-

ical computations involving a Crank-Nicolson time-intatypr like (3.5) are irg4.3.

The formal Schrodinger limit is obtained by adding both &tipns of (3.9),

lpn+1 lp] D, Ax((pn+1 ZCOS(ZASAX)(VH]' ‘l,nJrl)

iIAtsin(2A:AX) n
IRV ( ‘I’H)’

De = cog2A:AX) — (e\/%m/e) sin(2A¢Ax).
&

under the innocuous conditioas— 0, AcAx — 0 (and after re-substituting — %).
Such a first-order “implicit Euler” discretization, whiclppears to bean original
Schidinger scheme containing tiny relativistic featyrdissipates the? norm.

Proposition 1 Assume the time-potential ¥ L*(R) is a real smooth function, then
the scheme (3.10) is asymptotic-preserving in the nortivédsic limit € — 0.

Proof:With the former computations at hand, there are 2 cases todbo

— Assume first that the time-potentidl(x) > 0, the main novelty is that both,
andD, depend on space and one must consider:

Ao _g) =\ (EW(x_y) +m/e)? — (m/e)? e
_SVt(Xj,% +m/£
)Ax) - |Wsm (2/\5(xJ %)Ax)

De(X;

i-3

)= cos(Z)\g(x

i-3
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The scheme (3.9) is amended as follows:

n+1 _ 7n n+1 n+1
43 N st =

+em (z,“qa —cos2As(x_1)ANY)

)
) sin(ZAE(xjié)Ax)Zj“,fl

(3.10)

iAt Evl(xi*%
+5D(Dg(xjil))Ax A%y
Ot o Aoy
)= EAX i,
+Wt%>4x (g —cos2re(x;, 1)BX)Y)
- At 5+3) sin(2A(x;, )AX)Z“+1
ED(DS(XJ 1))AX Ag(X +%> €

Thanks to the smoothnessxif Vi (x), the interface coefficients are still consis-
tent becaus¥ (in%) —V(Xj) — 0 strongly asAx — 0.

— In caseVi(x) has no definite sign, it can happen th@(xjf%) becomes purely

imaginary for somg € Z. But this doesn’t create any substantial issue because

all the (circular) trigonometric relations which were udedmerly still hold for
(hyperbolic) trigonometric functions: for ak € R,

cogix) exp(ix) +Zexr(—i2x)

= coshx),

sin(ix) = exp(i*) —2iexp(—i2x) =isinh(x),

thus one recovers cd@x) + sir?(ix) = 1, together with all the limits as— 0.
O

4 Numerical results in various settings
4.1 A test-case for linear problems

Here we simply aim at displaying the behavior of the explsdheme (2.7) on a
standard test-case for (2.1) involving both a pseudo-sealda time potential. More
precisely, the pseudo-scalar teigix) = "TXZ has a confinement effect, free from the
Klein paradox. The time potential corresponds to a wall nedidy means of an
indicator function (x 2)(1 25<x<1.75. INitial data for{. (t = 0,x) read

\/ N (Xzalf) ) g =0.125

The computational domainis= (—3, 3) andN = 28 points are used to grid it. On Fig.
4.1, results are shown at different times with a Courant nemab= 1, allowing for
an exact (up to machine accuracy) conservation of theorm. We show the moduli
added to the pseudo-scalar potentig(x) + | >+ |{-|? in order to emphasize its
effects on the wave packet’s dynamiZgterbewegundgs observed especially when
the movement is interrupted by the wall, and a small tungediffiect takes place.
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Fig. 4.1 Snapshots of (2.7) at=0,1.54,2.08,3.54 of a pulse on a parabola hitting a wall with= 1.

4.2 Formal extension to nonlinear problems
4.2.1 Well-balanced upwind scheme

Following some examples displayed in [8], we intend to testdcheme (2.7) against
exact solutions of a nonlinear Dirac equation (compare {@th), no time-potential):

01 , 1+|w|2—|w+|2), _
atw+<10)axw+|(_1+|w+|2_|w|2 Y=0. (4.1)

According to [1, 2, 8], this equation admits a family of exactutions given by:
(18 (t,X) = qu—i/\t)A(X), Y- (t,X) = iqu—i/\t)B(X),
whereA € (—1,1), y = V1—AZ?, ua= p/2(1+A) ug = 4/2(1—A), and

B cosh ux) B sinh(ux)
A = AT A cosh2ux)’ BOx) = He1 A cosh2ux)’

In order to tackle (4.1) by means of (2.7), it suffices therefm cancel the time-
potentialV; and to include the nonlinearityy_ |2 — |, |?, “frozen at each time"”’,

in the pseudo-scalar potenti. This yields a “nonlinearly varying mass” instead
of the linear space-varying masgx) showing up in (2.1). Numerical results for the
modulus of’ with N = 2° points griding the intervax € (—32,32) and a Courant
number equal to 1At = Ax, are displayed on Fig. 4.2, left. The tinffe= 2/\—" is
chosen so that the exact solutions are equal to the initi@. ddence, despite the



Numerical approximations for linear 1+1 Dirac systems 17

Fig. 4.2 Solution of (4.1) forT = 2F A = \/g (left), L2-norm change (right).

aforementioned derivations don’t rigorously extend to liraar cases, it is found
numerically that the scheme (2.7) behaves rather correctithese exact solutions,
theL? norm is conserved too, up to machine accuracy (see Fig.igI®).r

4.2.2 Testing the well-balanced (WB) MUSCL extension

As said before, the?-preservation property holds essentially foe= 1, that is, in the
absence of numerical diffusion (Lemma 2.2). One may wondwestirer the MUSCL
reconstruction (2.9)—(2.10) is able to improve this sitratOf course, as explained
in Remark 2.1, th&2 norm corresponds to an entropy for the semi-linear hypérbol
system (see [48,49] for applications of hyperbolic techegto Dirac systems) thus
it is dissipated by finite-difference methods for the sakstability in the presence of
steep gradients. On the left of Fig. 4.3, we display the sigitgiof the time-evolution

B
)

Fig. 4.3 Relative dissipation df2-norm forv = 0.9,0.65,0.4 andAx = 28 (left), growth ofL2 errors for
4 decreasing values dfx =2-7,2-8 279 2-10 byt v = 0.8 kept constant (right), both functions of time.

of theL? norm with respect to the Courant number for both the upwin@)(@nd the
MUSCL (2.9)—(2.10) schemes on the semilinear problem (Z1X¢ improvementin
terms ofL2-norm is of the order of 15% roughly, so this type of numersetheme
is too much dissipative for Courant numbers belo®.®@n the right of Fig. 4.3, we
show that, forv = 0.8 the L?-error grows linearly in time while displaying some
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oscillations. Moreover, the decay of these errors wAarpasses from 2/ to 2710
appears to be linear, too. The parameters were kept idétditaose of Fig. 4.2.

4.3 Non-relativistic limit and Asymptotic-Preserving (AP

We confront numerically the scheme (3.9) against a direbt@iinger computation:
more precisely, a Crank-Nicolson time-integrator is agglboth to (3.2), with the
same numerical fluxes leading to (3.9), and to the usual etatiristic equation,

X2

. 1
Ial‘-,-’+ %0X>(w:\/t(x)wa \/t(x) = Ea (42)

in the domairx € (—5,5) with N = 2° grid points. Initial data correspond to a Gaus-
sian pulse centered = —% and with wave numbek = 1. Numerical densities of
presence are nearly identical as soorgas0.001 and they roughly match the ones
generated by the direct Schrodinger computation (seed=g.bottom line). Oppo-
sitely, when the Dirac equation is in relativistic regime- 1, noticeable differences
show up as, for small time, the initial pulse splits into 2 gaments (Fig. 4.4, top,
left), and despite the potential’s effect, the numericdélisons are quite different at

later time (Fig. 4.4, top, right). This was to be expectedhassblutions for Dirac and

— owmeson . Dmosn

Fig. 4.4 Comparison of Crank-Nicolson results on both (3.2) and &tihger equation (4.2) af = 1
(left), T = 3 (right) and fore = 1 (top),& = 0.01 (bottom).

Schrodinger equations have no reason to look like eactr attrelativistic regime.
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Following Remark 3.2, a Crank-Nicolson approach of the {#8) was implemented
for this benchmark in order to show its numerical stabilitygle in the presence of a
singular limite — O; practically, it seems that simulating the “relaxing gyst (3.2)

is less demanding in terms of numerical boundary conditidfeschose to implement
Neumann boundary conditions, even if it is of little imparnta because the quantum
particle is unable to reach the borders in presence of tieg gtarabolic potential (this
situation is similar to the one of Fig. 4.1).

5 Conclusion

The classical defect of finite-difference methods in thetertrof quantum mechanics
is their numerical viscosity which generally perturbs tifenorm of the approximate
solution (one remedy is the setup of second-order impligietintegrators [22,32,
46]). Here we showed that, at least in the relativistic scalthe well-balanced ap-
proach yields a numerical scheme (2.7) on an inhomogenéamas [problem which
preserves exactly tHe-norm while being completely explicitin time. When it comes
to the (singular) non-relativistic limit of this schemeeth are 2 different situations:

1. for free particles (no external time-potential), the Madlanced scheme (2.7) can
be reformulated into an asymptotic-preserving one (3.8)rmicking former
computations designed in the context of discrete kinetida[20],

2. for particles submitted to an external time-potenttad, toupling between differ-
ent source terms leads to a “strange imaginary ternDjnwhich produces an
incorrect behavior on the potentiahly (the Laplacian term is always correct).
However, it is easy to fix this issue by taking the real parhe$ D, coefficient.

A very different strategy for quantum mechanics equatibegter suited fok2-norm
preservation, is the split-step methods [17,26, 33]; tregerithms too can furnish
asymptotic-preserving strategies in the non-relatiwiitnit, see Remark 4.3 in [26].
This scheme has all the strengths and weaknesses whiclceréara the Fourier-
based time-splitting schemes:

— Spectral accuracy arid-norm conservation on periodic smooth solutions;

— Possible issues to reproduce Jost "distorted plane wavetisos (the ones which
constitute the continuous spectrum of the stationary dperan a scattering en-
vironment [16]. Reflection/transmission coefficients magult flawed unless a
fine grid is used with potentialé(x) being either oscillating (see [29], page 183)
or sharply-varying (thus inducing high frequencies).

Multi-dimensional problems are usually handled by dimenal splitting, but it is

delicate matters in case one wants to reproduce accurathg wteractions in a
context of weak solutions. A first step may be to consider thgker case of so-
called "massless Dirac equations” for which the 4-compospimor reduces to a
2-component one, see for instance [37].

Acknowledgements The author thanks Dr. S. Malaguti (Ferrara) for having ssgerbthis problem.
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A Discrete HY(R)-bounds and strong convergence of free particles

Lemma A.1 Assumedt < Ax, x— V(x),Vs(x) being Lipschitz and(t =0,-) € HX(R), then numerical
approximations generated by (2.7 satisfy:

VneN, [ )llm < 12240 l2w)-
If moreover,d\\; = d\Vs = 0, then:

VneN, g ) 2@y < 190, ) Lo(e

Proof:Hereafter we denoti. | = /|7, 2+ |{_|? the Euclidian vectorial norm and recall thﬁ+% {l.

— As a consequence of the compact writing (2.8), one has

Zn+1 n Z-n, ,
(G5) (e Yo ().

and deduces easily &7 estimate fov < 1 because each scattering mafBj)g%, j € Z, is unitary.

(Y1) = wn{zol( &) o zoma (G )
ol gal(FO Vg (G

(22/(§)0) < (ze (g0

The first step is just Minkowski's inequality and linearit§the L2 norm for 0< v < 1. The second
one is the S-matrix being unitary. The third is shifting senmdexes in order to produce

1) = glere =g pera -3 |(f )]

This reordering of the sums is specific to th& norm; therefore one needs both the S-matrix being
unitary and the ability to rearrange the summation in ordetdrive the final estimate.

— When the scattering matrix is space-dependent, this doagtomatically yield an estimate on the
divided-differences: indeed, one sees on Fig. 4.1 thatthsepce of external potentials can increase
the Lipschitz constant of the numerical approximationse ®agins by “triangulating” as follows:

n+1 n+1 n n
14 _ Gy =4 b =4 iy,
(Zjhtl+ ZJI’1+]2.|:>(1—V)<4++ZJ 17>+VSJ+2< }1:1,7 JZJi>+v[ij%—Sj+%]< JZJn7+>

(30

I/\

IN
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Then, one proceeds as before:

n+1 Zn+1
J+l +
Zn+1 n+1
J 1-

<J+1+ ZJ+> }
J* Jl*

no_gn
S 1<Ziﬁ+ ZJ—lﬁ+>
REANGIERE 41

(1-v {EZAX
+V{JZZAX

EZAX

cAt n 2
+— Ax||S S J*l»+>
Ax {ng S5 J+%}( g
2
< AX( J+1+ ZJ+
jgz g 1—

+cAt - Lipx(S ( z AX

J+1+ Z
=0-

+c(n+1)At - Lipx(S) - ( Ax
&

3
< zAx
j€Z

1
2>2

We denoted by ipy(S) the Lipschitz constant im of the S-matrix, which depends on the Lipschitz
constant of both/(x) (the time potential) an¥s(x) (the pseudo-scalar term). One cannot deduce a
discreteH! estimate because of that last term. HoweveV; indV;s are constant,ipy(S) = 0 and:

( e >
Zj”fo

n+1 n+1
x (gm* qu ) (A1)

m]

Lemma A.1 states that tHeé-norm (a particular entropy) is dissipated in time as soothaCourant
numberv < 1 by the upwind finite-differencing process. This is gerlgraéen as a drawback for such a
method; however, in certain circumstances and for shore-ttomputations, dissipation can be interesting
when an initial data oscillating at a frequency close to thd'g cutoff frequencyr/Ax is prescribed.
These data usually induce wave-packets endowed with flaveegbyelocities (see [35,50] and references
therein) of the order ofAx and energy conservation implies that they never disappestead, running
a numerical scheme containing a little bit of numerical oty allows to progressively smoothen high
frequencies and restore wave-packets with group velsaitnpatible with the computational grid.

Lemma A.2 Under the hypotheses of Lemma A.1, assume hoth &re constant, then:

VNEN, [N = 220z < cAt{ 10440, |z + Lipax(D 120, ) ey | -
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Proof:It consists in evaluating the size of the time-variation takihg advantage of previols! estimates:
1
gl _gn 2\ 2 23
Ax S C = Ax( )—S (J”)
2 (zr*f Fi 2N 3
1
10/20 —¢n 2) 2
cAt il it =1+ >
{jezZAX (Zj”,l,,—f-r],

5 o (Id s 1) (Zjn&&)

n
iez Zif

IN

1
2) 2

Now, from the expression (2.5), one sees that for amyZ, if Ax=0, ij% = 1d, the identity matrix.
Hencelld — S, _ 3 | < Ax-Lipax(S) and this is enough to ensure time-equicontinuity thankétd)( O

Lemmas A 1 and A.2 allow to conclude that strong convergémuds in me(I&+ x R) (and almost
everywhere) ad x — 0, cAt < Ax for free particles of constant masswithout external potential.

References

1. A. Alvarez, Linearized Crank-Nicolson scheme for nonlinear Dirac dipres J. Comp. Phys99
(1992) 348-350

2. A.Alvarez, Kuo Pen-Yu, L. VazqueZhe numerical study of a nonlinear one-dimensional Diragaeq
tion, Applied Math. & Comput13 (1983) 1-15.

3. A. Askar A.S. CakmakExplicit integration method for the timedependent Schrger equation for
collision problemsJ. Chem. Phy$8 2794-2798 (1978).

4. Hocine Bahlouli, El Bouazzaoui Choubabi, Ahmed Jefalution of one-dimensional Dirac equation
via Poincaré mapEPL 95 (2011) 17009. DOI: 10.1209/0295-5075/95/17009

5. P. Bechouche, N. Mauser, F. Poupasémi-(non)relativistic limits of the Dirac equation witkternal
time-dependent electromagnetic fiel@®@mm. Math Phys197(1998) 405-425.

6. C. Berthon, C. Sarazin, R. Turpauipace-time Generalized Riemann Problem Solvers of Order k f
Linear Advection with Unrestricted Time St Sci. Comput55 268—-308 (2013)

7. S. D. Bosanacolution of Dirac equation for a step potential and the Klparadox J. Phys. A: Math.
Gen.40(30) (2007) 8991.

8. N. Bournaveas, G.E. Zourari$heory and numerical approximations for a nonlinear Dirgstem
Math. Modell. & Numer. Anal. (M2ANY6 (2012) 841-874.

9. R. Carles, B. MohammadNumerical aspects of the nonlinear Schrodinger equatiothé semiclas-
sical limit in a supercritical regimeMath. Modell. & Numer. Anal. (M2AN}5 (2011) 981-1008

10. T. Chan, D. Lee, L. Sheigtable Explicit Schemes for Equations of the Schrdingeg, T$pAM J.
Numer. Anal.23(1986) 274.

11. Chen Jing-Bo, Liu HongTwo Kinds of Square-Conservative Integrators for NonlinE&olution
Equations Chin. Phys. Lett25(2008) 1168-1171

12. 1. Cotaescu, P. Gravila, M. Paulesépplying the Dirac equation to derive the transfer matrix fo
piecewise constant potentiaBhysics Letters A 366.4 (2007) 363—-366

13. P. Degond, S. Gallego, F. Méha#s) asymptotic preserving scheme for the Schrodinger egjuati
the semiclassical limitC.R. Math. Acad. Sci. Pari345(2007) 531-536.

14. F. Domingez-Adame, M.A. Gonzale3plvable linear potentials in the Dirac equatioRurophys.
Lett. 13(3) (1990) 193-198.

15. F. Domingez-Adame, A. Rodriguek one-dimensional relativistic screened Coulomb potérfihys.
Lett. A 198(1995) 275-278.

16. V. Duchéne, J.L. Marzuola, M.l. WeinsteM/ave operator bounds for one-dimensional Schrdinger
operators with singular potentials and applicatiords Math. Phys52 (2011) 013505.

17. J. De Frutos, J.M. Sanz-Serigplit-Step Spectral Schemes for Nonlinear Dirac SystdmSomp.
Phys.83(1989) 407-423



Numerical approximations for linear 1+1 Dirac systems 23

18. L. GosseComputing Qualitatively Correct Approximations of Balance Laws, Springer (2013)
ISBN 978-88-470-2891-3

19. L. GosseMUSCL reconstruction and Haar waveleBreprint (2014)

20. L. Gosse, G. Toscarhn asymptotic-preserving well-balanced scheme for thetiygdic heat equa-
tions C.R. Math. Acad. Sci. Pari334(2002) 337-342.

21. B.Z.Guo, Hans Zwarfn the Relation between Stability of Continuous- and Diseffléme Evolution
Equations via the Cayley Transforimtegr. equ. oper. theoiy4 (2006), 349383

22. E. Hairer, Ch. Lubich, G. Wannegeometric numerical integration. Structure-preserving dgo-
rithms for ordinary differential equations , Springer Series in Computational Mathematics. Springer-
Verlag, Berlin Heidelberg (2006)

23. J.Hiller,Solution of the one-dimensional Dirac equation with a linsealar potentia] Amer. J. Phys.
70(5) (2002) 522-524

24. Jialin Hong, Chun LiMulti-symplectic Runge-Kutta methods for nonlinear DiegiationsJ. Comp.
Phys.211(2006) 448-472

25. F. de la Hoz, F. VadilloAn integrating factor for nonlinear Dirac equation€omputer Physics
Comm.181(2010) 1195-1203

26. Zhongyi Huang, Shi Jin, Peter A. Markowich, Christof &g, Chunxiong Zhengi time-splitting
spectral scheme for the Maxwell-Dirac systemComp. Phys208(2005) 761-789

27. W. Hunziker,On the Nonrelativistic Limit of the Dirac Theqr¢omm. Math. Phys40 (1975) 215-
222

28. S. JinEfficient asymptotic-preserving (AP) schemes for somesuaile kinetic equationsSIAM J.
Sci. Comput21 (1999) 441-454.

29. S. Jin, P.A. Markowich, C. Sparbévlathematical and computational methods for semiclassical
Schrodinger equationg\cta Numerica20 (2011) 211-289.

30. Linghua Kong, Ruxun Liu, Xiaohong Zhemgsurvey on symplectic and multi-symplectic algorithms
Applied Math. & Comput186(2007) 670-684

31. Ph.LeFloch, A.E. TzavaraRepresentation of weak limits and definition of nonconsemaroducts
SIAM J. Math. Anal.30(1999), 1309 — 1342.

32. Christian Lubichintegrators for Quantum Dynamics: A Numerical Analyst'ssBReviewin Quan-
tum Simulations of Complex Many-Body Systems: From Theory ¢ Algorithms, J. Grotendorst, D.
Marx, A. Muramatsu (Eds.), John von Neumann Institute fom@ating, Julich, NIC Serie$0 (2002),
ISBN 3-00-009057-6, 459-466.

33. P. A. Markowich, P. Pietra, C. PohNumerical approximation of quadratic observables of
Schrodinger-type equations in the semiclassical |ildiimer. Math.81 (1999) 595-630.

34. R. MickensStable explicit schemes for equations of Schrodinger, typgs. Rev. A 39 (1989)

35. S. Micu,Uniform boundary controllability of a semi-discrete 1-D veaequation with vanishing vis-
cosity, SIAM J. Cont. Optim47 (2008), 2857—-2885.

36. S M Morsink, R B MannBlack hole radiation of Dirac particles in 1+1 dimensigrlass. Quantum
Grav.8 (1991) 2257

37. S. NoelleHyperbolic systems of conservation laws, the Weyl equadioth multidimensional upwind-
ing, J. Comput. Physl15(1994) 22-26.

38. A. Sinha, R. Roychoudurirac equation in (1+1)-dimensional curved space-tjinr@ern. J. Theo.
Phys. 33:1511-1522, 1994.

39. D. SolomonAn exact solution of the Dirac equation for a time-dependtéentiltonian in 1-1 dimen-
sion space-timeCanad. J. Phy88 137-138 (2010)

40. C. Sparber, P.A. Markowiclgemiclassical asymptotics for the Maxwell-Dirac syst&énviath. Phys.
44(2003) 45565.

41. S. SucciNumerical solution of the Schrodinger equation using @itekinetic theoryPhys. Rev. E
53(1996) 1969-1975

42. S. Succi, R. Benzi,attice Boltzmann equation for quantum mechariisysica D69 (1993) 327-332

43. B. Thaller,Advanced Visual Quantum Mechanics (Chapter 7) New York: Springer (2005) ISBN
0-387-20777-5.

44. E.F. ToroRiemann Solvers and Numerical Methods for Fluid Dynamics: APractical Introduc-
tion, Third Edition, Springer (2009). [pages 427-29]

45. P. Weinberge®ll you need to know about the Dirac equati¢thil. Magazine38 18-20 (2008) 2585-
2601

46. P.P.F. Wessels, W.J. Caspers, F.W. WieD&¢retizing the one-dimensional Dirac equatjduro-
phys. Lett.46(2) (1999) 123-126.



24 Laurent Gosse

47. L. Wu, Dufort-Frankel-Type Methods for Linear and Nonlinear Sifinger EquationsSIAM J.
Numer. Anal. 33 (1996) 1526-1533

48. Y. Zhang,Global strong solution to a nonlinear Dirac-type equatianadne dimensionNonlinear
Analysis: Theory, Methods & Application80(2013) 150-155.

49. Y. ZhangGlobal solution to a cubic nonlinear Dirac equation in 1 + InténsionsPreprint (2014).

50. E.ZuazuaPropagation, observation, and control of waves approx@ddiy finite difference methads
SIAM Review47 (2005) 197-243.



