

# Remarks on the Egyptian 2/D table in favor of a global approach (D prime number)

Lionel Bréhamet

## ▶ To cite this version:

Lionel Bréhamet. Remarks on the Egyptian 2/D table in favor of a global approach (D prime number). 2014. hal-00963928

## HAL Id: hal-00963928 https://hal.science/hal-00963928

Preprint submitted on 23 Mar 2014

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

## Remarks on the Egyptian 2/D table in favor of a global approach (D prime number)

Lionel Bréhamet Retired research scientist brehamet.l@orange.fr

#### Abstract

For h=3 or 4, Egyptian decompositions into h unit fractions, like  $2/D = 1/D1 + \dots + 1/Dh$ , were given by using (h-1) divisors (di) of  $D_1$ . This ancient modus operandi, well recognized today, provides Di=DD1/di for i greater than 1. Decompositions selected (depending on di) have generally been studied by modern researchers through the intrinsic features of di itself. An unconventional method is presented here without considering the di properties but just the differences d(h-1)-dh. In contrast to widespread ideas about the last denominator like 'Dh smaller than 1000', it is more appropriate to adopt a global boundary of the form 'Dh smaller or equal to 10D', where 10 comes from the Egyptian decimal system. Singular case 2/53 (with 15 instead of 10) is explained. The number of preliminary alternatives before the final decisions is found to be so low (71) for h=3 or 4 that a detailed overview is possible. A simple additive method of trials, independent of any context, can be carried out, namely  $2n+1=d2+\ldots+dh$ . Clearly the decisions fit with a minimal value of the differences d(h-1)-dh, independently of any di values.

Subject: math.HO MSC: 01A16 Keywords: Rhind Papyrus, 2/n table, Egyptian fractions

## Preamble

The recto of the Rhind Mathematical Papyrus (RMP) [1, 2, 3] contains the so-called Egyptian 2/D table. The genesis of a project such as build this table will never really be apprehended. This is not a project as impressive as the construction of a pyramid or temple, however it has been well and truly succeeded. It is impossible to doubt that pyramid works have not been carried out without a hierarchy of teams well organized in various specialties. A perfectly organized hierarchy that included team leaders and supervisors.

It is not hard to imagine that a structured similar organization was also used for the 2/D table. This table has not been an exercise in style. It is imperative to keep in mind that it can not be the work of a single scribe, but surely results of indefinite periods of trials and improvements done by an elite team of scribes talented for calculating. As it is well known through dialogues of Plato, the idea of a small number of scholars (philosophers) comes frequently. To these people only, was reserved the right to reflect on issues such as calculations or the study of numbers. He knew very well that this type of elite was present in the community of scribes of ancient Egypt. He was also aware of their very advanced knowledges in these areas, but without knowing all secrets. There is no reason today to reject the idea of an elite team or even a chief scribe empowered to decide the last. The time for carrying the table was perhaps over more than a generation <sup>a</sup>, in order to provide a satisfactory completed product. In such a product nothing should have been left to chance and everything has been deliberately chosen. This is not like a school exercise where one can use a decomposition rather than another to solve a given problem.

Once found suitable methods for calculations, it becomes possible to take a look at "the preliminary draft" in its entirety. This look is necessary in order to preserve an overall coherence. Some difficulties thus may be highlighted and resolved by a minimum of general decisions, the simplest as possible. The number of potential solutions appears as considerably lower than *ab initio* unrealistic calculations published in the modern literature [4, 5], namely 22295 or around 28000. We find that it is enough to consider only 71 + 71 possibilities, then results could be examined before making consistent decisions. This is realistic. A team spirit is very suitable to make obvious the need for a classification and successive resolutions of difficulties encountered during the project progress. Directives given by a leader are implied. All these ideas have put us on the track to a comprehensive approach. These ones are the filigree of our analysis.

### I Data from the papyrus

RMP is also well known by the name of his transcriber, the scribe Ahmes. This latter copied the document around 1650 BCE. The source, now lost, could date from XIIth dynasty, a golden age of the middle kingdom. RMP recto shows a table of 2 divided by numbers D from 5 up to 101 into "unit fractions". Number 3 may be considered as implicitly included, because its decomposition is used in the verso for some problems or it appears elsewhere in Papyrus Kahun [6]. This fact has been commented pertinently by Abdulaziz [7].

For D prime only (except number 101), we present below a reordered excerpt from the 2/D table by using our favorite red numbers m, that just show the multiplicity of a denominator with D. Please note that they are not the red auxiliary numbers used by Ahmes, is those "decoded" by Gardner [8], but related with these latter by means of the divisors of the first denominator  $D_1$ .

<sup>&</sup>lt;sup>a</sup>The creative flash of an inspired scholar (ancient or modern) is short. What is generally much longer is the development of the idea and achievement of tools (theoretical or practical) necessary for its application. Of course once the tools lapped their use takes little time!

|                  | $2/D=1/D_1+1/D_2+1/D_3$ [3-terms]      |
|------------------|----------------------------------------|
|                  | $2/13 = 1/8 + 1/52_4 + 1/104_8$        |
|                  | $2/17 = 1/12 + 1/51_3 + 1/68_4$        |
| erms             | $2/19 = 1/12 + 1/76_4 + 1/114_6$       |
|                  | $2/31 = 1/20 + 1/124_4 + 1/155_5$      |
| 2                | $2/37 = 1/24 + 1/111_3 + 1/296_8$      |
| 3                | $2/41 = 1/24 + 1/246_{6} + 1/328_{8}$  |
| 4                | $2/47 = 1/30 + 1/141_3 + 1/470_{10}$   |
| 6<br>6 <u>12</u> | $2/53 = 1/30 + 1/318_{6} + 1/795_{15}$ |
| 0 12             | $2/59 = 1/36 + 1/236_4 + 1/531_9$      |
|                  | $2/67 = 1/40 + 1/335_{5} + 1/536_{8}$  |
|                  | $2/71 = 1/40 + 1/568_8 + 1/710_{10}$   |
|                  | $2/97 = 1/56 + 1/679_7 + 1/776_8$      |

#### Table A: REORDERED 2/D TABLE FOR PRIME NUMBERS D

| _   | $2/D=1/D_1+1/D_2+1/D_3+1/D_4$ [4-terms]            |
|-----|----------------------------------------------------|
| _   | $2/29 = 1/24 + 1/58_{2} + 1/174_{6} + 1/232_{8}$   |
| -   | $2/43 = 1/42 + 1/86_2 + 1/129_3 + 1/301_7$         |
| -   | $2/61 = 1/40 + 1/244_4 + 1/488_8 + 1/610_{10}$     |
| -   | $2/73 = 1/60 + 1/219_3 + 1/292_4 + 1/365_5$        |
| -   | $2/79 = 1/60 + 1/237_{3} + 1/316_{4} + 1/790_{10}$ |
| -   | $2/83 = 1/60 + 1/332_4 + 1/415_5 + 1/498_6$        |
| -   | $2/89 = 1/60 + 1/356_{4} + 1/534_{6} + 1/890_{10}$ |
| - 1 |                                                    |

#### Π Outlines of a global approach

 $2/D = 1/D_1 + 1/D_2$  [2-te  $2/3 = 1/2 + 1/6_{2}$ 1/3 + 1/15= 1/4 + 1/282/11 = 1/6 + 1/662/23 = 1/12 + 1/27

Actually the whole 2/D project can been viewed as a 3-component set (or 3-phases, if you like). FIRST: discovery of a unique [2-terms] solution, if D is a prime number. SECOND: for a sub-project [composite numbers] from 9 up to 99, realize that a mini-table, with just four numbers, enables to derive all the composite numbers by using a multiplicative operation <sup>b</sup>. Four numbers, 3, 5, 7, 11 are enough. For instance 99 is reached with  $3 \times 33$  or  $11 \times 9$ .

This mini-table, a kind of 'Mother-table', looks as follows:

Table B: Basic Mother-Table

| 2/3 = 1/2 + 1/6 2<br>2/5 = 1/3 + 1/15 3<br>2/7 = 1/4 + 1/28 4 |
|---------------------------------------------------------------|
| $2/11 = 1/6 + 1/66_{6}$                                       |

One sees the first four two-terms decompositions of 2/D. D being prime, the table is unique. In 'theory', except if a better decision should be token, any fraction 2/D (D composite) could be decomposed from this table by dividing a given row by a convenient number. Consider an example: 2/65 = [ (row 2 )/ (number 13)  $] = 1/39 + 1/195_3$ , what is the solution adopted in the papyrus. As a matter of fact, all decompositions for the sub-project were given in two-terms (except for 2/95 as a logical consequence of the guidelines adopted by the scribes, that we will justify properly later)  $^{\rm c}$ .

As the 'Mother-table' has no need to higher value than 11 for the sub-project, we can better understand that, from 13, it could have been decided to leave decompositions into 2 terms. THIRD: nothing does more obstacle to start a main part of the whole project, namely decompositions into 3 (or 4 terms if necessary), for all prime numbers starting from 13 until 97. The study carried in this paper is devoted to the third phase.

#### II.1General presentation

We could have present the problems in the Egyptian manner, as did Abdulaziz [7] like for example 47  $\overline{30}$   $\overline{141}$   $\overline{470}$  what means 2/47 = 1/30 + 1/141 + 1/470, but we preferred a modern way, more easily understandable to us today. This is unrelated to the spirit in which we thought. Consider D as given,  $D_1$  is an unknown value to be found. Assume now that  $d_2$ ,  $d_3$ ,  $d_4$  are distinct divisors of  $D_1$ , with  $d_2 > d_3 > d_4$ . These are also unknowns to find.

In order to standardize the notations, D is used for Denominators and d for divisors.

<sup>&</sup>lt;sup>b</sup>Idea already suggested by Gillings [4]

<sup>&</sup>lt;sup>c</sup>All the Egyptian decompositions for composite numbers are analyzed in our second paper [9]

Look at the following (modern) equations that decompose the 'unity' in 3 or 4 parts:

$$\mathbf{1} = \frac{D}{2D_1} + \frac{d_2}{2D_1} + \frac{d_3}{2D_1}.$$
 (II.1)

$$\mathbf{1} = \frac{D}{2D_1} + \frac{d_2}{2D_1} + \frac{d_3}{2D_1} + \frac{d_4}{2D_1}.$$
 (II.2)

It can be viewed under another standpoint like additive operations on integers:

$$2D_1 = D + d_2 + d_3. \tag{II.3}$$

$$2D_1 = D + d_2 + d_3 + d_4. (II.4)$$

Since  $d_2$ ,  $d_3$ ,  $d_4$  divide  $D_1$  then we are sure to find Egyptian decompositions. Indeed, dividing by  $DD_1$  we always get sums of unit fractions:

$$\frac{2}{D} = \frac{1}{D_1} + \frac{1}{(D_1/d_2)D} + \frac{1}{(D_1/d_3)D}.$$
 (II.5)

$$\frac{2}{D} = \frac{1}{D_1} + \frac{1}{(D_1/d_2)D} + \frac{1}{(D_1/d_3)D} + \frac{1}{(D_1/d_4)D}.$$
(II.6)

This method was apparently followed [8] in RMP table for prime numbers D from 13 up to 97. As can be seen, except  $D_1$ , all denominators of each equation appear as a multiple of D, namely

$$D_i = m_i D$$
, where  $m_i = (D_1/d_i)$ . (II.7)

Let us briefly summarize the possibilities as follows

$$\frac{2}{D} = \frac{1}{D_1} + \frac{1}{D_2} + \frac{1}{D_3}.$$
 (II.8)

$$\frac{2}{D} = \frac{1}{D_1} + \frac{1}{D_2} + \frac{1}{D_3} + \frac{1}{D_4}.$$
 (II.9)

The main task consists in the determination of  $D_1$  and the convenient choice of  $d_i$ , from the additive equations (II.3) or (II.4). The  $d_i$ 's are the red auxiliary numbers used by the scribe Ahmes.

$$d_i = \frac{D_1}{m_i}.\tag{II.10}$$

## III [2-terms] analysis

$$\frac{2}{D} = \frac{1}{D_1} + \frac{1}{D_2}.$$
 (III.1)

The only comment (admiring) on the subject is that the scribes actually found the right solution (unique) to the problem, namely

$$D_1 = \frac{D+1}{2}$$
 and  $D_2 = \frac{D(D+1)}{2}$ . (III.2)

## IV [3-terms] analysis

Right now consider the [3-terms] cases. Egyptians gave:

| Ahmes's selections [3-terms]           |
|----------------------------------------|
| $2/13 = 1/8 + 1/52_4 + 1/104_8$        |
| $2/17 = 1/12 + 1/51_3 + 1/68_4$        |
| $2/19 = 1/12 + 1/76_4 + 1/114_6$       |
| $2/31 = 1/20 + 1/124_4 + 1/155_5$      |
| $2/37 = 1/24 + 1/111_3 + 1/296_8$      |
| $2/41 = 1/24 + 1/246_{6} + 1/328_{8}$  |
| $2/47 = 1/30 + 1/141_3 + 1/470_{10}$   |
| $2/53 = 1/30 + 1/318_{6} + 1/795_{15}$ |
| $2/59 = 1/36 + 1/236_4 + 1/531_9$      |
| $2/67 = 1/40 + 1/335_{5} + 1/536_{8}$  |
| $2/71 = 1/40 + 1/568_8 + 1/710_{10}$   |
| $2/97 = 1/56 + 1/679_7 + 1/776_8$      |

| Unity decomposition |
|---------------------|
| 16 = 13 + 2 + 1     |
| 24 = 17 + 4 + 3     |
| 24 = 19 + 3 + 2     |
| 40 = 31 + 5 + 4     |
| 48 = 37 + 8 + 3     |
| 48 = 41 + 4 + 3     |
| 60 = 47 + 10 + 3    |
| 60 = 53 + 5 + 2     |
| 72 = 59 + 9 + 4     |
| 80 = 67 + 8 + 5     |
| 80 = 71 + 5 + 4     |
| 112 = 97 + 8 + 7    |

The task of finding  $D_1$  is rather simple, from the moment when one realizes that it is enough to establish a table of odd numbers  $(2n+1)_{|n\geq 1}$  as a sum of two numbers  $d_2 + d_3$ , with  $d_2 > d_3$ . This is easy to do and independent of any context. The table contains n doublets  $\{d_2, d_3\}$  and  $\sup(d_2) = 2n$ . One can start with the lowest values as follows:  $d_3 = 1, d_2 = 2, 4, 6, \dots; d_3 = 2, d_2 = 3, 5, 7, \dots$  and so on. From Eq.(II.3) the first candidate possible for  $D_1$  starts at an initial value  $D_1^0 = (D+1)/2$  as in Fibonnaci's studies [10]. We can search for general solutions of the form

 $\Leftarrow$ 

2

$$D_1^n = D_1^0 + n, (IV.1)$$

whence

$$D_1^n - D = 2n + 1 = d_2 + d_3.$$
(IV.2)

Since one of the two  $D_1$  divisors  $\{d_2, d_3\}$  is even, then  $D_1$  can not be odd, it must be even. This was rightly stressed by Bruins [11]. From the first table of doublets, a new table (of trials) is built, where this time doublets are selected if  $d_2, d_3$  divide  $[(D + d_2 + d_3)/2]$ . This provides a  $D_1^n$  possible. In this favorable case, first  $D_3$  is calculated by  $DD_1/d_3$ , then  $D_2$  by  $DD_1/d_2$ . For D given, the table of trials defined by the equation just below

$$2\mathbf{n} + \mathbf{1} = \mathbf{d}_2 + \mathbf{d}_3$$
, where  $d_2$  and  $d_3$  divide  $D_1^n$ , (IV.3)

is bounded by a  $n_{max}$ <sup>d</sup>. By simplicity in our tables,  $D_1^n$  will not be written as  $D_1^n(d_2, d_3)$ . Even by hand, a realization of this table takes few time. For example decompositions into 3 terms lead to a total of trials with only 71 possibilities! From this low value, it is conceivable to present all results according to an appropriate parameter. Once found a  $d_3$ , a good idea would be select a  $d_2$  the closest as possible of  $d_3$ . This provides a type of classification never glimpsed to our knowledge. Thus, a key parameter of our paper is defined as follows:

$$\Delta_d = d_2 - d_3. \tag{IV.4}$$

Remarks: Clearly Eq. (IV.3) is related to Bruins's method of "parts" redistribution  $d_2$ ,  $d_3$  [11]. However our method is 'artisanal' and does not need to know the arithmetic properties of  $D_1$ . Once D given,  $D_1^n$ are found by trials, without calculations. Unlike to Bruins which sought some forms of  $D_1$  for finding then possible D values. The approach is quite different as well as the reasons justifying the Egyptian choices.

Although our conceptual formalism is different from that of Abdulaziz [7], we (fortunately) found some similarities, but also elements without counterpart to us. A welcome unison is the following: Let us consider its fractional parameter [R] that is crucial for all its analyses. In our notations we find

$$D_1[R] = (2D_1 - D) = 2n + 1 = d_2 + d_3,$$
(IV.5)

or equivalently expressed

$$[R] = \frac{1}{(D_1/d_2)} + \frac{1}{(D_1/d_3)}.$$
 (IV.6)

When it is said "... keeping the terms of [R] less than 10 was an essential part of determining how 2:n is to be decomposed.", this should be understood as  $(D_1/d_3) \leq 10$  and formulated for us as the condition (IV.8) with a Top-flag  $\top_f^{[3]} = 10$ . (See below for our Top-flag definition)

<sup>&</sup>lt;sup>d</sup>It can be proved that no solution can be found beyond n = (D-3)/2.

However note that the 'necessity' of our Top-flag comes directly from the value of D, without constituting a check on  $D_1$ . That only follows from Eq. (IV.7).

In contrast, parameter [Q], defined in Ref. [7] by [Q] = 1 - [R], does not appear to us and plays no role in our analyses. In addition, as the impact of closeness  $(\Delta_d)$  does not seem to have been apprehended, it is clear that our argumentation will generally be different. Even if, for some 'easy' cases, we agree.

In short, for producing their final table, we assume that the scribes have analyzed all preliminary trial results before doing their choice among various alternatives, considered in their totality, not individually.

Furthermore, due to decimal numeration used by ancient Egyptians, one can easily understand that a boundary with a Top-flag  $\top_f^{[3]}$  for the last denominator was chosen with a priority value equal to 10 (if possible according to the results given by trials).

The idea of a Top-flag is far to be a 'deus ex machina'. It naturally arises if we try to solve the problem of decomposition in full generality. See Appendix A for more details.

Chief scribe wisely decided to impose a upper bound to all the denominators  $D_3$ , such that

$$D_3 \le D \mathsf{T}_f^{[3]}. \tag{IV.7}$$

This cut-off beyond  $au_f^{[3]}$  is equivalent to a mathematical condition on  $D_1$ :

$$D_1 \le d_3 \top_f^{[3]}. \tag{IV.8}$$

Remark that this condition might be exploited from the beginning of the calculations for avoiding to handle too large denominators  $D_3$ . Simply find  $d_3$ , find  $d_2$ , then calculate  $D_1$ , if condition (IV.8) is not fulfilled then quit, do not calculate  $D_3$ ,  $D_2$  and go to next values for  $d_3$ ,  $d_2$ ,  $D_1$  and so on. Actually, if we follow the method of trials for finding the good choices in the order  $d_3 \rightarrow d_2 \rightarrow D_1$ , we are naturally led to be careful of the closeness of  $d_2$ ,  $d_3$ , measured by  $\Delta_d$ . This can suggest the idea of a classification according to increasing values of  $\Delta_d$ .

Since this classification seriously enlightens many solutions chosen by the scribes, it is not impossible to imagine that this '*artisan method*' was actually followed. This is a plausible hypothesis, valueless of evidence obviously. An advantage is also that a similar classification can be applied to the decompositions into 4 terms with the same success, see Sect. V.

The symbol  $E_g$  will be used for indicating Egyptian selections in our tables.

Let us now display a preliminary table of trials, see Table C.

|        |        | Ta       | ble of t | rials [3-  | terms]   | with increasing order of $\Delta_d$                                                                                                                                   |
|--------|--------|----------|----------|------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n      | 2n + 1 | $d_2$    | $d_3$    | $\Delta_d$ | $D_1^n$  | Possible [3-terms] decompositions                                                                                                                                     |
| 1      | 3      | 2        | 1        | 1          | 8        | $2/13 = 1/8 + 1/52$ 4 $+ 1/104$ 8 $^{Eg}$                                                                                                                             |
| 1      | 3      | 2        | 1        | 1          | 10       | 2/13 = 1/3 + 1/324 + 1/1048<br>$2/17_a = 1/10 + 1/855 + 1/170_{10}$                                                                                                   |
| 3      | 7      | 4        | 3        | 1          | 12       |                                                                                                                                                                       |
|        |        |          |          |            |          | $\frac{2}{11_b} - \frac{1}{12} + \frac{1}{513} + \frac{1}{004}$                                                                                                       |
| 2      | 5      | 3        | 2        | 1          | 12       | 2/10 - 1/12 + 1/104 + 1/1146                                                                                                                                          |
| 1      | 3      | 2        | 1        | 1          | 16       | $2/29 = 1/16 + 1/232_8 + 1/464_{16}$                                                                                                                                  |
| 2      | 5      | 3        | 2        | 1          | 18       | $2/31_a = 1/18 + 1/186_6 + 1/279_9$                                                                                                                                   |
| 4      | 9      | 5        | 4        | 1          | 20       | $2/31_b = 1/20 + 1/124_{\ 4} + 1/155_{\ 5}^{\ \ Eg}$                                                                                                                  |
| 1      | 3      | 2        | 1        | 1          | 20       | $2/37 = 1/20 + 1/370_{10} + 1/740_{20}$                                                                                                                               |
| 1      | 3      | 2        | 1        | 1          | 22       | $2/41_a = 1/22 + 1/451_{11} + 1/902_{22}$                                                                                                                             |
| 3      | 7      | 4        | 3        | 1          | 24       | $2/41_b = 1/24 + 1/\mathbf{246_6} + 1/\mathbf{328_8}^{Eg}$                                                                                                            |
| 2      | 5      | 3        | 2        | 1          | 24       | $2/43 = 1/24 + 1/344$ $_{8} + 1/516$ $_{12}$                                                                                                                          |
| 1      | 3      | 2        | 1        | 1          | 28       | $2/53 = 1/28 + 1/742_{14} + 1/1484_{28}$                                                                                                                              |
| 1      | 3      | 2        | 1        | 1          | 32       | $2/61 = 1/32 + 1/976_{16} + 1/1952_{32}$                                                                                                                              |
| 2      | 5      | 3        | 2        | 1          | 36       | $2/67 = 1/36 + 1/804_{12} + 1/1206_{18}$                                                                                                                              |
| 4      | 9      | 5        | 4        | 1          | 40       | $2/71_a = 1/40 + 1/568_{8} + 1/710_{10}^{Eg}$                                                                                                                         |
| 6      | 13     | 7        | 6        | 1          | 42       | $2/71_b = 1/42 + 1/426_6 + 1/497_7$                                                                                                                                   |
| 1      | 3      | 2        | 1        | 1          | 38       | $2/73 = 1/38 + 1/1387_{19} + 1/2274_{38}$                                                                                                                             |
| 2      | 5      | 3        | 2        | 1          | 42       | $2/79 = 1/42 + 1/1106_{14} + 1/1659_{21}$                                                                                                                             |
| 1      | 3      | 2        | 1        | 1          | 46       | $2/89_a = 1/46 + 1/2047_{23} + 1/4094_{46}$                                                                                                                           |
| 3      | 7      | 4        | 3        | 1          | 48       | $2/89_b = 1/48 + 1/\mathbf{1068_{12}} + 1/\mathbf{1424_{16}}$                                                                                                         |
| 1      | 3      | 2        | 1        | 1          | 50       | $2/97_a = 1/50 + 1/2425_{25} + 1/4850_{50}$                                                                                                                           |
| 7      | 15     | 8        | 7        | 1          | 56       | $2/97_b = 1/56 + 1/679_7 + 1/776_8$                                                                                                                                   |
| 3      | 7      | 5        | 2        | 3          | 10       | $2/13 = 1/10 + 1/26_2 + 1/65_5$                                                                                                                                       |
| 2      | 5      | 4        | 1        | 3          | 10       | 2/19 = 1/10 + 1/202 + 1/005<br>$2/19 = 1/12 + 1/57_3 + 1/228_{12}$                                                                                                    |
| 2      | 5      | 4        | 1        | 3          | 24       | 2/13 = 1/12 + 1/513 + 1/22812<br>$2/43 = 1/24 + 1/258_6 + 1/1032_{24}$                                                                                                |
| 3      | 7      | 5        | 2        | 3          | 30       | 2/33 = 1/24 + 1/2386 + 1/103224<br>2/53 = 1/30 + 1/3186 + 1/79515 Eg                                                                                                  |
| 2      | 5      | э<br>4   | 2        | 3          | 30       | $\frac{2}{53} = \frac{1}{30} + \frac{1}{318} \frac{6}{6} + \frac{1}{795} \frac{15}{15}$ $\frac{2}{59} = \frac{1}{32} + \frac{1}{4728} + \frac{1}{1888} \frac{15}{32}$ |
| 2      | 5      | 4        | 1        | 3          | 36       | 2/59 = 1/32 + 1/4728 + 1/188832<br>$2/67_a = 1/36 + 1/6039 + 1/241236$                                                                                                |
| -      | 13     | 8        | 5        | 3          | 40       |                                                                                                                                                                       |
| 6      |        |          |          |            | -        | $2/01_b = 1/40 + 1/0005 + 1/0008$                                                                                                                                     |
| 3      | 7      | 5        | 2        | 3          | 40       | $\frac{2/73 = 1/40 + 1/1584_8 + 1/1460_{20}}{2/83 = 1/44 + 1/913_{11} + 1/3652_{44}}$                                                                                 |
| 2      | 5      | 4        | 1        | 3          | 44       |                                                                                                                                                                       |
| 3      | 7      | 6        | 1        | 5          | 12       | $2/17 = 1/12 + 1/34_2 + 1/204_{12}$                                                                                                                                   |
| 4      | 9      | 7        | 2        | 5          | 14       | $2/19 = 1/14 + 1/38_2 + 1/133_7$                                                                                                                                      |
| 3      | 7      | 6        | 1        | 5          | 18       | $2/29 = 1/18 + 1/87_3 + 1/522_{18}$                                                                                                                                   |
| 5      | 11     | 8        | 3        | 5          | 24       | $2/37 = 1/24 + 1/111_{\ 3} + 1/296_{\ 8}$ Eg                                                                                                                          |
| 3      | 7      | 6        | 1        | 5          | 24       | $2/41 = 1/24 + 1/164_4 + 1/984_{24}$                                                                                                                                  |
| 4      | 9      | 7        | 2        | 5          | 28       | $2/47 = 1/28 + 1/188_4 + 1/658_{14}$                                                                                                                                  |
| 3      | 7      | 6        | 1        | 5          | 30       | $2/53 = 1/30 + 1/265_{5} + 1/1590_{30}$                                                                                                                               |
| 6      | 13     | 9        | 4        | 5          | 36       | $2/59 = 1/36 + 1/236_{	extsf{4}} + 1/531_{	extsf{9}}$                                                                                                                 |
| 3      | 7      | 6        | 1        | 5          | 48       | $2/89 = 1/48 + 1/712_8 + 1/4272_{48}$                                                                                                                                 |
| 4      | 9      | 8        | 1        | 7          | 16       | $2/23 = 1/16 + 1/46_2 + 1/368_{16}$                                                                                                                                   |
| 6      | 13     | 10       | 3        | 7          | 30       | $2/47 = 1/30 + 1/141_{3} + 1/470_{10}^{Eg}$                                                                                                                           |
| 5      | 11     | 9        | 2        | 7          | 36       | $2/61 = 1/36 + 1/244_4 + 1/1098_{18}$                                                                                                                                 |
| 4      | 9      | 8        | 1        | 7          | 40       | $2/71 = 1/40 + 1/355_5 + 1/2840_{40}$                                                                                                                                 |
| 7      | 15     | 11       | 4        | 7          | 44       | $2/73 = 1/44 + 1/292_4 + 1/803_{11}$                                                                                                                                  |
| 5      | 11     | 9        | 2        | 7          | 54       | $2/97 = 1/54 + 1/582_{6} + 1/2619_{27}$                                                                                                                               |
| 5      | 11     | 10       | 1        | 9          | 20       | $2/29 = 1/20 + 1/58_2 + 1/580_{20}$                                                                                                                                   |
| 6      | 11     | 10       | 2        | 9          | 20       | 2/31 = 1/20 + 1/38 + 1/380 + 20<br>2/31 = 1/22 + 1/62 + 1/341 + 11                                                                                                    |
| 5      | 11     | 10       | 1        | 9          | 50       | 2/31 = 1/22 + 1/022 + 1/34111<br>2/89 = 1/50 + 1/4455 + 1/445050                                                                                                      |
| 7      | 15     |          | 2        |            |          |                                                                                                                                                                       |
| 6      | 15     | 13<br>12 | 2        | 11<br>11   | 26<br>36 | $\frac{2/37 = 1/26 + 1/74_2 + 1/481_{13}}{2/59 = 1/36 + 1/177_3 + 1/2124_{36}}$                                                                                       |
| 8      | 13     | 12       | 3        | 11         | 30<br>42 | $\frac{2/59 = 1/36 + 1/177_3 + 1/2124_{36}}{2/67 = 1/42 + 1/201_3 + 1/938_{14}}$                                                                                      |
| 0      | 17     | 14       | 3        | 11         | 42       | $\frac{2}{83} = \frac{1}{48} + \frac{1}{3324} + \frac{1}{398448}$                                                                                                     |
| 6<br>7 | 15     |          | 2        | 11         | 48<br>52 | $\frac{2}{89} = \frac{1}{52} + \frac{1}{356} \frac{4}{4} + \frac{1}{3984} \frac{48}{48}$                                                                              |
|        |        |          |          |            |          |                                                                                                                                                                       |
| 7      | 15     | 14       | 1        | 13         | 28       | $2/41 = 1/28 + 1/82_2 + 1/1148_{28}$                                                                                                                                  |
| 8      | 17     | 15       | 2        | 13         | 30       | $2/43 = 1/30 + 1/86_2 + 1/645_{15}$                                                                                                                                   |
| 7      | 15     | 14       | 1        | 13         | 56       | $2/97 = 1/56 + 1/388_4 + 1/5432_{56}$                                                                                                                                 |
| 8      | 17     | 16       | 1        | 15         | 32       | $2/47 = 1/32 + 1/94_2 + 1/1504_{32}$                                                                                                                                  |
| 8      | 17     | 16       | 1        | 15         | 48       | $2/79 = 1/48 + 1/237_3 + 1/3792_{48}$                                                                                                                                 |
| 9      | 19     | 18       | 1        | 17         | 36       | $2/53 = 1/36 + 1/106_2 + 1/1908_{36}$                                                                                                                                 |
| 9      | 19     | 18       | 1        | 17         | 54       | $2/89 = 1/54 + 1/267_3 + 1/4306_{54}$                                                                                                                                 |
| 11     | 23     | 20       | 3        | 17         | 60       | $2/97 = 1/60 + 1/291_3 + 1/1940_{20}$                                                                                                                                 |
| 10     | 21     | 20       | 1        | 19         | 40       | $2/59 = 1/40 + 1/118_2 + 1/2360_{40}$                                                                                                                                 |
| 11     | 23     | 20       | 2        | 19         | 40       | $2/61 = 1/42 + 1/122_2 + 1/1281_{21}$                                                                                                                                 |
|        |        | u        |          |            |          |                                                                                                                                                                       |
| 12     | 25     | 23       | 2        | 21         | 46       | $2/67 = 1/46 + 1/134_2 + 1/1541_{23}$                                                                                                                                 |
| 12     | 25     | 24       | 1        | 23         | 48       | $2/71 = 1/48 + 1/142_2 + 1/3408_{48}$                                                                                                                                 |
| 13     | 27     | 25       | 2        | 23         | 50       | $2/73 = 1/50 + 1/146_2 + 1/1825_{25}$                                                                                                                                 |
| 14     | 29     | 27       | 2        | 25         | 54       | $2/79 = 1/54 + 1/158_2 + 1/2133_{27}$                                                                                                                                 |
| 14     | 29     | 28       | 1        | 27         | 56       | $2/83 = 1/56 + 1/166_2 + 1/4648_{56}$                                                                                                                                 |
| 15     | 31     | 30       | 1        | 29         |          |                                                                                                                                                                       |
|        |        |          | u        |            | 60       | • / / / /                                                                                                                                                             |
| 17     | 35     | 33       | 2        | 31         | 66       | $2/97 = 1/66 + 1/194_2 + 1/3201_{33}$                                                                                                                                 |
|        |        |          |          |            |          |                                                                                                                                                                       |

Table C: Table of trials [3-terms] with increasing order of  $\Delta_d,$  only 71 possibilities !

As it is clear from Table C an obvious preference for the smallest  $\Delta_d$  seems to be well followed. After cut-off by  $\top_f^{[3]} = 10$  Table C is reduced and allows us to analyze the following options:

|   | Trials | 3-terms | order | ed with    | $\Delta_d \nearrow$ | showing where are the Egyptian options                                 |
|---|--------|---------|-------|------------|---------------------|------------------------------------------------------------------------|
| n | 2n + 1 | $d_2$   | $d_3$ | $\Delta_d$ | $D_1^n$             | [3-terms] decompositions $m_3 \leq 10$                                 |
| 1 | 3      | 2       | 1     | 1          | 8                   | $2/13 = 1/8 + 1/52$ 4 $+ 1/104$ 8 $^{Eg}$                              |
| 1 | 3      | 2       | 1     | 1          | 10                  | $2/17_{a} = 1/10 + 1/85$ 5 $+ 1/170_{10}$                              |
| 3 | 7      | 4       | 3     | 1          | 12                  | $2/17_{b} = 1/12 + 1/51_{	extbf{3}} + 1/68_{	extbf{4}}  {}^{Eg \star}$ |
| 2 | 5      | 3       | 2     | 1          | 12                  | $2/19 = 1/12 + 1/76_{	extsf{4}} + 1/114_{	extsf{6}}$                   |
| 2 | 5      | 3       | 2     | 1          | 18                  | $2/31_a = 1/18 + 1/186_{\ {f 6}} + 1/279_{\ {f 9}}$                    |
| 4 | 9      | 5       | 4     | 1          | 20                  | $2/31_b = 1/20 + 1/124_{	extsf{4}} + 1/155_{	extsf{5}}$                |
| 3 | 7      | 4       | 3     | 1          | 24                  | $2/41 = 1/24 + 1/246_{\ 6} + 1/328_{\ 8}$ Eg                           |
| 4 | 9      | 5       | 4     | 1          | 40                  | $2/71_a = 1/40 + 1/568_{\ m{8}} + 1/710_{\ m{10}}$                     |
| 6 | 13     | 7       | 6     | 1          | 42                  | $2/71_{b} = 1/42 + 1/426_{\ 6} + 1/497_{\ 7}$                          |
| 7 | 15     | 8       | 7     | 1          | 56                  | $2/97 = 1/56 + 1/679$ $_{7} + 1/776$ $_{8}$ $^{Eg\star}$               |
| 3 | 7      | 5       | 2     | 3          | 10                  | $2/13 = 1/10 + 1/26_2 + 1/65_5$                                        |
| 6 | 13     | 8       | 5     | 3          | 40                  | $2/67 = 1/40 + 1/335{_{5}} + 1/536{_{8}}$                              |
| 4 | 9      | 7       | 2     | 5          | 14                  | $2/19 = 1/14 + 1/38_{\ 2} + 1/133_{\ 7}$                               |
| 5 | 11     | 8       | 3     | 5          | 24                  | $2/37 = 1/24 + 1/111_{\ {f 3}} + 1/296_{\ {f 8}}$                      |
| 6 | 13     | 9       | 4     | 5          | 36                  | $2/59 = 1/36 + 1/236$ 4 $+ 1/531$ 9 $^{Eg}$                            |
| 6 | 13     | 10      | 3     | 7          | 30                  | $2/47 = 1/30 + 1/141_{3} + 1/470_{10}$ <sup>Eg</sup>                   |

Table D: 3-terms options

This table shows rare instances where multipliers  $m_2$ ,  $m_3$  are consecutive. It is always an interesting quality that does not require sophisticated mathematical justification. That will be denoted by a asterisk \*. Two instances are found also in [4-terms] series with  $m_2$ ,  $m_3$ ,  $m_4$ , see Section V. Just as an indication, we display below the cases dropped out of a [3-terms] decomposition:

|    | Tabl   | e of tri | ale [3_+ | armel fo   | r fractio | ons to be broken down into 4-terms                      |
|----|--------|----------|----------|------------|-----------|---------------------------------------------------------|
| n  | 2n + 1 | $d_2$    | $d_3$    | $\Delta_d$ | $D_1^n$   | Possible [3-terms] decompositions                       |
| 4  | 9      | 8        | 1        | 7          | 16        | $2/23 = 1/16 + 1/46_2 + 1/368_{16}$                     |
| 1  | 3      | 2        | 1        | 1          | 16        | $2/29 = 1/16 + 1/232_8 + 1/464_{16}$                    |
| 3  | 7      | 6        | 1        | 5          | 18        | $2/29 = 1/18 + 1/87_3 + 1/522_{18}$                     |
| 5  | 11     | 10       | 1        | 9          | 20        | $2/29 = 1/20 + 1/58_2 + 1/580_{20}$                     |
| 2  | 5      | 4        | 1        | 3          | 24        | $2/43 = 1/24 + 1/258_{6} + 1/1032_{24}$                 |
| 2  | 5      | 3        | 2        | 1          | 24        | $2/43 = 1/24 + 1/344_8 + 1/516_{12}$                    |
| 8  | 17     | 15       | 2        | 13         | 30        | $2/43 = 1/30 + 1/86_2 + 1/645_{15}$                     |
| 1  | 3      | 2        | 1        | 1          | 32        | $2/61 = 1/32 + 1/976_{16} + 1/1952_{32}$                |
| 5  | 11     | 9        | 2        | 7          | 36        | 2/61 = 1/36 + 1/244 4 $+ 1/1098$ 18                     |
| 11 | 23     | 21       | 2        | 19         | 42        | $2/61 = 1/42 + 1/122_2 + 1/1281_{21}$                   |
| 1  | 3      | 2        | 1        | 1          | 38        | $2/73 = 1/38 + 1/1387_{19} + 1/2274_{38}$               |
| 3  | 7      | 5        | 2        | 3          | 40        | $2/73 = 1/40 + 1/1584_8 + 1/1460_{20}$                  |
| 7  | 15     | 11       | 4        | 7          | 44        | $2/73 = 1/44 + 1/292_{4} + 1/803_{11}$                  |
| 13 | 27     | 25       | 2        | 23         | 50        | $2/73 = 1/50 + 1/146_2 + 1/1825_{25}$                   |
| 2  | 5      | 3        | 2        | 1          | 42        | $2/79 = 1/42 + 1/1106_{14} + 1/1659_{21}$               |
| 8  | 17     | 16       | 1        | 15         | 48        | $2/79 = 1/48 + 1/237_{\ 3} + 1/3792_{\ 48}$             |
| 14 | 29     | 27       | 2        | 25         | 54        | $2/79 = 1/54 + 1/158_2 + 1/2133_{27}$                   |
| 2  | 5      | 4        | 1        | 3          | 44        | $2/83 = 1/44 + 1/913_{11} + 1/3652_{44}$                |
| 6  | 13     | 12       | 1        | 11         | 48        | $2/83 = 1/48 + 1/332_4 + 1/3984_{48}$                   |
| 14 | 29     | 28       | 1        | 27         | 56        | $2/83 = 1/56 + 1/166_2 + 1/4648_{56}$                   |
| 1  | 3      | 2        | 1        | 1          | 46        | $2/89 = 1/46 + 1/2047_{23} + 1/4094_{46}$               |
| 3  | 7      | 6        | 1        | 5          | 48        | $2/89 = 1/48 + 1/712_{8} + 1/4272_{48}$                 |
| 3  | 7      | 4        | 3        | 1          | 48        | $2/89 = 1/48 + 1/1068_{12} + 1/1424_{16}$               |
| 5  | 11     | 10       | 1        | 9          | 50        | $2/89 = 1/50 + 1/445_{\ {f 5}} + 1/4450_{\ {f 50}}$     |
| 7  | 15     | 13       | 2        | 11         | 52        | $2/89 = 1/52 + 1/356_4 + 1/2314_{26}$                   |
| 9  | 19     | 18       | 1        | 17         | 54        | $2/89 = 1/54 + 1/\mathbf{267_3} + 1/\mathbf{4306_{54}}$ |
| 15 | 31     | 30       | 1        | <b>29</b>  | 60        | $2/89 = 1/60 + 1/178_{\ 2} + 1/5340_{\ 60}$             |

Table E: Fractions to be broken down into 4-terms

Our definition of  $\top_f$  does not depend on a arbitrary value of  $D_3$  fixed to 1000 as often assumed in the literature. It depends only on the circumstances imposed by the current project. Subdivide now table D into 3 sets according to the properties of each D. A first with a only one  $\Delta_d$ , a second with two different  $\Delta_d$  and a third with two conflicting identical  $\Delta_d$ . That yields:

| D١ | with a sing | gle $\Delta_{c}$ | <i>d</i> (0 | ptions     | s: no)  | Scribes's decision: obvious                                                             |
|----|-------------|------------------|-------------|------------|---------|-----------------------------------------------------------------------------------------|
| n  | 2n + 1      | $d_2$            | $d_3$       | $\Delta_d$ | $D_1^n$ | [3-terms] decomposition                                                                 |
| 3  | 7           | 4                | 3           | 1          | 24      | $2/41 = 1/24 + 1/\mathbf{246_6} + 1/\mathbf{328_8}^{Eg}$                                |
| 7  | 15          | 8                | 7           | 1          | 56      | $2/97 = 1/56 + 1/679$ $_{7} + 1/776$ $_{8}$ $^{Eg\star}$                                |
| 6  | 13          | 8                | 5           | 3          | 40      | $2/67 = 1/40 + 1/335$ 5 $+ 1/536$ 8 $^{Eg}$                                             |
| 5  | 11          | 8                | 3           | 5          | 24      | $\mathbf{2/37} = \mathbf{1/24} + \mathbf{1/111}_{\ 3} + \mathbf{1/296}_{\ 8}   {}^{Eg}$ |
| 6  | 13          | 9                | 4           | 5          | 36      | $2/59 = 1/36 + 1/236{_{f 4}} + 1/531{_{f 9}}{^{Eg}}$                                    |
| 6  | 13          | 10               | 3           | 7          | 30      | $2/47 = 1/30 + 1/141_{ m 3} + 1/470_{ m 10}$ $^{Eg}$                                    |

Table F: A single  $\Delta_d$  [3-terms]

Table G: Two different  $\Delta_d$  [3-terms]

|   | D with two different $\Delta_d$ (options: yes) |       |       |            |         |                                                |  |  |  |  |  |
|---|------------------------------------------------|-------|-------|------------|---------|------------------------------------------------|--|--|--|--|--|
|   |                                                |       |       |            |         | Scribes's decision: smallest $\Delta_d$        |  |  |  |  |  |
| n | 2n + 1                                         | $d_2$ | $d_3$ | $\Delta_d$ | $D_1^n$ | [3-terms] decompositions                       |  |  |  |  |  |
| 1 | 3                                              | 2     | 1     | 1          | 8       | $2/13 = 1/8 + 1/52{}_{f 4} + 1/104{}_{f 8}$ Eg |  |  |  |  |  |
| 3 | 7                                              | 5     | 2     | 3          | 10      | $2/13 = 1/10 + 1/26_{\ 2} + 1/65_{\ 5}$        |  |  |  |  |  |
| 2 | 5                                              | 3     | 2     | 1          | 12      | $2/19 = 1/12 + 1/76_{ m 4} + 1/114_{ m 6}$ Eg  |  |  |  |  |  |
| 4 | 9                                              | 7     | 2     | 5          | 14      | $2/19 = 1/14 + 1/38_{\ 2} + 1/133_{\ 7}$       |  |  |  |  |  |

Table H: Two conflicting identical  $\Delta_d$  [3-terms]

| <u> </u> | D with two conflicting identical $\Delta_d$ (options: yes) |       |       |            |         |                                                           |  |  |  |  |  |
|----------|------------------------------------------------------------|-------|-------|------------|---------|-----------------------------------------------------------|--|--|--|--|--|
|          |                                                            |       |       |            | neting  |                                                           |  |  |  |  |  |
|          |                                                            |       |       |            |         | Scribes's decision: consecutive multipliers               |  |  |  |  |  |
| n        | 2n + 1                                                     | $d_2$ | $d_3$ | $\Delta_d$ | $D_1^n$ | [3-terms] decompositions                                  |  |  |  |  |  |
| 1        | 3                                                          | 2     | 1     | 1          | 10      | $2/17_{a} = 1/10 + 1/85_{{f 5}} + 1/170_{{f 10}}$         |  |  |  |  |  |
| 3        | 7                                                          | 4     | 3     | 1          | 12      | $2/17_{b} = 1/12 + 1/51_{f 3} + 1/68_{f 4}{}^{Eg\star}$   |  |  |  |  |  |
| 2        | 5                                                          | 3     | 2     | 1          | 18      | $2/31_a = 1/18 + 1/186_{\ {f 6}} + 1/279_{\ {f 9}}$       |  |  |  |  |  |
| 4        | 9                                                          | 5     | 4     | 1          | 20      | $2/31_b = 1/20 + 1/124_{\ 4} + 1/155_{\ 5}  {}^{Eg\star}$ |  |  |  |  |  |
|          |                                                            |       |       |            |         |                                                           |  |  |  |  |  |
|          |                                                            |       |       |            |         | Scribes's decision: $2n \le 10$                           |  |  |  |  |  |
| n        | 2n + 1                                                     | $d_2$ | $d_3$ | $\Delta_d$ | $D_1^n$ | [3-terms] decompositions                                  |  |  |  |  |  |
| 4        | 9                                                          | 5     | 4     | 1          | 40      | $2/71_a = 1/40 + 1/568_{\ 8} + 1/710_{\ 10}$ $^{Eg}$      |  |  |  |  |  |
| 6        | 13                                                         | 7     | 6     | 1          | 42      | $2/71_{b} = 1/42 + 1/426_{6} + 1/497_{7}$ *               |  |  |  |  |  |

Remark: in the cases involving options possible, and in these cases only, the solutions for  $\{2/D = 2/13, 2/19, 2/17, 2/31\}$  were chosen respectively in the set  $\{n = 1, 2, 3, 4\}_{|2n \le 10}$ . For ruling on 2/71 there is no convincing arithmetical argumentation, then the choice could have been the simplicity and direct observation: once again a boundary like  $2n \le 10$  is used for picking n = 4. That's it. Too simple, but why not?

After this natural selection by cut-off with a Top-flag  $T_f^{[3]} = 10$  and appropriate decisions, it remains some cases to be examined, especially these with  $10 < m_3 \leq 16$  because of the singular status of 2/23, that the scribes will retain with a decomposition into 2 terms. We display below these cases. Of course 2/61, 2/83 are ex officio excluded from the analysis.

(Anticipation is made on [4-terms] analysis and related decisions that follow, like  $\top_{f}^{[4]} = 10$ )

|   | $\frac{Unique \ [2-terms] \ solution}{2/23 = 1/12 + 1/276_{12}} E^{Eg}$ |       |       |       |       |                  |         |                                              |  |  |  |
|---|-------------------------------------------------------------------------|-------|-------|-------|-------|------------------|---------|----------------------------------------------|--|--|--|
|   | Selected trials [3-terms] for $2/23$ enigma? $(m_3 = 16)$               |       |       |       |       |                  |         |                                              |  |  |  |
|   | $n  2n+1  d_2  d_3  \Delta_d  D_1^n  Unique [3-terms] decomposition$    |       |       |       |       |                  |         | Unique [3-terms] decomposition               |  |  |  |
|   | [                                                                       | 4     | 9     | 8     | 1     | 7                | 16      | $2/23 = 1/16 + 1/46_2 + 1/368_{16}$          |  |  |  |
|   |                                                                         |       |       |       |       | Selected         | trials  | [4-terms] 2/23                               |  |  |  |
| n | 21                                                                      | n + 1 | $d_2$ | $d_3$ | $d_4$ | $\Delta_{d}^{'}$ | $D_1^n$ | [4-terms] decomposition $m_4 \leq 10$        |  |  |  |
| 8 |                                                                         | 17    | 10    | 5     | 2     | 3                | 20      | $2/23 = 1/20 + 1/46_2 + 1/92_4 + 1/230_{10}$ |  |  |  |

Table I: Dynamic comparison for transitions  $\mathbf{3} \Rightarrow \mathbf{4}$ 

|    | Γ                              |      |        |       | Selec | selected trials [3-terms] |                      |         |                | )                            | (n      | 13 =                 | = <b>16</b> )  |                        |              |    |    |
|----|--------------------------------|------|--------|-------|-------|---------------------------|----------------------|---------|----------------|------------------------------|---------|----------------------|----------------|------------------------|--------------|----|----|
|    |                                | n    | 2n + 1 | 1     | $d_2$ | $d_3$                     | $_3 \qquad \Delta_d$ |         | <sup>i</sup> P | Possible [3-terms] decomposi |         |                      | position       |                        |              |    |    |
|    |                                | 1 3  |        |       | 2     | 1                         | 1                    | 16      | 2              | 29 = 1/16 +                  |         | 1/232 <mark>8</mark> | + 1/46         | 4 16                   |              |    |    |
|    | Selected trials [4-terms] 2/29 |      |        |       |       |                           |                      |         |                |                              |         |                      |                |                        |              |    |    |
| n  | 2n                             | +1   | $d_2$  | $d_3$ | $d_4$ | $\Delta'_d$               |                      | $D_1^n$ | Poss           | ble                          | [4-teri | ns] (                | decompo        | sitions <mark>n</mark> | $n_4 \leq 1$ | .0 |    |
| 9  | 1                              | 9 12 |        | 4     | 3     |                           | <b>1</b> 24          |         | ,              |                              | ,       | '                    | $58_2 + 1_{/}$ |                        | ,            | 28 | Eg |
| 5  | 1                              | .1   | 5      | 4     | 2     |                           | 2                    | 20      |                |                              |         |                      | $116_{4} + 1$  |                        |              |    | )  |
| 15 | 3                              | 31   | 15     | 10    | 6     |                           | 4                    | 30      | 2/29           | =                            | 1/30 +  | - 1/                 | $58_2 + 1_1$   | $87_{3} + 1$           | 1/145        | 5  |    |

|    |                                |                                                                                                       |    | Selecte | d trials | [3-terms | $[3] 2/89 (m_3 = 16)$                               |  |  |  |  |
|----|--------------------------------|-------------------------------------------------------------------------------------------------------|----|---------|----------|----------|-----------------------------------------------------|--|--|--|--|
|    | n                              | $n  2n+1  d_2  d_3  \Delta_d  D_1^n  \text{Possible [3-terms] decomposition}$                         |    |         |          |          |                                                     |  |  |  |  |
|    | 3                              | 3 7 4 3 1 48 $2/89_b = 1/48 + 1/1068_{12} + 1/1424_{16}$                                              |    |         |          |          |                                                     |  |  |  |  |
|    | Selected trials [4-terms] 2/89 |                                                                                                       |    |         |          |          |                                                     |  |  |  |  |
| n  | 2n + 1                         | $2n+1$ $d_2$ $d_3$ $d_4$ $\Delta'_d$ $D_1^n$ Possible [4-terms] decompositions $\mathbf{m_4} \leq 10$ |    |         |          |          |                                                     |  |  |  |  |
| 15 | 31                             | 15                                                                                                    | 10 | 6       | 4        | 60       | $-2/89 = 1/60 + 1/356_{4} + 1/534_{6} + 1/890_{10}$ |  |  |  |  |

|   |                     |    |       | Selected         | d trials | [3-term    | s] for  | 2/53 en           | igma?                  | $(m_3 = 1)$   | 5)             |                |
|---|---------------------|----|-------|------------------|----------|------------|---------|-------------------|------------------------|---------------|----------------|----------------|
|   | n                   | 2n | +1    | $d_2$            | $d_3$    | $\Delta_d$ | $D_1^n$ | Possible          | [3-term                | ns] decomp    | osition        |                |
|   | 3                   |    | 7     | 5                | 2        | 3          | 30      | 2/53 =            | 1/30 +                 | 1/318 6       | $+ 1/795_{15}$ | Eg             |
|   | Selected trials [4  |    |       |                  |          |            |         |                   | 2/53                   |               |                |                |
| n | $a  2n+1  d_2  d_3$ |    | $d_4$ | $\Delta_{d}^{'}$ | $D_1^n$  | [4-terms   | ] decom | position <b>n</b> | $\mathbf{h_4} \leq 10$ |               |                |                |
| 9 | 19                  | 1  | 9     | 6                | 4        | 2          | 36      | 2/53 =            | 1/36 +                 | $1/212_{4} +$ | 1/318 6        | $+ 1/477 _{9}$ |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                              |   | Sele   | cted tri | als [3-t | erms]         | 2/43    | $(m_{3}=12) \; \text{or} \;\; (m_{3}=15)$                                             |
|-------------------------------------------------------------------------------------|---|--------|----------|----------|---------------|---------|---------------------------------------------------------------------------------------|
|                                                                                     | n | 2n + 1 | $d_2$    | $d_3$    | $\Delta_d$    | $D_1^n$ | Possible [3-terms] decompositions                                                     |
| 8 17 15 2 18 30 $\frac{2}{43} = \frac{1}{30} + \frac{1}{86_2} + \frac{1}{645_{15}}$ | 2 | 5      | 3        | 2        | 1             | 24      | $2/43 = 1/24 + 1/344_{8} + 1/516_{12}$                                                |
|                                                                                     | 8 | 17     | 15       | 2        | <del>13</del> | 30      | $\frac{2}{43} = \frac{1}{30} + \frac{1}{86} \frac{1}{2} + \frac{1}{645} \frac{1}{15}$ |

|    |        |       |       |       | Select      | s [4-terms] 2/43 |                                            |
|----|--------|-------|-------|-------|-------------|------------------|--------------------------------------------|
| n  | 2n + 1 | $d_2$ | $d_3$ | $d_4$ | $\Delta'_d$ | $D_1^n$          | [4-terms] decomposition $m_4 \leq 10$      |
| 20 | 41     | 21    | 14    | 6     | 8           | 42               | $2/43 = 1/42 + 1/86_2 + 1/129_3 + 1/301_7$ |

|    |         |    |       |            | Selec | Selected trials [3-terms] $2/73$ (m <sub>3</sub> = 11) |         |           |                                                    |        |       |                    |                 |                                  |
|----|---------|----|-------|------------|-------|--------------------------------------------------------|---------|-----------|----------------------------------------------------|--------|-------|--------------------|-----------------|----------------------------------|
|    |         | n  | 2n -  | $-1$ $d_2$ |       | $d_3 \qquad \Delta_d \qquad D_1^n$                     |         | $D_1^n$   | $\mathcal{D}_1^n$ Possible [3-terms] decomposition |        |       | position           |                 |                                  |
|    | 7 15 11 |    |       |            | 11    | 4                                                      | 7       | 44        | 4 $2/73 = 1/44 + 1/292_4 + 1/803_{11}$             |        |       |                    |                 |                                  |
|    |         |    |       |            |       | Se                                                     | lected  | trials [· | 4-terms                                            | j 2/73 |       |                    |                 |                                  |
| n  | 2n      | +1 | $d_2$ | $d_3$      | $d_4$ | $\Delta'_d$                                            | $D_1^n$ | [4-       | terms                                              | decom  | posit | tion $m_4$         | ≤ <b>10</b>     |                                  |
| 23 | 4       | 7  | 20    | 15         | 12    | 3                                                      | 60      | 2/        | $73_{c} =$                                         | 1/60 + | 1/2   | 219 <sub>3</sub> + | $1/292_{4} + 1$ | /365 <sub>5</sub> <sup>Eg*</sup> |

We repeat that we are always in a logic of a construction site with difficulties arising in different parts of the project. Problems are processed case after case and do not interfere with another previous part. If not, all becomes incomprehensible. A overview supervised by a chief scribe can not be conflicted. The 6 cases presented above confront us with a dynamic alternative: select the transition from 3 to 4 fractions, or reject it. This exceptional situation is new in the table construction project, as well as the solution itself! It can be observed that 5 cases on 6 have in common the fact that a same denominator appears in [3-terms] and [4-terms] decompositions. A priori, this fact may be seen as not being an improvement to better decompose a [3-terms] fraction into [4-terms]. Unless we find a real improvement worthwhile.

2/89 : sixth case, out of the category 'same denominator', is quickly ruled and [4-terms]

decomposition is adopted. (Anyway it belonged to this table only because  $m_3 = 16$ ).

2/43: once dropped out the option  $m_3 = 15$ , due to a too high gap  $\Delta_d = 13$ , the same argument holds, then [4-terms] decomposition is adopted.

2/73: the [4-terms] expansion provides an improvement since that leads to three consecutive multipliers  $\{3, 4, 5\}$ , thus this solution is adopted.

Three cases (slightly reordered) remain to be solved, they are displayed in the following table.

|                                |                                                                                             |                                                                    |       |       |       |       |               | 1 1                                      | [2-terms] solution<br>$/12 + 1/276_{12}$ Eg                 |  |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------|-------|-------|-------|---------------|------------------------------------------|-------------------------------------------------------------|--|--|--|
|                                |                                                                                             |                                                                    |       |       |       |       |               |                                          | $r 2/23 enigma? (m_3 = 16)$                                 |  |  |  |
|                                |                                                                                             | $n$ $2n+1$ $d_2$                                                   |       |       |       | $d_2$ | $d_3$         | $\Delta_d$ .                             | $D_1^n$ Unique [3-terms] decomposition                      |  |  |  |
|                                |                                                                                             |                                                                    | 4     | 9     |       | 8     | 1             | 7                                        | 16 $2/23 = 1/16 + 1/46_2 + 1/368_{16}$                      |  |  |  |
| Selected trials [4-terms] 2/23 |                                                                                             |                                                                    |       |       |       |       |               |                                          |                                                             |  |  |  |
| 1                              | n                                                                                           | 21                                                                 | n + 1 | $d_2$ | $d_3$ | $d_4$ | $\Delta'_{a}$ | $D_1^i$                                  | $D_1^n$ [4-terms] decomposition $\mathbf{m_4} \leq 10$      |  |  |  |
| 8                              | 8                                                                                           | 17 10 5 2                                                          |       |       |       | 2     | 3             | 20                                       | 0 $2/23 = 1/20 + 1/46_2 + 1/92_4 + 1/230_{10}$              |  |  |  |
|                                |                                                                                             | Selected trials [3-terms] for $2/53$ enigma? (m <sub>3</sub> = 15) |       |       |       |       |               |                                          |                                                             |  |  |  |
|                                |                                                                                             | $n \mid 2n+1 \mid d_2 \mid d_3$                                    |       |       |       | $d_3$ | $\Delta_d$    | $D_1^n$                                  | $\binom{n}{1}$ Possible [3-terms] decomposition             |  |  |  |
|                                | 3 7 5 2 3 30 $2/53 = 1/30 + 1/318_6 + 1/795_{15}$ Eg                                        |                                                                    |       |       |       |       |               |                                          |                                                             |  |  |  |
|                                |                                                                                             |                                                                    |       |       |       |       | Selecte       | ed trials                                | Is [4-terms] for 2/53                                       |  |  |  |
| n                              | ı                                                                                           | 2n                                                                 | + 1   | $d_2$ | $d_3$ | $d_4$ | $\Delta'_d$   | $D_1^n$                                  | $_{1}^{n}$ [4-terms] decomposition $\mathbf{m}_{4} \leq 10$ |  |  |  |
| 9                              |                                                                                             |                                                                    | 19    | 9     | 6     | 4     | 2             | 36                                       | $3  2/53 = 1/36 + 1/212_4 + 1/318_6 + 1/477_9$              |  |  |  |
|                                | Selected trials [3-terms] $2/29$ $(\mathbf{m_3} = 16)$                                      |                                                                    |       |       |       |       |               | ms] $2/29$ (m <sub>3</sub> = 16)         |                                                             |  |  |  |
|                                | $n \mid 2n+1 \mid d_2 \mid d_3 \mid \Delta_d \mid D_1^n \mid \text{Possible [3-terms] dec}$ |                                                                    |       |       |       |       |               | $D_1^n$ Possible [3-terms] decomposition |                                                             |  |  |  |
|                                | 1 3 2 1 1 6 $2/29 = 1/16 + 1/232_8 + 1/464_{16}$                                            |                                                                    |       |       |       |       |               |                                          |                                                             |  |  |  |
|                                |                                                                                             |                                                                    |       |       |       |       | Seleo         | cted tria                                | ials [4-terms] 2/29                                         |  |  |  |
| n                              | 1                                                                                           | 2n -                                                               | + 1   | $d_2$ | $d_3$ | $d_4$ | $\Delta'_d$   | $D_1^n$                                  | Possible [4-terms] decompositions $m_4 \leq 10$             |  |  |  |
| 9                              |                                                                                             | 19                                                                 |       | 12    | 4     | 3     | 1             | 24                                       | $2/29_a = 1/24 + 1/58_2 + 1/174_6 + 1/232_8$                |  |  |  |

For each fraction the same denominators (inside a box) have a well defined position in a [3-terms] expansion and another in a [4-terms]. We denote respectively these positions by  $\mathsf{rank}^{[3]}$  and  $\mathsf{rank}^{[4]}$ . Same denominators will be denoted by  $sameD_i$ . The table below summarizes the situation.

30

 $\frac{2}{29}$ 

 $1/20 + 1/116_{4}$ 

1/30 + 1/58

 $+ 1/145_{5}$ 

 $+ 1/87_{3} + 1/145_{1}$ 

+1/290

| Fraction          | ę | $sameD_i$ |  | $rank^{[3]}$ | $rank^{[4]}$ | Appreciation on ranks             |  |  |
|-------------------|---|-----------|--|--------------|--------------|-----------------------------------|--|--|
| 2/23              |   | 46        |  | 2            | 2            | no interest                       |  |  |
| 2/53              |   | 318       |  | 2            | 3            | too near                          |  |  |
| 2/29 <sub>a</sub> |   | 232       |  | 2            | 4            | acceptable + smallest $\Delta'_d$ |  |  |

Some convenient rulings ensue, namely

2/23; no solution; then come back to the only one solution in 2 terms.

2/53; maintain [3-terms] solution; reject [4-terms] solution.

 $2/29_a$ ; adopt [4-terms] solution.

## V [4-terms] analysis

Right now consider the [4-terms] cases. Egyptians gave:

| Ahmes's selections [4-terms]                       |        |
|----------------------------------------------------|--------|
| $2/29 = 1/24 + 1/58_{2} + 1/174_{6} + 1/232_{8}$   |        |
| $2/43 = 1/42 + 1/86_2 + 1/129_3 + 1/301_7$         |        |
| $2/61 = 1/40 + 1/244_4 + 1/488_8 + 1/610_{10}$     |        |
| $2/73 = 1/60 + 1/219_3 + 1/292_4 + 1/365_5$        | $\sim$ |
| $2/79 = 1/60 + 1/237_{3} + 1/316_{4} + 1/790_{10}$ |        |
| $2/83 = 1/60 + 1/332_4 + 1/415_5 + 1/498_6$        |        |
| $2/89 = 1/60 + 1/356_{4} + 1/534_{6} + 1/890_{10}$ |        |

| Unity decomposition     |
|-------------------------|
| 48 = 29 + 12 + 4 + 3    |
| 84 = 43 + 21 + 14 + 6   |
| 80 = 61 + 10 + 5 + 4    |
| 120 = 73 + 20 + 15 + 12 |
| 120 = 79 + 20 + 15 + 6  |
| 120 = 83 + 15 + 12 + 10 |
| 120 = 89 + 15 + 10 + 6  |

The task of finding  $D_1$  is rather simple, from the moment when one realizes that it is enough to establish a table of odd numbers  $(2n+1)_{|n\geq 3}$  as a sum of three numbers  $d_2 + d_3 + d_4$ , with  $d_2 > d_3 > d_4$ . This is easy to do and independent of any context. The table contains  $\left(\left[\frac{n}{2}\right]\left[\frac{n+1}{2}\right]-1\right)$  triplets  $\{d_2, d_3, d_4\}$  and  $\sup(d_2) = 2n-2$ . Square brackets here [] means 'integral part of'. One can start with the lowest values as follows:  $d_4 = 1, d_3 = 2, 3, 4, \cdots, d_2 = 3, 4, 5, \cdots; d_4 = 2, d_3 = 3, 4, 5, \cdots, d_2 = 4, 5, 6, \cdots$  and so on, with the condition  $d_3 + d_2 \equiv d_4 + 1 \mod (2)$ .

From Eq.(II.4) the first candidate possible for  $D_1$  starts at the value  $D_1^0 = (D+1)/2$ . We can search for general solutions of the form

$$D_1^n = D_1^0 + n, (V.1)$$

whence

$$2D_1^n - D = 2n + 1 = d_2 + d_3 + d_4.$$
(V.2)

From the first table of triplets, a new table (of trials) is built, where this time triplets are selected if  $d_2, d_3, d_4$  divide  $[(D + d_2 + d_3 + d_4)/2]$ . This provides a  $D_1^n$  possible. In this favorable case, first  $D_4$  is calculated by  $DD_1/d_4$ , then  $D_3$  by  $DD_1/d_3$ , and  $D_2$  by  $DD_1/d_2$ .

This table of trials, properly defined by the equation just below (included the constraints), ie

$$2\mathbf{n} + \mathbf{1} = \mathbf{d}_2 + \mathbf{d}_3 + \mathbf{d}_4, \text{ where } d_2, d_3 \text{ and } d_4 \text{ divide } D_1^n , \qquad (V.3)$$

is obviously a bit longer to establish than for doublets. By simplicity  $D_1^n$  will be not written as  $D_1^n(d_2, d_3, d_4)$ . For decompositions into 4 terms the total of trials yields only 71 possibilities ! Of course our remark previously made about doublets is still valid for triplets. Likewise, Abdulaziz's parameter [R] takes the form

$$[R] = \frac{1}{(D_1/d_2)} + \frac{1}{(D_1/d_3)} + \frac{1}{(D_1/d_4)}.$$
(V.4)

The notation used in our tables will be

$$\Delta_d' = d_3 - d_4,\tag{V.5}$$

Chief scribe wisely decided to impose a upper bound to all the denominators  $D_4$ , such that

$$D_4 \le D \mathsf{T}_f^{[4]}.\tag{V.6}$$

This cut-off beyond  $au_f^{[4]}$  is equivalent to a mathematical condition on  $D_1$ :

$$D_1 \le d_4 \top_f^{[4]}. \tag{V.7}$$

Here again, choosing  $\top_f^{[4]} = 10$  is quite appropriate. Thus a general coherence is ensured throughout the project, since 11 out of 12 decompositions into 3 terms were solved with  $\top_f^{[3]} = 10$ .

Remark that the condition (V.7) might be exploited from the beginning of the calculations for avoiding to handle too large denominators  $D_4$ . Simply find  $d_4$ , find  $d_3$ , find  $d_2$ , calculate  $D_1$ , if (V.7) is not fulfilled then quit, do not calculate  $D_4$ ,  $D_3$ ,  $D_2$  and go to next values for  $d_4$ ,  $d_3$ ,  $d_2$ ,  $D_1$  etc.

|                 |          |                 |          | Т             | rials [4-   | terms]          | with increasing order of $\Delta_{d}^{'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------|----------|-----------------|----------|---------------|-------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n               | 2n + 1   | $d_2$           | $d_3$    | $d_4$         | $\Delta'_d$ | $D_1^n$         | Possible [4-terms] decompositions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9               | 19       | 12              | 4        | 3             | 1           | 24              | $2/29 = 1/24 + 1/58_2 + 1/174_6 + 1/232_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5<br>9          | 11<br>19 | 6<br>10         | 3        | 2 4           | 1           | 36<br>40        | $\frac{2/61_a = 1/36 + 1/366_6 + 1/732_{12} + 1/1098_{18}}{2/61_a = 1/40_b + 1/244_a + 1/488_a + 1/610_a - \frac{E_g}{E_g}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3               | 19<br>7  | 4               | 52       | 4             | 1           | 40              | $\frac{2/61_b = 1/40 + 1/244_4 + 1/488_8 + 1/610_{10} E_g}{2/73_a = 1/40 + 1/730_{10} + 1/1460_{20} + 1/2920_{40}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5               | 11       | 6               | 3        | 2             | 1           | 42              | $2/73_b = 1/42 + 1/511$ 7 + $1/1022$ 14 + $1/1533$ 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11<br>8         | 23<br>17 | 16<br>12        | 4 3      | 3 2           | 1           | 48<br>48        | $\frac{2/73_c = 1/48 + 1/219_3 + 1/876_{12} + 1/1168_{16}}{2/79_a = 1/48 + 1/316_4 + 1/1264_{16} + 1/1896_{24}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20              | 41       | 30              | 6        | 5             | 1           | 60              | $2/79_b = 1/60 + 1/158_2 + 1/790_{10} + 1/948_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6<br>6          | 13<br>13 | 8<br>6          | 3 4      | $\frac{2}{3}$ | 1 1         | 48<br>48        | $\begin{array}{c} 2/83_a = 1/48 + 1/498_{ 6} + 1/1328_{ 16} + 1/1992_{ 24} \\ 2/83_b = 1/48 + 1/664_{ 8} + 1/996_{ 12} + 1/1328_{ 16} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14              | 29       | 14              | 8        | 7             | 1           | 56              | $\frac{2/33_b = 1/43 + 1/0048 + 1/330_{12} + 1/1323_{16}}{2/83_c = 1/56 + 1/332_4 + 1/581_7 + 1/664_8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18<br>3         | 37       | 30<br>4         | 4 2      | 3             | 1           | 60<br>48        | $\frac{2/83_d = 1/60 + 1/166_2 + 1/1245_{15} + 1/1660_{20}}{2/80_2 - 1/48 + 1/1068_2 + 1/2126_2 + 1/4272_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15              | 7<br>31  | 20              | 6        | 1<br>5        | 1           | 60              | $\begin{array}{c} 2/89_a = 1/48 + 1/1068_{12} + 1/2136_{24} + 1/4272_{48} \\ 2/89_b = 1/60 + 1/267_3 + 1/890_5 + 1/1068_{12} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6               | 13       | 9               | 3        | 1             | 2           | 18              | $2/23 = 1/18 + 1/46_2 + 1/138_6 + 1/414_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5               | 11<br>13 | 5               | 4        | 2             | 2           | 20<br>28        | $\frac{2/29 = 1/20 + 1/116_4 + 1/145_5 + 1/290_{10}}{2/42 = 1/28 + 1/172_2 + 1/201_5 + 1/602_{11}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6<br>8          | 13       | 7<br>13         | 3        | 2             | 2<br>2      | 39              | $\begin{array}{c} 2/43 = 1/28 + 1/172  _{4} + 1/301  _{7} + 1/602  _{14} \\ \hline 2/61 = 1/39 + 1/183  _{3} + 1/793  _{13} + 1/2379  _{39} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5               | 11       | 7               | 3        | 1             | 2           | 42              | $\frac{2}{73_a} = \frac{1}{42} + \frac{1}{438} + \frac{1}{1022} + \frac{1}{43066} + \frac{1}{422}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8<br>18         | 17<br>37 | 9<br>15         | 5<br>12  | 3<br>10       | 2           | 45<br>60        | $2/73_b = 1/45 + 1/365_5 + 1/657_9 + 1/1095_{15} \ 2/83 = 1/60 + 1/332_4 + 1/415_5 + 1/498_6 \ ^{Eg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 18              | 37       | 21              | 9        | 7             | 2           | 63              | $\frac{2}{89} = \frac{1}{63} + \frac{1}{267} \frac{324}{3} + \frac{1}{4105} \frac{5}{5} + \frac{1}{4005} \frac{6}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8               | 17       | 10              | 5        | 2             | 3           | 20              | $2/23 = 1/20 + 1/46_2 + 1/92_4 + 1/230_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8<br>10         | 17<br>21 | 10<br>16        | 5 4      | 2             | 3           | 30<br>32        | $\frac{2/43_a = 1/30 + 1/129_3 + 1/258_6 + 1/645_{15}}{2/43_b = 1/32 + 1/86_2 + 1/344_8 + 1/1376_{32}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5               | 11       | 6               | 4        | 1             | 3           | 36              | $2/61_a = 1/36 + 1/366_6 + 1/549_9 + 1/2196_{36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11<br>13        | 23<br>27 | 14<br>22        | 6<br>4   | 3<br>1        | 3<br>3      | 42<br>44        | $2/61_b = 1/42 + 1/183_3 + 1/427_7 + 1/854_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 15              | 31       | 26              | 4        | 1             | 3           | 52              | $\frac{2/61_c = 1/44 + 1/122_2 + 1/671_{11} + 1/2684_{44}}{2/73_a = 1/52 + 1/146_2 + 1/949_{13} + 1/3796_{52}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 19              | 39       | 28              | 7        | 4             | 3           | 56              | $2/73_b = 1/56 + 1/146_2 + 1/584_8 + 1/1022_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23<br>8         | 47<br>17 | 20<br>12        | 15<br>4  | 12<br>1       | 3           | 60<br>48        | $\frac{2/73_c = 1/60 + 1/219_3 + 1/292_4 + 1/365_5}{2/79_a = 1/48 + 1/316_4 + 1/948_{12} + 1/3792_{48}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8               | 17       | 8               | 6        | 3             | 3           | 48              | $\frac{2}{79_b} = \frac{1}{48} + \frac{1}{1746} + \frac{1}{1632} + \frac{1}{163248} + \frac{1}{16328} + \frac{1}{163248} + \frac{1}{16328} +$                                                                                                             |
| 16<br>6         | 33<br>13 | 28<br>8         | 4        | 1             | 3<br>3      | $\frac{56}{48}$ | $\frac{2/79_c}{2} = \frac{1}{56} + \frac{1}{158} + \frac{1}{106} + \frac{1}{4424} = \frac{1}{408} + \frac{1}{408} + \frac{1}{408} + \frac{1}{408} = \frac$ |
| 8               | 13       | 8<br>10         | 4<br>5   | 2             | 3           | 48<br>50        | $\frac{2/83_a = 1/48 + 1/498_6 + 1/996_{12} + 1/3984_{48}}{2/83_b = 1/50 + 1/415_5 + 1/830_{10} + 1/2075_{25}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18              | 37       | 30              | 5        | 2             | 3           | 60              | $2/83_c = 1/60 + 1/166_2 + 1/996_{12} + 1/2490_{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 15<br>14        | 31<br>29 | 15<br>15        | 10<br>9  | 6             | 4           | $\frac{30}{45}$ | $2/29 = 1/30 + 1/58_2 + 1/87_3 + 1/145_5$<br>$2/61 = 1/45 + 1/183_3 + 1/305_5 + 1/549_9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 14              | 35       | 27              | 6        | 5<br>2        | 4           | 54              | $\begin{array}{c} 2/61 = 1/45 + 1/183_{3} + 1/305_{5} + 1/549_{9} \\ \hline 2/73 = 1/54 + 1/146_{2} + 1/657_{9} + 1/1971_{27} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 15              | 31       | 15              | 10       | 6             | 4           | 60              | $2/89 = 1/60 + 1/356_{4} + 1/534_{6} + 1/890_{10}$ Eg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9               | 19       | 12              | 6        | 1             | 5           | 24              | $2/29 = 1/24 + 1/58_2 + 1/116_4 + 1/696_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8<br>11         | 17<br>23 | 10<br>14        | 6<br>7   | $\frac{1}{2}$ | 5<br>5      | 30<br>42        | $\begin{array}{c} 2/43 = 1/30 + 1/129_{\ 3} + 1/215_{\ 5} + 1/1290_{\ 30} \\ 2/61_a = 1/42 + 1/183_{\ 3} + 1/366_{\ 6} + 1/1281_{\ 21} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 17              | 35       | 24              | 8        | 3             | 5           | 48              | $2/61_b = 1/48 + 1/122_2 + 1/366_6 + 1/976_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11<br>11        | 23<br>23 | 16<br>12        | 6<br>8   | 1 3           | 5<br>5      | 48<br>48        | $\frac{2/73_a = 1/48 + 1/219_{3} + 1/584_{8} + 1/3504_{48}}{2/73_b = 1/48 + 1/292_{4} + 1/438_{6} + 1/1168_{16}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12              | 25       | 18              | 6        | 1             | 5           | 54              | $2/83_a = 1/54 + 1/249_{3} + 1/747_{9} + 1/4482_{54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 18<br>11        | 37<br>23 | 30<br>14        | 6<br>7   | 1 2           | 5<br>5      | 60<br>56        | $2/83_b = 1/60 + 1/166_2 + 1/830_{10} + 1/4980_{60} \ 2/89 = 1/56 + 1/356_4 + 1/712_8 + 1/2492_{28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11              | 23       | 14              | 9        | 2             |             | 36              | $\frac{2}{39} = \frac{1}{30} + \frac{1}{3004} + \frac{1}{1128} + \frac{1}{249228}$ $\frac{2}{43} = \frac{1}{36} + \frac{1}{862} + \frac{1}{1724} + \frac{1}{77418}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9               | 19       | 10              | 8        | 1             | 7           | 40              | $2/61 = 1/40 + 1/244_4 + 1/305_5 + 1/2440_{40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\frac{23}{14}$ | 47<br>29 | 30<br>18        | 12<br>9  | 5<br>2        | 7<br>7      | 60<br>54        | $\begin{array}{c} 2/73 = 1/60 + 1/146_{2} + 1/365_{5} + 1/876_{12} \\ \hline 2/79 = 1/54 + 1/237_{3} + 1/474_{6} + 1/2133_{27} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18              | 37       | 20              | 9<br>12  | 5             | 7           | 60              | $2/83 = 1/60 + 1/249_3 + 1/415_5 + 1/996_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 11              | 23       | 14              | 8        | 1             | 7           | 56              | $2/89 = 1/56 + 1/356$ $_{ m 4} + 1/623$ $_{ m 7} + 1/4984$ $_{ m 56}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 20              | 41       | 21              | 14<br>12 | 6<br>4        | 8           | 42              | $2/43 = 1/42 + 1/86_2 + 1/129_3 + 1/301_7$ Eg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15<br>21        | 31<br>43 | 15<br>26        | 12       | 4             | 8           | 60<br>52        | $2/89 = 1/60 + 1/356_4 + 1/445_5 + 1/1335_{15}$ $2/61 = 1/52 + 1/122_2 + 1/244_4 + 1/793_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 21              | 43       | 30              | 10       | 4             | 9<br>9      | 60              | $2/79_a = 1/60 + 1/158_2 + 1/474_6 + 1/4740_{60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20              | 41       | 20              | 15       | 6             | 9           | 60              | $2/79_b = 1/60 + 1/237_{3} + 1/316_{4} + 1/790_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 15<br>25        | 31<br>51 | 20              | 10<br>14 | 1             | 9           | 60<br>70        | $\frac{2/89 = 1/60 + 1/267_3 + 1/534_6 + 1/5340_{60}}{12/89 = 1/70 + 1/178_6 + 1/445_7 + 1/3115_{67}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25<br>23        | 51<br>47 | 35<br>30        | 14<br>15 | 2             | 12<br>13    | 70<br>60        | $\begin{array}{c} 2/89 = 1/70 + 1/178_{2} + 1/445_{5} + 1/3115_{35} \\ \hline 2/73 = 1/60 + 1/146_{2} + 1/292_{4} + 1/2190_{30} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 18              | 37       | $\frac{30}{20}$ | 15       | 2             | 13          | 60              | $\frac{2/13 - 1/60 + 1/140_2 + 1/292_4 + 1/2190_{30}}{2/83 = 1/60 + 1/249_3 + 1/332_4 + 1/2490_{30}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 24              | 49       | 32              | 16       | 1             | 15          | 64              | $2/79 = 1/64 + 1/158_2 + 1/316_4 + 1/5056_{64}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 26              | 53       | 34              | 17       | 2             | 15          | 68              | $\frac{2/83 = 1/68 + 1/166_2 + 1/332_4 + 1/2822_{34}}{1/2/61 = 1/54 + 1/122 + 1/182 + 1/1647}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 23<br>27        | 47<br>55 | 27<br>36        | 18       | 2             | 16<br>17    | 54<br>72        | $2/61 = 1/54 + 1/122_2 + 1/183_3 + 1/1647_{27}$ $2/89 = 1/72 + 1/178_2 + 1/356_4 + 1/6408_{72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 |          | 30<br>36        | 18<br>24 |               |             |                 | • , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - 30            | 61       | - 20            | 24       | 1             | 23          | 72              | $2/83 = 1/72 + 1/166_2 + 1/249_3 + 1/5976_{72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table J: Table of trials [4-terms] with increasing order of  $\Delta_{d}^{'}$ , only 71 possibilities !

Table J shown above is only as an indication for us and, certainly, was not calculated in its entirety. 2/23 has been reported only for memory because it was solved at the end of Sect. IV. With their experience related to 3-terms series, cut-off beyond 10 has been applied by the scribes. Indeed all cases (here 7) may support this cut-off without any exception. Table J becomes:

|    | Tri    | als [4 | -terms | ] orde | red wit     | :h $\Delta_{d}^{'}$ | earrow showing where are the Egyptian options                              |
|----|--------|--------|--------|--------|-------------|---------------------|----------------------------------------------------------------------------|
| n  | 2n + 1 | $d_2$  | $d_3$  | $d_4$  | $\Delta_d'$ | $D_1^n$             | Possible [4-terms] decompositions $m_4 \leq 10$                            |
| 9  | 19     | 12     | 4      | 3      | 1           | 24                  | $2/29 = 1/24 + 1/58$ $_{f 2} + 1/174$ $_{f 6} + 1/232$ $_{f 8}$ $^{Eg}$    |
| 9  | 19     | 10     | 5      | 4      | 1           | 40                  | $2/61 = 1/40 + 1/244$ $_{f 4} + 1/488$ $_{f 8} + 1/610$ $_{f 10}$ $^{Eg}$  |
| 14 | 29     | 14     | 8      | 7      | 1           | 56                  | 2/83 = 1/56 + 1/332 4 $+ 1/581$ 7 $+ 1/664$ 8                              |
| 5  | 11     | 5      | 4      | 2      | 2           | 20                  | $2/29 = 1/20 + 1/116_4 + 1/145_5 + 1/290_{10}$                             |
| 18 | 37     | 15     | 12     | 10     | 2           | 60                  | $2/83 = 1/60 + 1/332$ 4 $+ 1/415$ 5 $+ 1/498$ 6 $^{Eg\star}$               |
| 18 | 37     | 21     | 9      | 7      | 2           | 63                  | $2/89 = 1/63 + 1/267_{\ 3} + 1/623_{\ 7} + 1/801_{\ 9}$                    |
| 8  | 17     | 10     | 5      | 2      | 3           | 20                  | $2/23 = 1/20 + 1/46_2 + 1/92_4 + 1/230_{10}$                               |
| 23 | 47     | 20     | 15     | 12     | 3           | 60                  | $2/73 = 1/60 + 1/219_{\ 3} + 1/292_{\ 4} + 1/365_{\ 5}$ $^{Eg\star}$       |
| 15 | 31     | 15     | 10     | 6      | 4           | 30                  | $2/29 = 1/30 + 1/58$ $_{2} + 1/87$ $_{3} + 1/145$ $_{5}$                   |
| 14 | 29     | 15     | 9      | 5      | 4           | 45                  | $2/61 = 1/45 + 1/183_{\ 3} + 1/305_{\ 5} + 1/549_{\ 9}$                    |
| 15 | 31     | 15     | 10     | 6      | 4           | 60                  | $2/89 = 1/60 + 1/356_{	extsf{4}} + 1/534_{	extsf{6}} + 1/890_{	extsf{10}}$ |
| 20 | 41     | 21     | 14     | 6      | 8           | 42                  | $2/43 = 1/42 + 1/86$ $_{2} + 1/129$ $_{3} + 1/301$ $_{7}$ $^{Eg}$ —        |
| 20 | 41     | 20     | 15     | 6      | 9           | 60                  | $2/79 = 1/60 + 1/237_{ m 3} + 1/316_{ m 4} + 1/790_{ m 10}$                |

Table K: [4-terms] options

We follow the same way as for the [3-terms] series with slightly different subsets. That yields:

| D with a single $\Delta_d^{\prime}$ (options: no) |        |       |       |       |             |         | Scribes's decision: obvious                                                   |
|---------------------------------------------------|--------|-------|-------|-------|-------------|---------|-------------------------------------------------------------------------------|
| n                                                 | 2n + 1 | $d_2$ | $d_3$ | $d_4$ | $\Delta'_d$ | $D_1^n$ | [4-terms] decompositions                                                      |
| 23                                                | 47     | 20    | 15    | 12    | 3           | 60      | $2/73 = 1/60 + 1/219_3 + 1/292_4 + 1/365_5$ Eg $\star$                        |
| 20                                                | 41     | 21    | 14    | 6     | 8           | 42      | $2/43 = 1/42 + 1/86$ $_{2} + 1/129$ $_{3} + 1/301$ 7 $^{Eg}$                  |
| 20                                                | 41     | 20    | 15    | 6     | 9           | 60      | $2/79 = 1/60 + 1/237_{3} + 1/316_{4} + 1/790_{10}$                            |
| D with two different $\Delta'_d$ (options: yes)   |        |       |       |       |             | )       | Scribes's decision: smallest $\Delta_d'$                                      |
| n                                                 | 2n + 1 | $d_2$ | $d_3$ | $d_4$ | $\Delta'_d$ | $D_1^n$ | [4-terms] decompositions                                                      |
| 9                                                 | 19     | 12    | 4     | 3     | 1           | 24      | $2/29 = 1/24 + 1/58_2 + 1/174_6 + 1/232_8$ Eg                                 |
| 5                                                 | 11     | 5     | 4     | 2     | 2           | 20      | $2/29 = 1/20 + 1/116_4 + 1/145_5 + 1/290_{10}$                                |
| 15                                                | 31     | 15    | 10    | 6     | 4           | 30      | $2/29 = 1/30 + 1/58$ $_{2} + 1/87$ $_{3} + 1/145$ $_{5}$                      |
| 9                                                 | 19     | 10    | 5     | 4     | 1           | 40      | $2/61 = 1/40 + 1/244$ $_{f 4} + 1/488$ $_{f 8} + 1/610$ $_{f 10}$ $^{Eg}$     |
| 14                                                | 29     | 15    | 9     | 5     | 4           | 45      | $2/61 = 1/45 + 1/183_3 + 1/305_5 + 1/549_9$                                   |
|                                                   |        |       |       |       |             |         | Scribes's decision: consecutive multipliers                                   |
| n                                                 | 2n + 1 | $d_2$ | $d_3$ | $d_4$ | $\Delta'_d$ | $D_1^n$ | [4-terms] decompositions                                                      |
| 14                                                | 29     | 14    | 8     | 7     | 1           | 56      | $2/83 = 1/56 + 1/332_{4} + 1/581_{7} + 1/664_{8}$                             |
| 18                                                | 37     | 15    | 12    | 10    | 2           | 60      | $2/83 = 1/60 + 1/332$ $_{f 4} + 1/415$ $_{f 5} + 1/498$ $_{f 6}$ $^{Eg\star}$ |
|                                                   |        |       |       |       |             |         | Scribes's decision: no odd denominator $D_1$                                  |
| n                                                 | 2n + 1 | $d_2$ | $d_3$ | $d_4$ | $\Delta'_d$ | $D_1^n$ | [4-terms] decompositions                                                      |
| 18                                                | 37     | 21    | 9     | 7     | 2           | 63      | $2/89 = 1/63 + 1/267_{\ 3} + 1/623_{\ 7} + 1/801_{\ 9}$                       |
| 15                                                | 31     | 15    | 10    | 6     | 4           | 60      | $2/89 = 1/60 + 1/356_{4} + 1/534_{6} + 1/890_{10}$                            |

Table L: A single or two different  $\Delta_d^{'}$  [4-terms]

We recall that any odd denominator  $D_1$  could lead to a solution for [3-terms] decompositions as checked in tables D or E. Its occurrence arises only 2 times in table L [4-terms]. The first, for 2/61, was dropped out because a  $\Delta'_d = 4$  too high. The second one regards 2/89 (first row). Then, for a unifying sake and avoiding singularity, chief scribe decided to discard  $D_1 = 63$  in this case.

Remark that we are very far from assumptions of Gillings [4] about Egyptian preferences for even numbers instead of odd, regarding the denominators in general. Thus the 'no odd precept' was

a low priority. At low ratio also (2 times only), this will be applied to the composite numbers D [9].

## VI Conclusion

As we saw, the most recent analysis (2008) has been performed on the 2/n' table by Abdulaziz [7] (see his group  $G_2$ ). It can be appreciated as a kind of mathematical anastylosis using materials issued from the RMP and other documentation. Ancient calculation procedure, using mainly fractions, is faithfully respected, but leads to arithmetical depth analyses of each divisor of  $D_1$ .

Our global approach avoided the difficulties of sophisticated arithmetical studies. This provides the advantage of forgetting quickly some widespread 'modern' ideas about the topic. • No, the last denominator is not bounded by a fixed value of 1000. It only depends on the 'circumstances' related to the value of D. For 3 or 4 terms, a limitation like  $D_h \leq 10D$  is quite

suitable, except only for 2/53 where 10 is replaced by 15. An observation well stressed in Ref. [7].

• No requirement is found about the denominator  $D_1$  as having to be the greatest if alternatives.

• Once for all, a systematic predilection for even denominators does not need to be considered. Only once, we were forced to discard  $D_1 = 63$  (odd) for deciding on 2/89.

• Of course, there is no theoretical formula that can give immediately the first denominator as a function of D. It must necessarily go through trials and few selection criteria. The simpler the better, like the  $\Delta$ -classification presented in this paper. Maybe is it this classification that induces the opportunity of a comprehensive approach? Strictly speaking, there are no algorithms in the method, just tables and pertinent observation. This is how 2/23, 2/29 or 2/53 have found a logical explanation, more thorough than the arguments commonly supplied for these 'singularities'.

Find a simple logic according to which there is no singular case was the goal of the present paper. Perhaps, chronologically, the study of prime numbers has been elaborated **before** that of composite numbers. It is nothing more than an hypothesis consistent with the spirit of our study. Yes ancient scribes certainly have been able to calculate and analyze all the preliminary cases. Ultimately, our unconventional method allows to reconstruct the table fairly easily with weak mathematical assumptions, except maybe the new idea to consider as beneficial to have consecutive multipliers.

## Appendix A: why a boundary with a Top-flag?

In this appendix, we continue to consider prime denominators D. For [2-terms] decompositions this concept of a Top-flag has no meaning since the last denominator is unique. Obviously, doubtless far from Egyptian concepts, there are another equations more general than

Eqs. (II.5) or (II.6), namely

$$\frac{2}{D} = \frac{1}{D_1} + \frac{1}{m_2 D} + \frac{1}{m_3 D}.$$
(A.1)

$$\frac{2}{D} = \frac{1}{D_1} + \frac{1}{m_2 D} + \frac{1}{m_3 D} + \frac{1}{m_4 D}.$$
(A.2)

We can imagine these as issued from another kind of unity decomposition like

$$\mathbf{1} = \frac{D}{2D_1} + \frac{1}{2m_2} + \frac{1}{2m_3}.$$
 (A.3)

$$\mathbf{1} = \frac{D}{2D_1} + \frac{1}{2m_2} + \frac{1}{2m_3} + \frac{1}{2m_4}.$$
 (A.4)

 $D/2D_1$  remains in the lead of equality and **1** is a sum of terms, each with a even denominator. These (modern) equations have additional solutions of no use for the scribes.

A priori the solutions are infinite, then for avoiding such a tedious research (today and in the past time), it is necessary to limit the highest denominator  $D_h = m_h D$ . How to do that ? Simply by defining a kind of 'Top-flag'  $\top_f^{[h]}$  such as

$$D_h \le D \mathsf{T}_f^{[h]}.\tag{A.5}$$

Indeed, as soon as one decides to study a three-terms decomposition or more, it should be realized that an upper boundary for the last denominator has to be fixed. If not, the number of solutions becomes infinite [countable]. Recall that  $m_2 < m_3 < m_4$  and  $D_2 < D_3 < D_4$ . Unfortunately (or not) the author of this paper has begun the calculations with a even more general problem, this of solving

$$\frac{2}{D} = \sum_{i=1}^{h} \frac{1}{D_i},$$
 (A.6)

without any criteria of multiplicity involving multipliers like  $m_i$  (i > 2). Certainly this was the reflex of Gillings [4] or Bruckheimer and Salomon [5]. The problem is solvable and the solutions available by means of a small computer. After a necessary arithmetical analysis, it can be found that (h - 1) sets of solutions exist. One with (h - 1) multipliers  $m_i$ , another with (h - 2) multipliers and so on. No solution exists if one searches for  $D_i$   $(i \ge 2)$  not multiple of D. Even a low-level programming code like sb can be used instead of Fortran to perform computations in a very acceptable speed. We quickly realized the necessity of stopping the calculations by using a limitation regarding the last highest denominator  $D_h$ . Whence the introduction of a Top-flag. Actually the Egyptian 2/D table shows a subset of more general solutions because the multipliers  $m_i$  have a specific form involving  $D_1$  and some of its divisors  $d_i$ . For example out of this subset, you can find an unexpected [4-terms] solution for 2/23 with  $\top_f [4] = 10$ , namely

 $2/23 = 1/15 + 1/115_{5} + 1/138_{6} + 1/230_{10}$ .

So, if we restrict ourself to retrieve Egyptian fractions given in the table, it naturally comes to mind to limit the highest denominator by an upper boundary: a convenient Top-flag. Excepted the Babylonian system example in base 60, a numeration in base 10 is rather universal, because of our two hands with each 5 fingers. It is of common sense that the selection was generally  $T_f^{[h]} = 10 \ (= 2 \times 5)$ , not excluding a favorable appreciation for  $T_f^{[3]} = 15 \ (= 3 \times 5)$  as for 2/53.

## References

- T. E. PEET: The Rhind Mathematical Papyrus, British Museum 10057 and 10058, London: The University Press of Liverpool limited and Hodder - Stoughton limited (1923).
- [2] A. B. CHACE; l. BULL; H. P. MANNING; and R. C. ARCHIBALD: The Rhind Mathematical Papyrus, Mathematical Association of America, Vol.1 (1927), Vol. 2 (1929), Oberlin, Ohio.
- [3] G. ROBINS and C. SHUTE: The Rhind Mathematical Papyrus: An Ancient Egyptian Text, London: British Museum Publications Limited, (1987). [A recent overview].
- [4] R.J. GILLINGS: Mathematics in the Time of Pharaohs, MIT Press (1972), reprinted by Dover Publications (1982).
- [5] M. BRUCKHEIMER and Y. SALOMON: Some comments on R.J Gillings's analysis of the 2/n table in the Rhind Papyrus, Historia Mathematica, Vol. 4, pp. 445-452 (1977).
- [6] A. IMHAUSEN and J. RITTER: Mathematical fragments [see fragment UC32159]. (2004).
   In: The UCL Lahun Papyri, Vol. 2, pp. 71-96. Archeopress, Oxford, Eds M. COLLIER, S. QUIRKE.
- [7] A. ABDULAZIZ: On the Egyptian method of decomposing 2/n into unit fractions, Historia Mathematica, Vol. 35, pp. 1-18 (2008).
- [8] M. GARDNER: *Egyptian fractions:* Unit Fractions, Hekats and Wages an Update (2013), available on the site of academia.edu. [Herein can be found an historic of various researches about the subject].
- [9] L. BREHAMET: Remarks on the Egyptian 2/D table in favor of a global approach (D composite number), arXiv [math.HO], to be submitted.
- [10] L. FIBONACCI: Liber abaci (1202).
- [11] E.M. BRUINS: The part in ancient Egyptian mathematics, Centaurus, Vol. 19, pp. 241-251 (1975).