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Abstract. This lecture is aimed at giving a sufficient background on crystallography, as a reminder to ease
the reading of the forthcoming chapters. It more precisely recalls the crystallographic restrictions on the
space isometries, enumerates the point groups and the crystal lattices consistent with these, examines the
structure of the space group, which gathers all the spatial invariances of a crystal, and describes a few dual
notions. It next attempts to familiarize us with the representation analysis of physical states and excitations
of crystals.

1. INTRODUCTION

Crystallography covers a wide spectrum of investigations: i- it aspires to get an insight into

crystallization phenomena and develops methods of crystal growths, which generally pertains to the

physics of non linear irreversible processes; ii- it geometrically describes the natural shapes and the

internal structures of the crystals, which is carried out most conveniently by borrowing mathematical

tools from group theory; iii- it investigates the crystallized matter at the atomic scale by means of

diffraction techniques using X-rays, electrons or neutrons, which are interpreted in the dual context of

the reciprocal space and transposition therein of the crystal symmetries; iv- it analyzes the imperfections

of the crystals, often directly visualized in scanning electron, tunneling or force microscopies, which in

some instances find a meaning by handling unfamiliar concepts from homotopy theory; v- it aims at

providing means for discerning the influences of the crystal structure on the physical properties of the

materials, which requires to make use of mathematical methods from representation theory. A number of

extensions of this standard crystallography in addition were formulated, for instance towards euclidean

spaces of dimension ν > 3, towards structures that are periodic solely in sub-spaces of dimension

� < ν, towards combination of geometric symmetry with changes of a property, giving rise to color

groups and other alike, towards modulated and composite incommensurate crystals, answerable to the

formalism of the superspace groups, towards quasi-crystals, apprehended by means of irrational cuts

and projections of ν-dimensional crystals, or else towards more general multi-metrical not necessarily

euclidean crystallography [1, 2]. A small part only of these topics, to be precise the geometrical

description and the representation analysis of the symmetry groups of the infinite perfect 3-dimensional

crystals, will be addressed hereafter. We shall resort to only elementary aspects of the concepts discussed

in the preceding two chapters, by Canals and Schober and by Ballou.

2. SYMMETRY GROUPS

The word crystal stems from Greek “krustallas” and means “solidified by the cold”. More precisely it

designates an ordered state of matter with periodic arrangements of ions, atoms or molecules. Although

this formally distinguishes the crystal state from the other states of solid matter, for instance glasses, gels
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or else foams, it is not always straightforward to assert that a real material is crystalline. All depends on

the spatial extension over which the correlations in atomic positions are examined and thereby on the

experimental means to probe the crystallinity. It implicitly will be assumed that the coherence length

is infinite. This amounts to consider solely ideal crystals without defects or even a surface, which is an

excellent approximation in most instances. The ideal crystal is characterized by two basic symmetries,

orientation symmetry and translation symmetry, and by their combinations. Orientation symmetry

comes out in the anisotropy of the physical properties of the crystals. It reveals itself in macroscopic

physics, most spectacularly in the external shape of crystals, which often present natural faces, and

in mechanical properties, optical properties, electric conductivity, . . .. Translation symmetry accounts

for the periodicity of the physical properties of the crystals. It is responsible for the phenomenon

of diffraction and gives rise to specific dynamics, phonons (lattice vibrations), magnons (spin

waves), . . ., with coherent propagations. These basic symmetries are mutually constrained. Section 2.1

will describe the orientation symmetries, recalling the restrictions inherent to the discretized translations,

then will enumerate the 32 crystallographic point groups that can be built from them and discuss

the method of stereographic projections to geometrically represent these groups. Section 2.2 will be

concerned with the translation symmetries and will enumerate the 6 conventional cells, the 7 crystal

systems and the 14 Bravais lattices consistent with the orientation symmetries. The notions of rows

and net planes, especially useful for diffraction, will be briefly recalled. Section 2.3 will describe glide

planes and screw axes, completing the inventory of the crystal symmetries, then will discuss the space

groups, gathering all the isometries for a given crystal. The way in which the relevant data on a space

group are transcribed in the International Tables For Crystallography (ITC) [1] will be explained, from

two selected examples. The international (Hermann-Mauguin) symbols will be used for both the point

groups and the space groups, since these are the most commonly encountered in crystallography and are

much more convenient for the space groups. The Schoenflies notation nevertheless will be considered

for the point groups, since quite often this is used in spectroscopic investigations. Section 2.4 will

succinctly call back the dual notions of the reciprocal space and Brillouin zone, which are essential when

experimentally determining the crystal structure or investigating propagating excitations, by means of

X-rays or neutrons scattering techniques.

2.1 Orientation symmetry

An orientation symmetry in the ν-dimensional space Eν designates an euclidean isometry that leaves at

least one point fixed. It thus is called point symmetry as well. Choosing the fixed point as the origin O

in Eν and selecting an orthogonal frame Ox1 · · · xν , it is put in bijective correspondence with a ν-by-ν

real orthogonal matrix, namely a matrix � with real entries such that �T � = �ν where �T symbolizes

the transpose of � and �ν the ν-by-ν unit matrix. It follows that the determinant of � necessarily is

Det(�) = ±1, since Det(�T ) = Det(�) and Det(��) = Det(�)Det(�) ∀�∀�. The orientation symmetry is

termed proper if Det(�) = +1 and improper otherwise. A real orthogonal matrix � is diagonalizable

in the field R of real numbers if and only if it is an involution, namely if and only if �2 = �ν . Its

eigenvalues then are +1 with multiplicity p and −1 with multiplicity q = ν − p. Intuitively, this

describes a reflection about the p-dimensional subspace E+
p = {M ∈ Eν | −→

OM ∈ ker(� − �ν)} of the fixed

points of the involution in Eν . ker(� − �ν) is the set of vectors �v such that (� − �ν)�v = �0. There exists

only one reflection about the singleton E+
0 = {O}, called inversion through the origin. This is a proper

symmetry for even ν and an improper symmetry for odd ν. We get a hyperplane reflection for p = ν − 1

and a flip about E+
p for p = ν − 2. According to the Cartan-Dieudonné theorem, every orientation

symmetry is the composition of at minimum � = ν − dim[ker(� − �ν)] reflections. When ν ≥ 3, any

composition of two hyperplane reflections is equivalent to the composition of two flips. Within our

everyday space, namely for ν = 3, a hyperplane reflection is a mirror (p = 2) and a flip about an axis a

�-rotation (p = 1).
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Figure 1. The basic elementary point symmetries in a crystal and their associated point group symbol. a- inversion
through the origin (fixed point), symbol: 1̄, b- rotation of order n about the z−axis (fixed line), symbol: n (this is a
rotation of angle 2�/n), c- rotoinversion about the z−axis (fixed point), symbol: n̄ (this is a rotation of angle 2�/n
followed by an inversion - the empty circle stands for an intermediate immaterial position), d- reflection about a
plane or mirror (fixed plane), symbol: m (it may be emphasized that this is in effect the rotoinversion 2̄, but the
symbol m is preferentially used).

Addressing more specifically the 3-dimensional crystallography, it is customary to distinguish as

basic elementary orientation symmetries, the inversion I through the origin, the rotation R(û, �)

by an angle � about a u−axis of unit vector û, the rotoinversion I ◦R(û, �) = R(û, �) ◦ I and

the mirror Mû = I ◦R(û, �), as sketched in figure 1. Use also is made, generally in spectroscopy,

of rotoreflections Mû ◦R(û, �) = R(û, �) ◦Mû, which easily transpose to rotoinversions as Mû ◦
R(û, �) = I ◦R(û, �) ◦R(û, �) = I ◦R(û, � + �). As a matter of fact, only a few discrete rotation

angles of the form � = 2�/n are allowed in the crystals (as will be seen in subsection 2.1.1), where n is

an integer called the order of the rotation. On the other hand, when a crystal is invariant under a given

symmetry it also is invariant under the repeated applications of this symmetry. Thus, in figure 1 only the

first application of the considered orientation symmetry is represented, but this could have been applied

n times until getting back to the starting point. A rotation of order 4 for example produces 4 different

positions, by applying it a first, a second, a third then a fourth time, this last composition leading to the

identity since 4 × 2�/4 = 2�. The international convention is to symbolize a crystal rotation, its axis

and the cyclic group it generates, all by its order n. A crystal rotoinversion and the axis of the underlying

rotation are symbolized n̄, in order to recall the composition I ◦R(û, 2�/n). Additional rules, below

discussed, allow inferring the orientation û of the rotation axes.

Any real orthogonal matrix � is unitary, to be explicit if � = �⋆ and �T � = �ν then �†� = (�⋆)T � =
�T � = �ν , where �⋆ stands for the conjugate of � and �† for the adjoint of �. This means that � is

diagonalizable in the field C of complex numbers and that its eigenvalues (�1, . . . , �ν) must satisfy

the constraints (�k)⋆�k = 1 and Det(�) = �1 . . . �ν = ±1. These imply that �k = ei�k and that if �k �=
n� (�k �= ±1) then there exists �q = ei�q in the series of the eigenvalues such that �q = −�k , namely

the non real eigenvalues necessarily are paired by complex conjugates. Each pair can be interpreted as

the eigenvalues of a 2-by-2 real orthogonal matrix of the type

�(Rk) =
(

cos �k − sin �k

sin �k cos �k

)

associated with a rotation Rk in a 2-dimensional subspace Ek of Eν . Indeed, the characteristic

polynomial of �(Rk) is Det[�(Rk) − x�2] = x2 − 2x cos �k + 1 = 0 the roots of which are x± =
cos �k ±

√
cos2 �k − 1 = e±i�k . A similarity transformation then exists block-diagonalizing the matrix

� into the direct sum ���−1 = �(R1) ⊕ · · · ⊕ �(Rr=(ν−p−q)/2) ⊕ −�q ⊕ �p, where � is a non singular

matrix of basis change and �(R1), · · ·, �(Rr ) are 2-by-2 real orthogonal matrices associated with

rotations in (ν − p − q)/2 mutually orthogonal 2-dimensional subspaces of Eν . As an example, the

real orthogonal matrices associated with the four symmetry operations depicted in figure 1 are given,
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with respect to the already well adapted Oxyz frame (� = �3), by

�(1̄) =




−1 0 0

0 −1 0

0 0 −1


 (2.1)

�(n) =




cos � − sin � 0

sin � cos � 0

0 0 1


 with � = 2�

n
(2.2)

�(n̄) =




cos � − sin � 0

sin � cos � 0

0 0 −1


 with � = 2�

n
+ � (2.3)

�(m) =




1 0 0

0 1 0

0 0 −1


 (2.4)

The set of the ν-by-ν real orthogonal matrices equipped with the standard matrix multiplication

law, to which the composition of the orientation symmetries in Eν transposes, makes up the orthogonal

matrix group O(ν,R): i- the set is closed under matrix multiplication, to be precise ∀(�, �) ∈
O(ν,R)2, ∀(i, j ), (��)T

ij = (��)ji = ∑
k �jk�ki = ∑

k �ki�jk = ∑
k �T

ik�
T
kj = (�T �T )ij thus (��)T �� =

�T �T �� = �T �ν� = �ν so �� ∈ O(ν,R); ii- matrix multiplication in general is associative, so it is within

O(ν,R); iii- the unit element �ν of matrix multiplication is inside O(ν,R); iv- any � in O(ν,R) possesses

an inverse �−1, since Det(�) = ±1 �= 0, which belongs to O(ν,R), since �T = �−1 and (�T )T = � so

that (�−1)T �−1 = �ν . O(ν,R) is a subgroup of the group of ν-by-ν real invertible matrices, the general

linear group GL(ν,R).1

2.1.1 Crystallographic restriction

A crystal basically is an atomic stacking with finite periodicity so that if it is invariant under the rotation

R(û, �)A by an angle � about an u-axis crossing a point A then necessarily an infinite number of

points B exists in the plane perpendicular to the u-axis at each of which the crystal is invariant under

the rotation R(û, �)B by the same angle about the same u-axis, now crossing the chosen point B. It

goes without saying that the crystal then is invariant also under the rotationsR(û, −�)X (X = A or B),

sinceR(û, −�)X ◦R(û, �)X = �3. UnderR(û, �)A the point B is transformed into the point B ′ whereas

underR(û, −�)B the point A is transformed into the point A′, as displayed in figure 2-a. The quadruplet

of points (A, B, A′, B ′) forms a parallelogram the three sides (AB), (AB ′) and (A′B) of which have

the same length T , since B ′ is the transform of B by an isometry with fixed point A and A′ is

1 O(ν,R) is a topological group of dimension ν(ν − 1)/2. It inherits its topology from the single canonical separated topology
consistent with the structure of normed vector space of the set of ν-by-ν real matrices M(ν,R). This is of dimension ν2, since a
ν-by-ν matrix has ν2 independent entries, whereas the condition of orthogonality �T � = �ν gives rise to ν + ν(ν − 1)/2
constraints. O(ν,R) is compact because it is closed, being the inverse image of �n by the continuous application M(ν,R) →
M(ν,R) : � �→ �T �, and bounded, as inferred by considering the norm ‖�‖ = {T r[�T �]}1/2. O(ν,R) is path disconnected, which
means that there exists matrices in the group manifold that cannot be connected by a smooth path. It more precisely is partitioned
into two connected components: O(ν,R) = SO(ν,R)×{�ν , −�ν}, where the normal subgroup SO(ν,R) is the special orthogonal
matrix group made up of the ν-by-ν real orthogonal matrices with determinant +1. SO(ν,R) is 2-connected, which means that the
closed paths in the group manifold cannot all be deformed into each other and form 2 homotopic classes. Its universal covering
is the compact simply connected spinor group Spin(ν). A familiar example is the spinor group Spin(3), which is isomorphic to
the group S3 of unit quaternions and to the special unitary group SU(2, C) (C is the field of complex numbers). A more detailed
description of these topological properties would lead us too far from the scope of these notes. A wide literature exists on the
topic. The interested reader might start for instance with J. Stillwell, Naive Lie Theory (Springer Science, 2008).
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Figure 2. (Color online) a- Geometrical constraint on crystallographic rotations (see text). b- Visualization of the
incompatibility of the rotation of order 5 with discrete translation - No way exists to pave the plane by regular
pentagons without overlap nor gap (shown in yellow (gray) in the figure).

the transform of A by an isometry with fixed point B. The fourth side (A′B ′) is parallel to the

side (AB) and has the length T ′ = T + 2 T sin(� − �/2) = T (1 − 2 cos �). The primed points are

crystallographically equivalent to the unprimed ones, since the considered rotations are invariance

operations, which implies that the vector �T ′ joining the former must be an integral multiple of the

vector �T joining the latter, namely an integer m must exist such that �T ′ = m �T . It follows that the

angle of rotation � must satisfy the constraint: 1 − 2 cos � = m or else cos � = (1 − m)/2. This is

solved solely for (�, m) = (±2�/1, −1), (±2�/6, 0), (±2�/4, 1), (±2�/3, 2), (±2�/2, 3) (modulo 2� for

�). Accordingly, identifying the identity with R(û, � = 2�/1)X ∀(û, X), the only proper rotations

consistent with the finite periodicity of the 3-dimensional crystals are those of orders 1, 2, 3,

4 and 6.

Another way to find the same result is by inventorying the regular tessellations of the plane, namely

by searching which convex regular n-gons can be used as a single unit to pave the plane without overlaps

nor gaps. A regular n-gon is a polygon with all sides of equal length (equilateral) and all corners of

equal angles (equiangular). It geometrically typifies an invariance with respect to a proper rotation of

order n whereas a tessellation intrinsically is periodic. Conversely, on any planar periodic pattern the

same Wigner-Seitz convex cell can be defined on each element of a set of periodic congruent points by

drawing lines normal to the lines joining a selected point to its nearest neighbors, thus materializing a

contiguous cover of the plane. If in addition the periodic pattern is invariant under a rotation of order

n then the cell necessarily is a regular n-gon. Among evident examples are the regular tessellation

based on equilateral triangles (n = 3), on squares (n = 4) or on regular hexagons (n = 6). An n-gon is

defined solely for n ≥ 3, but the tessellation with rectangles although not regular implies that the rotation

symmetry of order 2 also is not forbidden. No tessellation with regular pentagons (n = 5) in contrast is

possible, as tentatively pictured in figure 2-b, nor with any other regular n-gons. Indeed, each vertex of

a regular tessellation is shared by an integral number m of n-gons so, to avoid any overlap or gap, the

interior angle of the regular n-gon at a vertex necessarily must be 	n-gon = 2�/m, but the sum of the

interior angles of an n-gon is (n − 2)�, as straightforwardly inferred on dividing the n-gon into (n − 2)

contiguous triangles by drawing its diagonals from a selected vertex, so that 	n-gon = (n − 2)�/n. It

follows that n must satisfy the constraint: 2n/(n − 2) = m, which is solved solely for (n = 3, m = 6),

(n = 4, m = 4) and (n = 6, m = 3). m always decreases for increasing n so if n > 6 then m ≤ 2, but

m = 2 leads to n = n − 2, which is absurd, and m = 1 to n = −2, which is meaningless.

A proof of algebraic nature often is provided too, making use of the similarity invariance of the

matrix trace: ∀� & ∀� with Det(�) �= 0, Tr(���−1) = Tr(�), where � would account for any change

of basis vectors. If � is a real orthogonal matrix with determinant +1 associated with a rotation
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R(û, �) then an orthogonal frame Ox1x2x3 exists where it takes the form displayed in eq. (2.2), which

immediately allows establishing that Tr(�) = ∑
i �ii = 2 cos � + 1. If the frame is changed to another

O
1
2
3 among those generating the lattice LO of points congruent to O by the finite translations

inherent to a crystal then the rotation R(û, �) will be associated with a new matrix ���−1 the entries

of which must all be integers, otherwise LO will not be transformed into itself and the crystal will

not be invariant under the rotation R(û, �). It follows that Tr(���−1) = Tr(�) = 2 cos � + 1 must be

an integer, which again limits the allowed values of the rotation angles � to 2�/n (n = 1, 2, 3, 4, 6)

(modulo 2�).

On general grounds, an orientation symmetry is consistent with translation invariance in a

discretized space of dimension ν if and only if there exists an invertible ν-by-ν integer matrix of

finite order to which it can be associated by similarity transformation:2 any orientation symmetry

S within a discretized space of dimension ν must be of finite order Ord(S), otherwise from a given

position not belonging to the subspace of the fixed points of S and at a finite distance from the fixed

point O an infinite number of equivalent positions would be generated at the same distance by indefinite

repeated applications of S, making up a dense set on a (ν − 1)-sphere in contradiction with a discrete

geometry. A translation invariance in a discretized space is meant merely for the existence of a finite

space periodicity. If this prevails along ν independent directions then a ν-dimensional vector lattice

implicitly is defined. An orientation symmetry S will be consistent with the translation invariance if

and only if it transforms the lattice of the nodes congruent to O into itself, in which case, selecting a

frame O
1 · · · 
ν with basis vectors generating the vector lattice, it gets associated with an invertible

ν-by-ν integer matrix �Z of order Ord(�Z) = min {� ∈ N⋆ | �
�

Z
= �ν} = Ord(S). It is recalled that an

integer matrix is invertible if and only if its inverse exists and is an integer matrix. Its determinant then

can be only ±1. The set of the invertible ν-by-ν integer matrices equipped with the standard matrix

multiplication law makes up the matrix group GL(ν,Z).

2.1.2 How to obtain and name the 3-dimensional crystallographic point groups ?

A set of orientation symmetries consistent with translation invariance in a ν-dimensional discretized

space form a finite so-called point group, isomorphic to a subgroup of the matrix group GL(ν,Z), if and

only if it is closed under symmetry composition. Any orientation symmetry indeed admits an inverse

of the same order, since �Z�
−1
Z

= �ν and �
�

Z
= �ν implies that (�−1

Z
)� = �ν , thus eligible as a necessary

element of the set to be closed. If all the elements of the set share the same subspace of fixed points

then the point group is abelian and cyclic of order equal to the least common multiple of the orders

of the involved orientation symmetries. Compositions of orientation symmetries not belonging to a

single cyclic group also might lead to point groups, generally non abelian, depending on their mutual

compatibility. Cataloging them is an old problem, which especially for ν = 3 might be dated back to the

ancient Greeks.

It is convenient to inventory at first the point groups that can be generated solely from the proper

rotations and to start by calling back some essential properties of these: ifR(û, �) generically designates

2 The set Ord(ν) = {� ∈ N⋆ | ∃ � ∈ GL(ν,Z) with Ord(�) = �} thus specifies the crystallographic restriction in arbitrary
dimension ν in a nutshell (N⋆ is the set of strictly positive integers and Z is the ring of integers). Ord(�) = min {� ∈
N

⋆ | �� = �ν}. It has been shown that Ord(ν) = {�| �(�) ≤ ν}, where � is an additive version of Euler’s totient function
 [3]: i- if p is a prime then �(pk) = (pk) = pk − pk−1 ∀k ∈ N⋆; ii- if r and s are co-prime then �(rs) = �(r) + �(s)
unless r = 2 and s is odd in which case �(2s) = �(s) − to compare with (rs) = (r)(s). ∀ν, Ord(ν) ⊆ Ord(ν + 1)
and, �(�) being even, ∀� > 2, Ord(2ν) = Ord(2ν + 1). It follows that the elements of Ord(ν) can be enumerated from
those of ord(ν) = Ord(ν) − Ord(ν − 1) = {� | �(�) = ν} for ν even. ord(ν) moreover can be computed from the set
ordo(ν) of its odd elements, the set orde(ν) of its even elements being obtained from the theorem: orde(ν) = 2ordo(ν) ∪
[∪k2k+1ordo(ν − 2k)] (k ≥ 1 & 2k ≤ ν). ord(0) is set to {1}. ord(1) = {2}. ord(2� + 1) = {} ∀� ≥ 1. ord(2) = {3, 4, 6}, ord(4) =
{5, 8, 10, 12}, ord(6) = {7, 9, 14, 15, 18, 20, 24, 30}, ord(8) = {16, 21, 28, 36, 40, 42, 60}, . . . so Ord(2) = Ord(3) = {1, 2, 3, 4, 6},
Ord(4) = Ord(5) = {1, 2, 3, 4, 5, 6, 8, 10, 12}, Ord(6) = Ord(7) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 24, 30}, . . ..
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a proper rotation of angle � about an u-axis crossing the point O then

R(û, �)
−→
OM = −→

OM cos � + û(û · −→
OM) (1 − cos �) + (û ∧ −→

OM) sin � (2.5)

The transformation exhibits invariance under the (−û, −�) → (û, �) substitution so that R(û, �) =
R(−û, −�). It also may be established, after elementary algebraic manipulations, that

R(û, −�)[R(û, �)
−→
OM] = −→

OM ∀M (2.6)

which means that R(û, −�) is the inverse with respect to symmetry composition of R(û, �), in

agreement with the common intuition. Any composition R(û, �) = R(û2, �2) ◦R(û1, �1) of proper

rotations is fully determined from the formulas:

cos
�

2
= cos

�1

2
cos

�2

2
− (û1 · û2) sin

�1

2
sin

�2

2
(2.7)

sin
�

2
û = sin

�1

2
cos

�2

2
û1 + sin

�2

2
cos

�1

2
û2 − sin

�1

2
sin

�2

2
(û1 ∧ û2) (2.8)

which immediately show that the composition is commutative if and only if û1 ∧ û2 = 0, namely the

axes of the composed rotations are co-aligned (û1‖û2 = 0) or anti-aligned (û1‖ − û2), in which case

� = �1 + �2 or �1 − �2, respectively. What however these equations above all indicate is that if

the rotation angles are subject to crystallographic restrictions then there will be severe compatibility

constraints on the respective orientations of the rotation axes. Composing for instance a flip (�1 = �)

about a u1-axis with a flip (�2 = �) about a u2-axis at the angle 	1→2 from the u1-axis, we get a rotation

of angle 2	1→2 about the u-axis of unit vector û1 ∧ û2/ sin 	1→2:

R(û2, �2 = �) ◦R(û1, �1 = �) = R(û = û1 ∧ û2/ sin 	1→2, � = 2 	1→2) (2.9)

It follows that the composition of the two flips would be inconsistent with any translation invariance if

the angle 	1→2 between the flip axes differs from �/n (n = 2, 3, 4, 6) (modulo �). Now, if 	1→2 takes

one of these values then

R(û, 2 	1→2)
(n−2)◦ · · · ◦ R(û, 2 	1→2) = R(û, 2�/1) (2.10)

which together with R(û1, �) ◦R(û1, �) = R(û, 2�/1) = R(û2, �) ◦R(û2, �) defines a dihedral

group Dn of order 2n, from its two generators a1 = R(û1, �) and a2 = R(û2, �) of order 2:

Dn =
〈
a1, a2 | a2

1 = a2
2 = e, (a1a2)n = e (unit element)

〉
(n>1)

. Another abstract equivalent definition,

making use of a generator a of order 2 and a generator b of order n, is Dn =〈
a, b | a2 = e, bn = e, ab = bn−1a

〉
. It reveals that the cyclic group Cn = 〈 b | bn = e 〉 is a normal

subgroup of Dn, symbolically Cn ⊳Dn, since ab = bn−1a ↔ aba−1 = b−1 so that ∀x ∈ Cn, ∀y ∈
Dn, yxy−1 ∈ Cn. It follows that Dn is isomorphic to the semi-direct product of cyclic groups Cn ⋊� C2,

with respect to the action � of C2 on Cn that associates the non trivial involution a of C2 to the

automorphism Cn → Cn : � �→ a�a−1 = �−1. If n is even and n > 2 then the elements of order 2 in

Dn get gathered into two distinct conjugacy classes and Dn can be split into two subgroups isomorphic

to Dn/2. If n is odd then all the elements of order 2 in Dn get gathered into a single conjugacy class.

The conjugate of a proper rotation R(û1, �1) by any other proper rotation R(û2, �2) by definition is

the proper rotationR(û2, �2) ◦R(û1, �1) ◦R(û2, −�2). Using brute algebra to get its axis and its angle

would be too cumbersome. It is more clever to observe thatR(û2, �2) û1 is certainly a unit vector of the

searched axis. This indeed is transformed by R(û2, −�2) into û1 which is conserved by R(û1, �1) then

transformed back to R(û2, �2) û1 by R(û2, �2). It thus is invariant under the considered conjugation.

A little of geometric intuition also suggests that the transform N by R(û1, �1) of any point M is

transformed byR(û2, �2) into the transform N′ byR(û2, �2) ◦R(û1, �1) ◦R(û2, −�2) of the transform

M′ by R(û2, �2) of M. Since isometries are under concern, this implies that the searched angle merely
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is �1. Accordingly,

R(û2, �2) ◦R(û1, �1) ◦R(û2, −�2) = R(R(û2, �2)û1, �1) (2.11)

One recovers the result that any pair of conjugate elements of a finite group must be of the same order,

symbolically z = xyx−1 ↔ zn = xyx−1xyx−1 · · · xyx−1 = xy · · · yx−1 = xynx−1. It nevertheless

should be emphasized that eq. (2.11) leads to a much stronger statement.

Now, let G be a point group of order nG containing only proper rotations. Let Cn(û) be a cyclic

subgroup of order n and index [G : Cn(û)] = nG/n in G, generated from a selected rotation R(û, �) of

order n in G. It is always possible to partition the group G in terms of left cosets of Cn(û):

G = a1 Cn(û) + a2 Cn(û) + · · · + anG/n Cn(û) (2.12)

The set {a1û, a2û, · · ·, anG/nû} forms an orbit of nG/n distinct unit vectors, each associated with a cyclic

group of the same order n. Applying ai on û indeed is equivalent to take the conjugates by ai of the

elements of Cn(û): ∀ R(û, �) ∈ Cn(û), aiR(û, �)a−1
i = R(ai û, �) (see eq. (2.11)). Geometrically, the

unit vector û connects the fixed point O, common to all the proper rotations in G, to a point P on the

2-dimensional sphere S2 of unit radius around O. P is named n-polen-polen-pole to call to mind the order n of the

proper rotation it concerns. An orbit {a1û, a2û, · · ·, anG/nû} is identified with a class {P1, P2, · · ·, PnG/n}
of equivalent n-poles [4]. IfR(û, �) is conjugate to its inverseR(−û, �) then the orbit will be associated

to nG/2n distinct axes of order n. If not, the two rotations will produce two distinct orbits each of which

will be associated to nG/n distinct axes of order n. However, these are the same for the two orbits,

with unit vectors that merely are opposite by pairs, and thus are counted twice. It follows that if Nn

distinct orbits of unit vectors of proper rotations of order n can be built in G then the number of effective

and distinct proper rotations of order n that these Nn orbits would account for is (nG/2n)Nn(n − 1).

Collecting all the orders n of the proper rotations realized in G, all the elements of the group, except the

identity, are generated once and only once. Accordingly,

nG − 1 =
∑

n≥2

nG

2n
Nn(n − 1) (2.13)

or else, by dividing both members of the equation by nG/2,

2

(
1 − 1

nG

)
=

∑

n≥2

Nn

(
1 − 1

n

)
(2.14)

It is observed that

nG ≥ 2 ⇒ 1 ≤ 2(1 − 1/nG) < 2

n ≥ 2 ⇒ (1 − 1/n)Nn ≥ Nn/2 ≥ 1/2

So there can be at most 3 distinct orbits, otherwise the second member of eq. (2.14) would be greater

than or equal to 2 when the first member should be strictly smaller than 2. A single orbit would imply

that 2(1 − 1/nG) = (1 − 1/n) or else nG = (2 − nG/n) the only solution of which is nG = n = 1. With

two orbits of cardinal nG/ni (i = 1, 2) eq. (2.14) is simplified into 2 = nG/n1 + nG/n2, which possesses

no solution other than n1 = n2 = nG and merely means that G is the cyclic group CnG
. In the case of

three orbits of cardinal nG/ni (i = 1, 2, 3) eq. (2.14) is written more conveniently in the form

1 + 2

nG

= 1

n1

+ 1

n2

+ 1

n3

(2.15)

which immediately reveals that at least one of the ni must be equal to 2, otherwise the second member

1/n1 + 1/n2 + 1/n3 of the equation would be less or equal to 1 when the first member 1 + 2/nG is

strictly greater than 1. There is no loss in generality to set n1 = 2 and assume that n2 ≤ n3, the ni being
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interchangeable. An inspection of the equation, by increasing values of n2 and for each value of n2 by

increasing values of n3, then leads to the following enumeration:

• n1 = 2, n2 = 2, n3 = nG/2, which corresponds to the dihedral group Dn3
of order 2n3.

• n1 = 2, n2 = 3, n3 ≥ 3, which imposes that nG = 12n3/(6 − n3) so n3 can take 3 values:

∗ n3 = 3, in which case nG = 12 − Geometrically this corresponds to 1 class of 6 two-poles and

2 classes of 4 three-poles. The three-poles of each class must be equidistant to each other on S2,

so form the corners of a regular tetrahedron, and are the antipodes of those of the other class.

The two-poles are the projections from O on S2 of the centers of the 6 edges. G then is dubbed

tetrahedral group.

∗ n3 = 4, in which case nG = 24 − Geometrically this corresponds to a class of 12 two-poles, a

class of 8 three-poles and a class of 6 four-poles. The four-poles must be equidistant to each other

on S2, so form the corners of a regular octahedron. It may be shown that the centers of its faces

coincide with the three-poles whereas the centers of its edges with the two-poles. G then is dubbed

octahedral group.

∗ n3 = 5, in which case nG = 60 − Geometrically this corresponds to a class of 30 two-poles, a

class of 20 three-poles and a class of 12 five-poles. The five-poles must be equidistant to each

other on S2, so form the corners of a regular icosahedron. It may be shown that the centers of its

faces coincide with the three-poles whereas the centers of its edges with the two-poles. G then is

dubbed icosahedral group.

• n1 = 2, n2 ≥ 4, n3 ≥ n2 gives 1/n1 + 1/n2 + 1/n3 ≤ 1 which cannot equate to 1 + 2/nG > 1.

Attention is drawn to the fact that stricto sensu no crystallographic restriction was invoked to get

the above catalog. It was only assumed that the group must be finite and can be partitioned into cosets

of cyclic groups. One then can understand why no restriction exists on the order of the cyclic groups

nor on the order of the dihedral groups and why the icosahedral group which involves proper rotations

of order 5 are obtained. If crystallographic restriction is taken into consideration then only the group

C1, consisting solely in the identity, the cyclic groups C2, C3, C4, C6, the dihedral groups D2,D3,D4,D6,

the tetrahedral group T and the octahedral group O are allowed, which leaves us with only 11 possible

point groups of proper rotations.

It remains, for completing the catalog of the point groups, to take into consideration the improper

rotations I ◦R(û, �). It is clear that any point group G should contain a set of proper rotations,

eventually reduced to the identity, which, equipped with the composition law of the rotations, necessarily

form a subgroup Gp of G, since the composition of two proper rotations is a proper rotation and the

reciprocal of a proper rotation is a proper rotation too. If p is the number of proper rotations and i the

number of improper rotations in G, then i ≥ p because the composition of the proper rotations by a same

improper rotation, among the i, gives p distinct improper rotations, and p ≥ i, because the composition

of the improper rotations by one of these gives i distinct proper rotations, so p = i which means that if

Gp is a proper subgroup of G then it always is of index 2. One then is in front of two alternatives:

⋆ G explicitly contains the inversion through the origin I, in which case, denoting N its unit element

(the identity), Ci ≡ ({N , I}, ◦) makes up a subgroup of G. Now, i- any element of G evidently is the

composition either of N or of I with an element of Gp, ii- only the unit element is shared by Ci and

Gp, iii- Ci is normal, being the union of two conjugacy classes, and Gp is normal, being of index 2.

It follows from these 3 properties that G is isomorphic to the direct product G = Ci × Gp. As from

the 11 point groups of proper rotations one then gets 11 additional point groups containing the

inversion:

(Ci , C2h, C3i , C4h, C6h) ≡ Ci × (C1, C2, C3, C4, C6),

(D2h,D3d ,D4h,D6h) ≡ Ci × (D2,D3,D4,D6), Th ≡ Ci × T and Oh ≡ Ci ×O
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⋆ G contains rotoinversions but not the inversion I itself. It then is insightful to expand G in

cosets of Gp: G = Gp +A Gp, where the coset representative A = I ◦R(û, �) is selected among

the rotoinversions of G. It is clear that the proper rotation R(û, �) cannot belong to G and

therefore no more to Gp, otherwise its inverse R(û, −�) would belong to G so A ◦R(û, −�) =
I ◦R(û, �) ◦R(û, −�) = I as well. It follows that the coset expansion G∗ = Gp +R(û, �) Gp

defines a group of proper rotations G∗ of which Gp is a subgroup of index 2 and to which G is

isomorphic. Thus, to list the point groups containing rotoinversions but not the inversion it suffices

to expand the point groups of proper rotations in cosets of a subgroup of index 2, perform the

relevant substitution of the coset representative and check that the as-built group is not already in

the collection:

1. C2 = C1 +R(û, 2�/2) C1 −→ C1 +Mû C1 = Cs

2. C4 = C2 +R(û, 2�/4) C2 −→ C2 +Mû ◦R(û, 2�/4) C2 = S4

3. C6 = C3 +R(û, 2�/6) C2 −→ C3 + I ◦R(û, 2�/6) C3 = C3h

4. D2 = C2(û1 ∧ û2) +R(û1, 2�/2) C2(û1 ∧ û2) −→ C2(û1 ∧ û2) +Mû1
C2(û1 ∧ û2) = C2v

5. D3 = C3(û1 ∧ û2) +R(û1, 2�/2) C3(û1 ∧ û2) −→ C3(û1 ∧ û2) +Mû1
C3(û1 ∧ û2) = C3v

6. D4 = C4(û1 ∧ û2) +R(û1, 2�/2) C4(û1 ∧ û2) −→ C4(û1 ∧ û2) +Mû1
C4(û1 ∧ û2) = C4v

7. D6 = C6(û1 ∧ û2) +R(û1, 2�/2) C6(û1 ∧ û2) −→ C6(û1 ∧ û2) +Mû1
C6(û1 ∧ û2) = C6v

8. D4 = D2 +R(û = û1 ∧ û2, 2�/4) D2 −→ D2 +Mû ◦R(û, 2�/4) D2 = D2d

9. D6 = D3 +R(û = û1 ∧ û2, 2�/6) D3 −→ D3 +Mû ◦R(û, 2�/6) D3 = D3h

10. O = T +R(û, 2�/4) T −→ T + I ◦R(û, 2�/4) T = Td

One thus gets 10 more point groups, containing rotoinversions but not the inversion. As to avoid

being too lengthy the description of these is quite succinct and condensed into a notation that, it is hoped,

should provide the necessary tools to guess the involved symmetries. Complements can be found in

Ref. [5], while the detailed descriptions of the point groups, including their symbols (Hermann-Mauguin

and Schoenflies) can be consulted in Ref. [1].

As a matter of fact, essentially the Schoenflies symbols were used above to designate the point

groups, of which the rules merely are: i- find the most symmetric axis and take it vertical to define either

a cyclic group Cn or a dihedral group Dn; ii- use the specific symbol Ci for the group with only the

identity and the inversion, Cs for the group with only the identity and the mirror, T for the tetrahedral

groups and O for the octahedral groups; iii- add the index i if the group involves the inversion but no

mirror, the index h if there is a horizontal mirror, the index v if there is a vertical mirror, implicitly

assuming that it crosses a horizontal flip axis if any, or the index d if there is a vertical mirror bisecting

two horizontal flip axes.

The international (Hermann-Mauguin) symbols by far are the most widely used, being preferred

because the notation is implicitly associated with a lattice so is straightforwardly extended to the space

groups. The full symbol of a point group is built by: i-identifying the symmetry axes if any that might

work as the primary, secondary or tertiary directions of the least symmetric conventional cell (see

subsection 2.2.1) invariant by the point group, ii-arranging side by side the symbols (n for a proper

rotation, n̄ for a rotoinversion or m for a mirror) corresponding to the symmetry elements existing

possibly along the primary, secondary and tertiary direction. If a mirror m is perpendicular to a rotation

axis n, thus bearing the same direction which for a mirror is its normal, then this is emphasized by a

slash between the two symbols, to be precise through the notation n/m. The primary, secondary and

tertiary directions must not be equivalent (by symmetry) and must be arranged by decreasing or equal

symmetry order - except for the tetrahedral groups 23 and 2/m 3̄, to avoid confusion with the dihedral

groups 32 and 3̄ 2/m and to evoke a connection with the octahedral groups. A secondary direction

exists as soon as some other symmetry element exists along another direction (in addition to that along

the primary direction), while a tertiary direction exists as soon as some additional symmetry element
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Table 1. The 32 crystallographic point groups (4th column) and the 11 Laue classes (5th column), as identified with
the international (Hermann-Mauguin) symbol, full and short, respectively. Note that the full and short international
symbols are exactly the same for all non symmetrical point groups and differ only for 6 Laue classes out of 11.
The 6th column displays the order of each Laue class. The point groups are gathered according to the order of
the symmetry element (order of the rotation, if larger or equal to 2, otherwise order of the reflection, 2) along the
primary, secondary and tertiary directions (given in columns 1, 2 and 3, where the symbol ‘−’ indicates the absence
of a direction).

Order of point symmetry along: Crystallographic Laue class:

primary secondary tertiary point groups short order

direction direction direction (full symbol) symbol

− − − 1, 1̄ 1̄ 2

2 − − 2, m, 2
m 2/m 4

2 2 2 222, 2mm, 2
m

2
m

2
m mmm 8

3 − − 3, 3̄ 3̄ 6

3 2 − 32, 3m, 3̄ 2
m 3̄m 12

4 − − 4, 4̄, 4
m 4/m 8

4 2 2 422, 4mm, 4̄2m, 4
m

2
m

2
m 4/mmm 16

6 − − 6, 6̄, 6
m 6/m 12

6 2 2 622, 6mm, 6̄2m, 6
m

2
m

2
m 6/mmm 24

2 3 − 23, 2
m 3̄ m3̄ 24

4 3 2 432, 4̄3m, 4
m 3̄ 2

m m3̄m 48

exists along another direction (in addition to that along the primary and secondary directions), assuming

that this new direction is not equivalent by symmetry to the primary and secondary directions.3 The

inversion never appears in the group symbol, except obviously in the case of the group 1̄, because it

either is generated from the combination of a rotation of even order and a mirror, for instance 2/m, or

merely is implicitly contained in an elementary symmetry operation such as 3̄. It in fact is customary

to rather make use of an abbreviate form of the symbol called the short symbol. This is obtained from

the full symbol by omitting mirror or axis symbols, when these are perpendicular to each other and, of

course, if the omitted symmetry element can be generated by those listed solely in the short symbol.

The catalog of the 32 crystallographic point groups, also named crystal classes, using the

international full symbols, is displayed in Table 1. They are classified: i- in seven blocks from the

top to the bottom, corresponding to the seven crystal systems (see subsection 2.2.1), that is to seven sets

of primary, secondary and tertiary directions, going from the less to the most symmetrical, ii- from left

to right in each line of the 4th column, by increasing or equal point group order. The four last blocks

are divided into two sets (on two different lines), the first set showing only a primary direction (or

3 As an example the point group symbolized C3v in Schoenflies notation contains a rotation of order 3 and three mirrors m at
120◦ from each other and containing the rotation axis 3. Its international symbol is obtained as follows: the primary direction is
that of the symmetry of the highest order, namely the rotation axis of order 3. The three mirrors are perpendicular to axes in the
plane perpendicular to the primary direction and at 120◦ from each other. They are thus equivalent by symmetry (through the
rotation of order 3), so that each of these three axes may correspond to the secondary direction. There is no tertiary direction.
The international symbol then is 3m. The international symbol for the point group C4v by contrast is 4mm: the 4 mirrors are not
all equivalent by the rotation of order 4. They define two different directions, the secondary direction for a pair of perpendicular
mirrors and the tertiary direction for the other pair, at 45◦ from the secondary direction.
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primary plus secondary directions for the last block), the second set involving in addition secondary

and (possibly) tertiary directions, thus being more symmetrical. The 11 groups containing the inversion

(reported in the last position of each line in the fourth column) are particularized and called the 11 Laue

classes. These are of crucial importance, since in a standard diffraction experiment, one can only probe

the Laue class and not the point group: even if a crystal is not centrosymmetric, the diffraction pattern

always displays an inversion symmetry so that one can access only to the product of the point group

by the inversion. The Laue classes are explicitly displayed in the last column of Table 1 in their short

symbol: they can be obtained by adding the inversion to any point group on the same line in the last

but one column of the table, and consequently are those of higher order in the line. If one for instance

performs a diffraction experiment on a crystal with point group 6̄2m one would be able to extract only

the information that it belongs to the Laue class 6
m

2
m

2
m

≡ 6/mmm = 6̄2m × 1̄. The basic reason is that

the phase of the scattering amplitude of photons or neutrons where the information on an eventual lack of

inversion symmetry resides is lost when squaring the scattering amplitude with its conjugate to compare

with the measured intensities. Anomalous scattering at an absorption edge should be considered to get

an insight into the lack of inversion.

The transposition of the Hermann-Mauguin to the Schoenflies notation is performed as follows:

n ←→ Cn, n22
(n even)←→ Dn, 32 ←→ D3, 23 ←→ T , 432 ←→ O

1̄ ←→ Ci , 3̄ ←→ C3i ≡ S6,
n

m

(n even)←→ Cnh,
n

m

2

m

2

m

(n even)←→ Dnh,

3̄
2

m
←→ D3d ,

2

m
3̄ ←→ Th,

4

m
3̄

2

m
←→ Oh

m ←→ Cs , 4̄ ←→ S4, 6̄ ←→ C3h, nmm
(n even)←→ Cnv , 3m ←→ C3v ,

4̄2m ←→ D2d , 6̄2m ←→ D3h, 4̄3m ←→ Td .

2.1.3 Molecular symmetry

A symmetry of a molecule designates any space transform that superposes the molecule into itself, more

precisely that permutes its atoms of the same nature so that to leave it unchanged and without motion of

its barycenter. It thus is an orientation symmetry by definition, the relevance of which might be essential:

a number of the properties of an isolated molecule, chemical, vibrational, electric, spectroscopic, . . .,

might be predicted at a qualitative level from its symmetry group. In most instances it is not difficult to

find which is this point group.

As an example, let us consider the molecule of ammonia NH3 depicted in figure 3-a. It is observed

immediately that it displays a rotation symmetry axis of order 3 that goes through the nitrogen atom

N and the barycenter of the three hydrogen atoms H, to be precise it is invariant under the rotations of

angle 2s�/3 (s ∈ N) about this axis. Also evident are the three mirrors containing the axis of order 3

each crossing one of the three hydrogen atoms H, namely the molecule is invariant under the reflection

with respect to these planes. It is moreover clear that the normals to the three mirrors are equivalent by

symmetry, interrelated by the rotation of order 3 which cyclically transforms each mirror into the two

others. The rotation of order 3 being the symmetry of the highest order determines the primary direction

whereas the normals to the mirrors (all equivalent by symmetry) determine the secondary direction

(which thus consists of three axes at 120◦ from each other). No other symmetry is displayed by the

molecule. Accordingly, its point group in international notation is 3m.

As a next illustrative example, let us consider the molecule of sulfur hexafluoride SF6 depicted in

figure 3-b. This is drawn in a cube, to evidence more clearly the various symmetry invariance of the
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Figure 3. (Color online) Point group of two molecules: a- NH3, represented in a hexagonal basis prism, and b-
SF6, represented in a cube. Each molecule is drawn in the left part of the figure while the primary, secondary, and
tertiary directions are shown in the right part. By sake of clarity, only one direction is plotted among the various
equivalent directions for the secondary direction in the case of NH3 and for all directions in the case of SF6. Note
that the tertiary direction does not exist for NH3. The full international symbol of the point group is given below
each molecule.

molecule. One distinguishes 3 rotation axes of order 4 along the linear bonds F−S−F (parallel to the

cube’s edges) and the mirror planes perpendicular to them, 4 rotation axes of order 3 along the “long”

diagonals of the cube (joining a corner of the cube to the opposite corner), 6 rotation axes of order 2

along the “short” diagonals of the cube (joining the middle of each edge to the middle of the opposite

edge or merely diagonals of the cube faces) and the mirror planes perpendicular to them. It follows

that the primary axis if of order 4, the secondary axis of order 3 and the tertiary axis of order 2. Only

a little of geometric intuition is necessary to get convinced that the rotations of order 4 are equivalent

by symmetry, interrelated by the rotations of order 3 about a same axis, and subsequently the mirrors

perpendicular to them. Also equivalent are the rotations of order 3, interrelated by the rotations of

order 4 about a same axis, and similarly the rotations of order 2 and the mirrors perpendicular to them,

interrelated by rotations of order 4, rotations of order 3 or combinations of these. An evident symmetry

finally is the inversion, which, combined with the rotations of order 3, implies the invariance of the

molecule under the rotoinversion 3̄ (3̄ = 3 × 1̄). The full international symbol of the point group thus is

4/m 3̄ 2/m, which often is abbreviated into the short symbol m3̄m.

It is emphasized that no crystallographic restriction applies to isolated molecules. It is thus not

excluded to find molecules with symmetry invariance belonging to point groups other than those

crystallographic. An example is the ferrocene molecule Fe(C5H5)2 the symmetry of which belongs

to the dihedral group D5d ≡ Ci ×D5 (Schoenflies symbol). Another example is the buckyball fullerene

molecule C60 the symmetry of which belongs to the full icosahedral group Ih ≡ Ci × I (Schoenflies

symbol) or 2
m

3̄ 5̄ ≡ 1̄ × 235 (international symbol). This group is of order 120 and contains the

icosahedral group I of order 60 as subgroup of index 2.

2.1.4 Stereographic projection

A more convenient way than the one depicted in figure 1 to graphically represent the orientation

symmetries of a point group is the stereographic projection, which also allows displaying the

transformation by these symmetries of an initial arbitrary direction emerging from the fixed point O

of the symmetries, so finding at a glance all the equivalent directions in a crystal.

A stereographic projection is a conformal mapping that projects the unit sphere S2 of center O from

either the north pole N or the south pole S onto a plane perpendicular to the axis formed by the two

poles, which implicitly will be assumed to be the equatorial plane for convenience. As a matter of fact,
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Figure 4. (Color online) a- Crossing points P and R of arbitrary directions (blue dashed half-lines) with the unit
sphere S2 centered on the fixed point O, stereographic projection p of the crossing point P on the north hemisphere
from the south pole S and stereographic projection r of the crossing point R on the south hemisphere from the north
pole N. b- Equatorial section of the unit sphere S2 explicitly displaying the stereographic projection for directions
OP and OR. c- Crossing circle (orange arc) of an inclined plane with the unit sphere S2 and stereographic projection
(truncated elliptic contour of the equatorial surface in purple) of the portion of the circle on the north hemisphere
from the south pole S.

to gather all the information within the equatorial disk, the north hemisphere by convention is projected

from the south pole and the south hemisphere is projected from the north pole, discerning the projected

points from the north hemisphere by a cross marker (×) and from the south hemisphere by a circle

marker (◦). This is illustrated in figure 4, for two arbitrary directions emerging from the point O, plotted

in blue, intersecting the sphere S2 at the point P on the north hemisphere, projected onto the point p,

and at the point R on the south hemisphere, projected onto the point r . The figure also describes the

projection of the crossing of an inclined plane with the sphere. A mirror crosses the unit sphere S2

through a circle and thus projects in the equatorial plane through a line if it is vertical, through the

equatorial circle if it is horizontal and through an ellipse if it is inclined.

The stereographic projections for the point groups n and n̄ are displayed figure 5: in these graphs

both the symmetry operations and the equivalent directions are represented. The rotation axes by

convention are identified with a filled cigar-shaped ellipse marker if it is of order n = 2 and a filled

n-gon marker if it is of order n (black triangle for n = 3, black square for n = 4, black hexagon for

n = 6). The inversion (1̄) is discerned by an empty circle marker at the center of the equatorial circle.

A mirror (m = 2̄) is represented by a thick straight line if it is perpendicular to the equatorial plane

and a thick circle if it is parallel to the equatorial plane. The axis of the other rotoinversions finally are

identified by a filled (for n = 3) or an empty (for n = 4 and 6) n-gon marker on which the marker(s)

accounting for the other symmetry element(s) that the rotoinversion contains is (are) plotted: empty

circle over filled triangle for 3̄, filled ellipse over empty square for 4̄ and filled triangle over empty

hexagon together with thick circle for 6̄. The order of the point group is simply obtained by counting

the total number of crosses and circles, except of course the empty circle at the origin, if any, signaling

the inversion. One also immediately recognizes a Laue class, for then a cross is diametrically opposed

to each circle and conversely in the stereographic projections. A quick look at figure 5 thus tells that

1̄ and 3̄ are Laue classes.

An efficient geometric intuition of the symmetries can be forged from the stereographic projections,

but at the cost of a certain practice especially for the tetrahedral and octahedral point groups where

inclined mirrors and rotation axes are involved. As to ease this, the manner in which the different

symmetries that might exist in the cubic groups would project are suggested in figure 6. The square

marker in the middle of the right figure corresponds to the four-fold axis parallel to the z-axis, set

parallel to the north-south axis of the unit sphere S2, while all square and ellipse markers plotted on
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1 2 3 4 6

1 m=2 3 4 m/36 =

Figure 5. Graphs of stereographic projections for point groups n and n̄. There is no symmetry axis for groups 1
and 1̄. A symmetry axis exists for the other groups, which is single. It is set parallel to the north-south axis, except
for the axis of order 2. This is also set perpendicular to the north-south axis as a second convenient alternative, in
particular for 2̄ with the mirror either in the equatorial plane or perpendicular to it. In all the cases one chooses an
arbitrary point on the sphere S2 in the north hemisphere and considers its projection and that of its transforms by
the symmetries.

O x

z

y

xz

y

Figure 6. (Color online) Graphical support to perform and read stereographic projections for the cubic point groups.
Left part: three-dimensional representation of a cube with particularization of a few planes and axes. Right part:
stereographic projection of the cube will all possible mirror planes and rotation axes. A thick line is used for the
three planes shown in gray in the left part of the figure and the same colored marker is used as for the symmetry
axes particularized in the left part of the figure.

the equatorial circle are rotation axes lying in the (x, y) plane of the cube perpendicular to the z-axis.

The four straight lines correspond to the planes perpendicular to the (x, y) plane. The four inclined

symmetry planes of the cube give rise to the four truncated ellipses in the stereographic projection. It

is easy to locate the inclined three-fold and two-fold axes from them. The three-fold axes are at the

intersection of the three planes perpendicular to the cube’s faces along their diagonals. Their markers

in the stereographic projection are thus at the intersection of two truncated ellipses and one straight line

along x ± y. Similarly, the inclined two-fold axes are at the intersection of an inclined plane (truncated

ellipse) and a plane parallel to the vertical faces of the cube (straight line along x or y). Now, according

to whether a symmetry operation exists or not in the specific cubic point group under consideration, the

lines associated with the mirrors are to be drawn thick or thin and the filled or empty markers of the
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Figure 7. Stereographic projections for point groups 3m (a) to which the NH3 molecule belongs and 4/m 3̄ 2/m
(short symbol: m3̄m) (b) to which the SF6 molecule belongs (see also figure 3).

rotation or rotoinversion axes are to be appropriately substituted for those in the figure 6 or these merely

should be erased.

Let us consider back the cases of the molecules NH3, belonging to point group 3m, and SF6,

belonging to point group m3̄m. NH3 contains a three-fold axis along the primary direction, set parallel

to the north-south axis, and three mirrors at 120◦ from each other and running through the primary

axis. The secondary direction then might be along any of the x, y and −x − y direction at 120◦ from

each other in the equatorial plane, being equivalent by the three-fold symmetry axis. The stereographic

projection is displayed in the figure 7-a. SF6 is described by the highest symmetrical point group, that

is 4/m 3̄ 2/m: all the symmetry elements of the cube shown in the figure 6 are thus present with, in

addition, the inversion marker, an empty circle, at the center of the equatorial plane (see figure 7-b).

The three-fold axes being that of rotoinversion (3̄), an empty circle is also superposed to the triangular

markers at their centers. A description of the stereographic projections for the 32 crystallographic point

groups can be found in Part 10 of the International Tables for Crystallography, Volume A [1].

2.1.5 What did the ancient Greeks know about orientation symmetry?

A certain perception of the point groups in essence already existed among the ancient Greeks through the

symmetry invariance of the platonic solids, so dubbed in reference to the philosopher Plato who, in the

dialogue Timaeus, postulated that each of the assumed basic constitutive elements of the world displays

a specific geometric shape, to be precise the tetrahedron for fire, the octahedron for air, the icosahedron

for water, the cube for earth and the dodecahedron for aether (or universe as a whole). Euclid, in the

Book XIII of the Elements, instructs us on the geometric construction of these polyhedra (represented

in figure 8) and gets for each the edge length e as a function of the diameter d of the sphere in which it

is inscribed: e2 = (2/3) d2 for the tetrahedron, e2 = (1/2) d2 for the octahedron, e2 = (1/3) d2 for the

cube, e2 = (1/10)(5 −
√

5) d2, the square of an irrational number called minor, for the icosahedron, and

e2 = (1/36)(
√

15 −
√

3)2 d2, the square of an irrational number called apotome, for the dodecahedron.

Euclid ends the Book XIII by stating that no platonic solid other than the five inventoried might

exist. Credited to the Greek mathematician Theaetetus contemporary to Plato, this finding is argued

by establishing that with three equilateral triangles the tetrahedron vertex is constructed, with four the

octahedron vertex and with five the icosahedron vertex, but six form plane angles and more than six

are impossible to arrange contiguously. It next is observed that squares might meet only to form a cube
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Figure 8. The five (regular) platonic solids: a- tetrahedron, b- octahedron, c- icosahedron, d- cube, and
e- dodecahedron.

vertex and pentagons only to form a dodecahedron vertex. It finally is pointed out that no other regular

polygons with more than five sides might meet to form a non planar solid angle.

A platonic solid, in the modern mathematical language, is a convex regular polyhedron in the

3-dimensional space, namely a polyhedron homeomorphic to a sphere the faces of which are regular

p-gons all congruent by isometry to one another, with the faces intersecting solely at the edges and

the same number q of faces meeting at each vertex. It follows that its Euler characteristic is � =
V − E + F = 2, where V , E, F are the number of vertices, edges and faces. Each of its edges connects

two vertices and shares two faces, so that pF = 2E = qV . Combining the two equations it is inferred

that 1/p + 1/q = 1/2 + 1/E > 1/2. This is solved solely for {p, q} = {3, 3}, {4, 3}, {3, 4}, {5, 3}, {3, 5},
which proves the Theaetetus theorem4.

The vertices of the tetrahedron, the octahedron and the icosahedron were identified as the n-poles

of highest order n of the tetrahedral group T , the octahedral group O and the icosahedral group I in

this order (cf. eq. (2.15) and its solutions), which implicitly implies that these three platonic solids are

invariant under these three respective groups of proper rotations. The centers of the faces of the platonic

solids also were identified to form a class of n-poles of their invariance group of proper rotations.

Now, by connecting these centers of faces one gets the dual polyhedron. Accordingly, this must belong

to the same invariance group. The dual of the octahedron is the cube, which thus is invariant under

the octahedral group O, and the dual of the icosahedron is the dodecahedron, which thus is invariant

under the icosahedral group I. The tetrahedron is self-dual. If the improper symmetries are taken into

consideration then the full symmetry group of the tetrahedron is Td , that of the octahedron and the cube

is Oh = Ci ×O, and that of the icosahedron and the dodecahedron is Ih = Ci × I. It finally may be

called back that the cyclic group Cn and the dihedral group Dn are respectively the invariance group of

proper symmetries and the symmetry group of the regular n-gon.

2.2 Translation symmetry

A 3-dimensional crystal by definition is a discrete medium where any point with its environment is

spatially replicated an infinite discrete number of times along 3 independent directions. It would appear

that this was formulated first by Bravais. As a matter of fact, this extends the familiar concept of space

homogeneity to a discrete medium. The set of points congruent to a chosen point, that is the set of points

4 The generalization to arbitrary dimensions ν was examined. A platonic solid then is a convex regular ν-polytope (2-polytope ≡
polygon, 3-polytope ≡ polyhedron). It has been shown that for ν ≥ 5 there can be only three different convex regular polytopes:
the regular ν-simplex, the measure polytope, also called ν-cube or hypercube, and the cross polytope, also called ν-cocube,
ν-orthoplex or hyperoctahedron, coinciding in dimension ν = 3 with the tetrahedron, the cube and the octahedron. It in contrast
is found out that six convex regular polytopes exists in dimension ν = 4: the 4-simplex, the 4-cube, the 4-cocube, the dodecaplex
and the tetraplex, these two making up analogs of the icosahedron and the dodecahedron in 4 dimensions and the so-called 24-cell
or octaplex with no analog in the other dimensions. The Euler characteristic of 4-polytopes is � = ∑

k(−)kFk = �(S3) = 0, where
Fk is the number of k-faces (0-face = vertex, 1-face = edge, . . .).
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Figure 9. (Color online) The most general unit cell. The black points represent lattice points.

with a same given environment, determines a crystal lattice. A point congruent to the chosen point is

also called a lattice point or a lattice node.

If �a, �b and �c are the shortest length vectors joining two lattice points along each of the 3 independent

directions then, obviously, all the lattice points are reached from a chosen point by means of the

translation vectors

�T = u �a + v �b + w �c (2.16)

where u, v, w are integers. The trihedron of non coplanar vectors �a, �b, �c in eq. (2.16) forms a basis of

the lattice. The parallelepiped these vectors define is called the unit cell. Figure 9 represents the most

general unit cell that can be thought about. Its replication by the vectors �T paves the whole space without

empty space nor overlap. One by convention calls lattice parameters of the crystal associated with this

unit cell the set formed by the lengths a, b, c of the lattice basis vectors �a, �b, �c and the angles �, �, �

between them, these being always defined in the following way [1]:

� = (�̂b, �c), � = (�̂c, �a), � = (�̂a, �b) (2.17)

A lattice point is found at each of the 8 corners of the unit cell, but each of them is shared by 8 different

cells thus counting for 1
8

in each cell. It follows that the number of lattice points per unit cell, called the

multiplicity of the cell, is m = 8 × 1
8

= 1. In the case of more symmetric crystal lattice, cells containing

more than one lattice point are used (see next subsection), the so-called centered cells (doubly primitive,

triply primitive, etc. . . ). As opposed to them, a cell containing a single point is called a primitive cell,

like the one represented in figure 9. Note that the use of a non primitive cell implies that additional

vectors must be specified besides those defining the cell, in order to describe the complete lattice (see

next subsection). All primitive cells have the same volume defined by the mixed product:

Vp = (�a, �b, �c) = (�a ∧ �b).�c = (�b ∧ �c).�a = (�c ∧ �a).�b (2.18)

whereas a non primitive cell has the volume Vm = mVp, with m the multiplicity of the cell.

At each lattice point is associated a group of atoms: the motif. The knowledge of the crystal

lattice, more precisely of the trihedron of vectors �a, �b, �c defining the unit cell, and that of the motif,

more precisely the nature and fractional coordinates x, y, z of the atoms in the unit cell, completely

characterizes the crystalline structure.

The translation vectors �T in the eq. (2.16) may also be interpreted as describing the translation

symmetries of the crystal, that is the spatial translations that bring the crystal into coincidence with

itself. The composition of the translation symmetries of a crystal is merely transposed to the ordinary

vector addition of the corresponding translation vectors. The set of the translation vectors �T of a crystal

endowed with the vector addition form an infinite countable abelian group: the translation symmetry

group of the crystal.
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Table 2. The 6 conventional cells: symbol (1st column), name (2nd column) and constraints on the lattice lengths
(3rd column) and lattice angles (4th column). The symbol ‘−’ in the last two columns means no constraint. The
angles for which no constraint exists are different from 60◦, 90◦ and 120◦.

Conventional cell: Constraints on:

symbol name lattice lengths lattice angles

a triclinic − −
m monoclinic − � = � = 90◦, � > 90◦

o orthorhombic − � = � = � = 90◦

t tetragonal or quadratic a = b � = � = � = 90◦

h hexagonal a = b � = � = 90◦, � = 120◦

c cubic a = b = c � = � = � = 90◦

2.2.1 The orientation symmetry of lattices: the 6 conventional cells, 7 crystal systems,

and 14 Bravais lattices

A crystal lattice must be consistent with any orientation symmetry existing in the crystal. If for instance

the crystal shows an n-fold rotation symmetry then its axis is necessarily parallel to a lattice vector �u and

perpendicular to a lattice plane. Within this any lattice vector �v is transformed into a lattice vector �w with

the same length and oriented at the angle 2�
n

from �v.5 It is obvious that if n �= 2 and if the shortest length

lattice vectors along �v, �w and �u are chosen as the lattice basis vectors �a, �b and �c then the constraints

� = 90◦ = �, a = b and � = 360◦/n are imposed. The inversion symmetry is always present at the

center of a unit cell, so that it suffices to consider the constraint inherent to each Laue class to get the

catalog of all the possible unit cells consistent with orientation symmetry. As an example, the Laue class

2/m imposes that one crystallographic axis called the unique axis, to which the axis 2 is parallel, must

be perpendicular to the two others. Moreover, the angle between the two other axes has to be different

from 90◦, otherwise such a unit cell would correspond to the Laue class mmm, and different from 60 or

120◦, otherwise an axis of order 3 or 6 would exist and such a unit cell would thus correspond to another

Laue class. Using similar arguments for each Laue class, one obtains a total of the 6 conventional unit

cells, which are listed in Table 2.

The hexagonal unit cell splits in two different crystal systems, according to whether the rotation axis

along the primary direction is of order 3 (trigonal system) or 6 (hexagonal system), while for all the other

cells, conventional cells and crystal systems are the same, which leads to 7 crystal systems. Looking at

Tables 1 and 2, the correspondence between the seven blocks of point groups (separated by horizontal

lines in Table 1) and the seven crystal systems is straightforward and is explicitly detailed in Table 3. This

table also gives, for each crystal system and its associated point groups, the correspondence between

the primary, secondary and tertiary directions and the crystallographic directions of the corresponding

crystal system.

As explained in the previous subsection, a unit cell can be either primitive (symbol P , multiplicity

m = 1) or non primitive. Starting from the 6 conventional cells, one can consider, for each of them,

5 The axis of a rotation � by definition is the set of its fixed points. So any vector �u along it belongs to ker(� − �3). On a basis

{�a, �b, �c} built over a crystal lattice, the matrix representative of (� − �3) has integer entries. This implies that, as solutions of

the homogeneous system of equations (� − �3)�u = �0, the components ua , ub , uc of the vectors �u ∈ ker(� − �3) are necessarily of
the form ua/pa = ub/pb = uc/pc where pa , pb , pc are integers. Thus, every rotation axis in a crystal is parallel to a lattice
vector. Next, if �v is a lattice vector not parallel to �u then �(�v) − �v is a lattice vector such that �u · (�(�v) − �v) = 0. If �w is a third
lattice vector neither parallel to �u nor to �v then �( �w) − �w is a lattice vector such that �u · (�( �w) − �w) = 0 and �( �w) − �w is not
parallel to �(�v) − �v. Thus, every rotation axis in a crystal is perpendicular to a lattice plane.
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Table 3. The 7 crystal systems, their associated point groups, and the correspondence between the primary,
secondary and tertiary directions and the crystallographic directions of the cell. Note that the hexagonal
conventional cell (see Table 2) splits in two different crystal systems, trigonal and hexagonal, according to whether
the primary direction corresponds to a rotation of order 3 or 6, respectively.

Crystal system Point groups primary secondary tertiary

direction direction direction

triclinic 1, 1̄ − − −
monoclinic 2, m, 2/m �b − −

orthorhombic 222, 2mm, mmm �a �b �c
trigonal 3, 3̄ �c − −

32, 3m, 3̄m �c �a, �b, −�a − �b −
tetragonal 4, 4̄, 4/m �c − −

or quadratic 422, 4mm, 4̄2m, 4/mmm �c �a, �b �a ± �b
hexagonal 6, 6̄, 6/m �c − −

622, 6mm, 6̄2m, 6/mmm �c �a, �b, �a + �b 2�a + �b, �a + 2�b, −�a + �b
cubic 23, m3̄ �a, �b, �c �a ± �b ± �c −

432, 4̄3m, m3̄m �a, �b, �c �a ± �b ± �c �a ± �b, �b ± �c, �c ± �a

a primitive cell, and, for some of them, one can built some centered cells (by adding some lattice points),

provided no symmetry element is lost and there exists no primitive cell describing the same lattice and

having the same symmetry. This means that there exist only a few manners to center a cell, leading to

the four additional lattice types listed below:

- body centered (additional lattice point at the center of the cell): symbol I , m = 2;

- all-face centered (additional lattice points at the center of the 6 faces): symbol F , m = 4;

- one-face centered (additional lattice points at the center of one pair of parallel faces): symbol A, B or

C, for the centered faces (b, c), (a, c) or (a, b), respectively, m = 2;

- rhombohedral (additional lattice points at 1/3 and 2/3 of the long diagonal of the cell, that is at

(2/3, 1/3, 1/3) and (1/3, 2/3, 2/3)): symbol R, m = 3.

The rhombohedral lattice type exists only for the hexagonal conventional cell and is depicted in

figure 10. In addition, the R-centering forces the primary axis to be of order 3 and thus applies only for

the trigonal crystal system. For centered cells, additional lattice points exist at fractional coordinates,

so that the set of translation vectors given by eq. (2.16) has to be expanded to a set of m translation

vectors (with m the multiplicity of the cell) simply by adding the additional lattice points’ coordinates

to the translation vector �T . For example, a body-centered lattice will be fully described by translation

vectors �T1 = �T = u �a + v �b + w �c and �T2 = �T + ( 1
2
, 1

2
, 1

2
) =

(
u + 1

2

)
�a + (v + 1

2
) �b + (w + 1

2
) �c, while

an all-face centered lattice will be fully described by �T1 = �T , �T2 = �T + ( 1
2
, 1

2
, 0), �T3 = �T + (0, 1

2
, 1

2
),

and �T4 = �T + ( 1
2
, 0, 1

2
).

The centered lattice types can exist only for a restricted list of conventional cells, considering

the constraints explained above. A triclinic lattice for instance can only be primitive, since, starting

from any centered triclinic cell (associated with the Laue class: 1̄), one can always built a primitive

triclinic cell of smaller volume, thus with the same symmetry. As another example, the tetragonal C-

face centered cell does not exist, because one can then built a primitive tetragonal cell of smaller volume

with a′ = a/
√

2 and �a′ along the diagonal of the (a, b) square face, nor do the tetragonal A- and B-face
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Figure 10. (Color online) The rhombohedral lattice type: projection in the (a, b) plane (left figure) and perspective
view (right figure). These figures show the position of the additional nodes of a rhombohedral hexagonal lattice (of
multiplicity 3) evidencing the shape of its primitive cell: the rhombohedral cell (plotted in orange). Note that in the
ITC [1], the description of space groups (see next section) is given in both cells.

Table 4. The 14 Bravais lattices, classified by conventional cell (vertically) and by lattice type (horizontally). Note
that the P hexagonal cell refers to the trigonal as well as the hexagonal crystal system, while the R hexagonal cell
refers only to the trigonal system.

P I F C R

triclinic

monoclinic

orthorhombic

Conventional cell

tetragonal
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Lattice types
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Figure 11. (Color online) a- Example of rows in a cubic unit cell. These three families of rows are equivalent, by
symmetry, and thus belong to the same family 〈100〉 (or, equivalently, 〈010〉 or 〈001〉), b- Example of net planes:
the closest plane from the origin, plotted here, intercepts the a, b and c axes at x = ∞, y = −1/2 and z = 1,
respectively, so that the Miller indices are: h = 0, k = 2̄ and l = 1 (Note that in crystallography, minus signs are
always placed above the number to which they apply: 2̄ means −2), c- Example of net planes in a cubic unit cell.
These three families of net planes are equivalent, by symmetry, and thus belong to the same family {110} (or,
equivalently, {101} or {011}).

centered tetragonal cells exist, because the 4-fold rotation axis would then be merely lost. As a matter of

fact, from the 6 conventional cells one can build only the 14 Bravais lattices which are listed in Table 4.

2.2.2 Rows and net planes

One can always group lattice points into parallel equidistant rows denoted [uvw] along �nuvw =
u�a + v�b + w�c, with u, v, w integers having no common divider. nuvw is called the parameter of the

row, while u, v and w are called the indices of the row. A family of rows contains all lattice points.

If families of rows are equivalent by symmetry then they are denoted 〈uvw〉. Figure 11-a shows an

example of equivalent rows in a cubic unit cell.

In the same way, one can always group lattice points into parallel equidistant net planes, spaced by

dhkl and denoted (hkl), with h, k, l integers having no common divider. The integers h, k, l are called

Miller indices and dhkl is called the d-spacing. These planes follow the equation: hx + ky + lz = m,

so that the plane the closest from the origin (m = 1) intercepts the �a, �b and �c axes at x = 1/h, y = 1/k

and z = 1/l, respectively. The expression of dhkl as a function of the lattice parameters will be given

in subsection 2.4.2, since it requires having introduced the reciprocal space. Family of net planes,

equivalent by symmetry, are denoted {hkl}. Figures 11-b and 11-c show examples of net planes. The

same property as for the rows holds: a family of net planes contains all lattice points.

We will come back to these notions of rows and planes in subsection 2.4.2, since they play a crucial

role in diffraction, and particularly when relating the reciprocal space to the direct space.

2.3 Space group symmetry

Up to now, we have seen that a crystal is characterized by a lattice and a motif. More precisely, the

complete description of a crystal requires: i- the knowledge of the Bravais lattice (lattice parameters

and lattice type, in order to define the set of the m translation vectors, with m the multiplicity), ii- the

knowledge of the motif (nature and fractional coordinates of the N atoms contained in a unit cell, for

a P lattice, or of the N/m atoms contained in one half, one third, or one fourth of the unit cell, for

a centered cell with m = 2, 3, or 4, respectively). The lattice is completely defined by the translation

symmetry, which always exists in crystals at a microscopic scale as discussed in Section 2.2, while there

also exist symmetries acting inside the motif, as will be seen hereafter. Point symmetries, discussed in

Section 2.1, always exist at a macroscopic scale and, in some cases, also at a microscopic scale, which

means that they not only apply to the macroscopic properties but also put back all atoms in coincidence
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with themselves. In other cases, point symmetries alone do not allow to obtain the perfect coincidence

of the crystalline edifice with itself, and one has to combine them with fractional translations, that

is, translations acting inside the unit cell. All these symmetries, point symmetries alone and point

symmetries combined with a fractional translation, are called space group symmetries. The pure point

symmetry is said symmorphic and the combined one non symmorphic. The space group symmetries,

correctly positioned in the unit cell (they do not necessarily run through the same point) act inside

the unit cell, and in particular inside the motif. Combined to the lattice translations, they make up the

space group of the crystal. Thanks to them, the complete description of a crystal will now require the

knowledge of the positions of much less atoms: only those contained in what is called the asymmetric

unit. Applying all space group symmetries on the asymmetric unit will yield the motif, and then,

applying the lattice translations on the latter will yield the entire crystal. The space groups thus describe

the symmetry of the crystals’ microscopic structure, constituting their “identity card”. There exists in

total 230 space groups, all gathered in the International Tables for Crystallography, Volume A [1]. Note

that all the necessary information can also be found on the Bilbao Crystallographic Server [6].

We shall in this Section first introduce the two existing non symmorphic space group symmetries:

glide planes and screw axes, that is a point symmetry (reflection and rotation, respectively) combined

with a fractional translation (glide translation). Then we will briefly discuss how to obtain the 230 space

groups, by combining the 14 Bravais lattices and the 32 point groups, adding or not glide translations.

Last, we will explain how to read the “identity card” of a space group in the International Tables for

Crystallography, from two selected examples.

Use will be made in subsections 2.3.1 and 3.2, and in other chapters (mainly those by Perez-Mato

et al. and Tasci et al.) of the international notation [1]. A space group symmetry W, more precisely,

is represented as W = (W , w), where W designates the point group symmetry and w the additional

fractional translation to be applied after the point group symmetry. The rotation part W is a (3 × 3)

matrix while the translation part w is a (3 × 1) column matrix. To describe and combine together space

group symmetries, it is very convenient to use the following augmented (4 × 4) matrix representation:

W =
(

W w

o 1

)
=




W11 W12 W13 w1

W21 W22 W23 w2

W31 W32 W33 w3

0 0 0 1




(2.19)

Space groups generated, apart from the lattice translations, only by symmetry elements W with w1 =
w2 = w3 = 0, that is only by pure point symmetries, are called symmorphic space groups. Otherwise,

they are called non symmorphic space groups.

Another notation, used in some textbooks and in the chapter by Rodríguez-Carvajal and Bourée, is

to represent every element g of a space group by its Seitz symbol: g = {�|��� + �Rn}, where � designates

the point group symmetry, ��� the additional fractional translation to be applied after the point group

symmetry, and �Rn a lattice translation.

2.3.1 Glide planes and screw axes

Crystal invariances, without a fixed point and different from a translation, can be formed by combination

of orientation symmetry (a reflection or a rotation) and fractional translation symmetry (i.e. acting inside

the unit cell). One thus obtains a glide plane or a screw axis. These are the only additional symmetries to

further take into account. It is recalled that according to the Chasles’ Theorem, every direct isometry of

a 3-dimensional euclidean space is equivalent to a screw displacement, namely a translation along a line

followed (or preceded) by a rotation about that line. Such symmetries must be compatible with the lattice

translation symmetry. Moreover, after applying n times such a space group symmetry, where n is the

order of the underlying point symmetry, one must recover a lattice translation. These two requirements
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Figure 12. The two non symmorphic space group symmetries: a- glide plane and b- screw axis.

obviously will fix some constraints on the direction of the fractional translation, with respect to the

orientation of the glide plane or the screw axis, and on the length of the fractional translation. The first

constraint is that the fractional translation has to be parallel to a lattice plane or axis, to give a lattice

translation by repeated occurrence. The second constraint will be discussed hereafter, by introducing

more specifically the concerned space group symmetries.

• Glide planes

Let us consider a mirror plane and a translation vector �t parallel to that plane, as plotted in

figure 12-a. The glide plane symmetry, applied on a starting point P0, generates point P1 as follows: the

reflection symmetry transforms point P0 into the intermediate immaterial point P ′ and the translation

symmetry then transforms point P ′ into point P1. Applying this glide plane now on point P1 yields

point P2. Since the reflection symmetry is of order 2, applying twice the glide plane must be equivalent

to applying a lattice translation �T (as defined in eq. (2.16)), so that one must have:

−−→
P0P2 = 2�t = �T (2.20)

For example, if the glide translation is parallel to �c, �T = w �c and eq. (2.20) yields �t = �c/2 since �t must

act inside the unit cell (imposing w = 1). The augmented (4 × 4) matrix for such a so-called c plane,

perpendicular to the a-axis at x = 1/4, for example, is written:

Wglide plane c at ( 1
4
yz) =




−1 0 0 1
2

0 1 0 0

0 0 1 1
2

0 0 0 1




(2.21)

In the translation part of this matrix (4th column), w1 = 1/2 comes from the fact that the plane cuts the

a-axis at 1/4, while w3 = 1/2 accounts for the glide translation. The condition that applying twice a

glide plane must be equivalent to applying a lattice translation yields a limited number of possible glide

translations and thus of glide plane types, listed in Table 5.

Let us comment these various symmetry planes and in particular give some precisions about their

orientation, for a few of them. For a complete description, one should refer to the ITC, volume A,

chapter 1 [1]. A mirror m can be perpendicular to any primary direction and, when they exist, secondary

and tertiary directions, except the secondary direction for the cubic crystal system (see Table 3). This
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Table 5. Printed and graphical symbols for symmetry planes: mirror and glide planes (see text for further
explanations). Note that the double glide plane e exists only in centered cells.

statement is quite straightforward, looking at the symmetry of the various conventional cells. For glide

planes, the possible orientations are of course a bit more restricted, due to the additional constraints

discussed above. Except for the cubic system, a plane a with �t = �a/2 (and thus parallel to �a) can be

perpendicular only to the �b or �c axis and a plane b with �t = �b/2 only to the �a or �c axis, while a plane

c with �t = �c/2 can have more possible orientations since the rotation axis along c is of higher order in

tetragonal and hexagonal conventional cells6. A plane c, parallel to the c-axis, can thus be perpendicular

to �a or �b but also to the diagonal of the (a, b) face in the case of a tetragonal cell, for example. Last, for

planes e, n and d involving at least two lattice vectors (see Table 5), it is straightforward to determine

their orientation once the glide translation is known, and vice versa. As an example, for a n plane, the

glide translation is parallel to the diagonal of the face to which the plane is parallel, so that for a n

plane perpendicular to �c, the glide translation can only be (�a + �b)/2, while for a n plane perpendicular

to [11̄0], �t has to be (�a + �b + �c)/2.

It is worth making a last comment about the double glide planes e, since they were recently added in

the ITC [1] and replace some previously named a, b and c planes. This double glide plane is encountered

only in centered cells, as illustrated hereafter. As an example, let us consider a space group of the

A orthorhombic Bravais lattice having a plane b perpendicular to the a-axis. Due to the A-centering,

the glide translation �t = �b/2 of that glide plane yields the existence of the additional glide translation
�t ′ = �t + (�b + �c)/2 = �b + �c/2 (modulo �b), that is, since �t ′ must act inside the unit cell, �t ′ = �c/2. This

previously named b plane is thus renamed e plane, to indicate that it is both of types b and c (see

Table 5). As a consequence, 5 space groups were renamed: No. 39 (Abm2 is now Aem2), No. 41 (Aba2

6 In a cubic cell described by the Laue class m3̄m, the axes �a, �b and �c are all of higher degree of symmetry (fourfold axis), so that

a plane a can also be perpendicular to �b ± �c and a plane b to �a ± �c. In the same way, a plane c can be perpendicular to �a, �b or the
diagonal of the (a, b) face.
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is now Aea2), No. 64 (Cmca is now Cmce), No. 67 (Cmma is now Cmme), and No. 68 (Ccca is now

Ccce) (see next subsection for the explanation of these notations and the space groups’ numbering).

• Screw axes

Let us now consider a rotation axis of order n (n = 2, 3, 4 or 6) and a translation vector �t parallel

to that axis, as plotted in figure 12-b. The screw axis, applied on a starting point P0, generates point

P1 as follows: the rotation symmetry transforms point P0 into the intermediate immaterial point P ′ and

the translation symmetry then transforms point P ′ into point P1. Applying this screw axis symmetry a

second time, that is on point P1, yields point P2, and so forth until point Pn, obtained from point P0 after

n successive applications of the screw axis (total angle n × 2�/n = 2� and total glide translation n�t ).

Applying n times the screw axis must be equivalent to applying a lattice translation �T , so that one must

have:
−−→
P0Pn = n�t = �T (2.22)

For example, if the glide translation is parallel to �c, eq. (2.22) yields:

n�t = p �c ⇒ �t = p

n
�c (2.23)

with p an integer strictly smaller than n, for the glide translation to act inside the unit cell, that is

p = 0, 1, . . . , n − 1. The Hermann-Mauguin symbol for a pure rotation (i.e. for p = 0) is n, as seen

previously, while that for a screw axis (i.e. for 0 < p < n) is np.

As a result, for n = 2, only the pure rotation 2 and the screw diad 21 exist; for n = 3, only the pure

rotation 3 and screw triads 31 and 32 exist, etc ... As concerns their orientation, pure rotation axes as

well as screw axes of order n can be parallel to the primary direction, and/or, when they exist, to the

secondary and/or tertiary ones, regarding their degree of symmetry (see Tables 1 and 3). For n = 3, for

example, they can exist only in the hexagonal cell and are thus parallel to [001] (primary direction) or

in the cubic cell and are thus parallel to 〈111〉 (secondary direction). The augmented (4 × 4) matrix for

a screw axis np parallel to the c−axis at x = 1/4 and y = 0, for example, is written:

Wscrew axis np at ( 1
4

0z) =




cos 2�
n

− sin 2�
n

0 1
2

sin 2�
n

cos 2�
n

0 0

0 0 1
p

n

0 0 0 1




(2.24)

Let us now focus on 4p screw axes. Such axes can be encountered either in the tetragonal system

(parallel to [001], i.e. to the c-axis) or in the cubic one (parallel to 〈100〉, i.e. to the a, b, and c axes).

Figure 13 gives a representation of the 4 possible axes of order 4 (except 4̄) in perspective (top figures)

and viewed from the top (bottom figures). In each top figure, points 2, 3, 4 and 5 are obtained by

applying one, two, three and four times, respectively, the considered symmetry on point 1. Considering

the symmetry axis parallel to the c-axis, all points lie at z = 0 for the 4-axis, while for a 4p-axis

(p = 1, 2, 3), point 2 is lying at z = p/4, point 3 at z = 2p/4, etc . . . For p = 2 and 3, points 3, 4

and 5 are lying at z ≥ 1 so that they are outside of the initial unit cell. One can thus apply the lattice

translation −�c or −2 �c on these points, yielding points 3’, 4’ and 5’ with 0 ≤ z ≤ 1. Looking from the

top, one sees the various schemes plotted schematically below each perspective figure, which explains

the symbol used to represent each of these 4p axes (see Table 6). As an example, for the 41-axis, z

increases at each �/2 rotation. In the bottom figure, this is represented by the dashes in the square’s

corners, indicating the direction of rotation when going up along the z direction.

Table 6 lists all existing rotations, rotoinversions and screw axes, with the following information:

their printed and graphical symbol, their name, and the glide translation, when it exists, given in units

of the shortest lattice translation vector parallel to the axis.
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Figure 13. The fourfold rotation and screw axes, plotted in perspective parallel to the c−axis (top figures) and
viewed from the top (bottom figures) in order to evidence their graphical symbol: pure rotation 4, screw axis 41

(glide translation �t = �c/4), screw axis 42 (glide translation �t = �c/2), and screw axis 43 (glide translation �t = 3 �c/4).
See text for further explanations.

2.3.2 How to obtain and name the 230 space groups

Combining the 14 Bravais lattices with the 32 crystallographic point groups (or crystal classes), one

obtains in total 230 space groups. They are all listed in Tables 7 and 8, by increasing number (No.),

that is in the same order than in the ITC [1], using the short international (Hermann-Mauguin) symbols.

These numbers correspond to an international numbering of the space groups, for an easier locating of

a given space group among the 230 ones. In this list, the conventional cell and the crystal class to which

the space group belongs are also indicated. Before explaining briefly how to obtain all space groups, let

us first explain their symbol.

As for point groups, both Hermann-Mauguin (short and full) and Schoenflies symbols exist for space

groups. But in crystallography, the former is used because the symmetry elements appear explicitly in

the Hermann-Mauguin symbol, so that it makes it much more convenient. These symbols will thus be

presented in detail. Both the short and the full international (Hermann-Mauguin) symbols consist of two

parts: i- a letter indicating the lattice type, P , I , F , A, B, C or R (see subsection 2.2.1 and Table 4),

ii- a set of one, two or three characters, indicating the space group symmetry elements present along

the primary, secondary and tertiary directions (when they exist), respectively, as for point groups (see

Table 3). Here again, the direction of a symmetry axis is given by the direction of the axis, while that

of a symmetry plane is given by its normal. If various types of symmetry planes exist along the same

direction, only one symbol will be given, following this order of descending priority: m, e, a, b, c, n, d

(see Table 5), while if both pure rotations and screw axes exist, the pure rotations will be given (except

for a few exceptions, see Ref. [1]). In the full symbol, when both symmetry axes and planes are present

along a given direction, the two characters are given, separated by a slash, indicating that the plane

is perpendicular to the axis. In the short symbol, symmetry axes are suppressed as much as possible:

only the symmetry plane’s symbol is given when the plane is perpendicular to an axis of order 2, for

orthorhombic, tetragonal, hexagonal and cubic cells, or when the plane is perpendicular to an axis of

order 4 for the cubic cell (but not for the tetragonal one). As an example, space group I41/amd (short

symbol) belongs to the tetragonal system since an axis of order 4 exists along the primary direction

but no axis of order 3 exists along the secondary direction. In this space group, the tetragonal cell is
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Table 6. Printed and graphical symbols for symmetry axes: rotation, rotoinversion and screw axes. The glide
translation is given in units of the shortest lattice translation vector parallel to the axis. Axes of order 2 can be
parallel or perpendicular to the projection plane, so that both representations are given, while those of order 3, 4
and 6 are always perpendicular to the projection plane, that is parallel to the c−axis, except in the cubic system
where axes of order 3 are inclined (the same symbol is used) and axes of order 4 are parallel and perpendicular to
the projection plane (see Ref. [1] for their symbol when parallel to the paper).

Twofold

rotation axis

Twofold

screw axis

(// paper)

(⊥⊥⊥⊥ paper)

2

21 1/2

Threefold

rotation axis
3

⊥⊥⊥⊥ paper

none

Threefold

screw axes

31

32 2/3

1/3

Fourfold

rotation axis
4 none

Fourfold

screw axes

41

42 1/2

1/4

43 3/4

Printed

symbol

Graphical

symbol

Symmetry

axis

Glide

translation

Sixfold

rotation axis
6 none

Inversion none

Threefold

inversion axis
none

Fourfold

inversion axis
none

Sixfold

inversion axis
none

Sixfold

screw axes

61

62 1/3

1/6

63 1/2

64

65

2/3

5/6

Identity none none1

(⊥⊥⊥⊥ paper)

(// paper)

none

6

4

3

1

Printed

symbol

Graphical

symbol

Symmetry

axis

Glide

translation

body-centered, a fourfold screw axis 41 is parallel to the primary direction ([001]) and a glide plane a

is perpendicular to it, a mirror m is perpendicular to the secondary direction ([100] and [010]) and a

diagonal glide plane d to the tertiary direction ([110] and [11̄0]). Due to the body-centering, additional

planes and axes are present along each direction, but, following the priority rule explained above, only

these a, m and d planes are given in the space group symbol. For example, n planes are also present

along the secondary direction, but the m mirrors are given. The full symbol for that space group is

I 41/a 2/m 2/d indicating that twofold rotation axes are also present along the secondary and tertiary

directions. As concerns space groups’ Schoenflies symbols, the symbol of the corresponding point group

is used with an additional subscript number. As an example, three space groups correspond to point

group 2 (international symbol) or C2 (Schoenflies symbol): these are P 2, P 21, and C2 (international

symbol) or C1
2 , C2

2 , and C3
2 (Schoenflies symbol).

Let us now briefly discuss how the 230 space groups can be obtained. One considers the 7 crystal

systems, one after the other, by increasing degree of symmetry and one associates to each of them the

compatible crystal classes, in the same order than listed in Table 1, and the compatible lattice types (see

Table 4) starting with the P type then with the centered ones in the order C, A, F , I (for non hexagonal

cells) or R (for the hexagonal cell). In a first step, one considers for each couple (Bravais lattice, point

group) the symmorphic operations, that is with no glide translation. All symmetry elements thus go

through the center of the cell, and, for symmetry reasons, are duplicated at the corners. For each crystal

system, one can thus built at least nn′ symmorphic space groups, with n the number of compatible
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Table 7. The 230 space groups listed by increasing number (first part).

cell point space group cell point space group cell point space group

group No. symbol group No. symbol group No. symbol

a 1 1 P1 51 Pmma 101 P42cm

1 2 P 1 52 Pnna 102 P42nm

m 2 3 P2 53 Pmna 103 P4cc

4 P21 54 Pcca 104 P4nc

5 C2 55 Pbam 105 P42mc

m 6 Pm 56 Pccn 106 P42bc

7 Pc 57 Pbcm 107 I4mm

8 Cm 58 Pnnm 108 I4cm

9 Cc 59 Pmmn 190 I41md

2/m 10 P2/m 60 Pbcn 110 I41cd

11 P21/m 61 Pbca 4 2m 111 P 4 2m

12 C2/m 62 Pnma 112 P 4 2c

13 P2/c 63 Cmcm 113 P 4 21m

14 P21/c 64 Cmca 114 P 4 21c

15 C2/c 65 Cmmm 115 P 4 m2

o 222 16 P222 66 Cccm 116 P 4 c2

17 P2221 67 Cmma 117 P 4 b2

18 P21212 68 Ccca 118 P 4 n2

19 P212121 69 Fmmm 119 I 4 m2

20 C2221 70 Fddd 120 I 4 c2

21 C222 71 Immm 121 I 4 2m

22 F222 72 Ibam 122 I 4 2d

23 I222 73 Ibca 4/mmm 123 P4/mmm

24 I212121 74 Imma 124 P4/mcc

2mm 25 Pmm2 t 4 75 P4 125 P4/nbm

26 Pmc21 76 P41 126 P4/nnc

27 Pcc2 77 P42 127 P4/mbm

28 Pma2 78 P43 128 P4/mnc

29 Pca21 79 I4 129 P4/nmm

30 Pnc2 80 I41 130 P4/nnc

31 Pmn21 4 81 P 4 131 P42/mmc

32 Pba21 82 I 4 132 P42/mcm

33 Pna21 4/m 83 P4/m 133 P42/nbc

34 Pnn2 84 P42/m 134 P42/nnm

35 Cmm2 85 P4/n 135 P42/mbc

36 Cmc21 86 P42/n 136 P42/mnm

37 Ccc2 87 I4/m 137 P42/nmc

38 Amm2 88 I41/a 138 P42/ncm

39 Abm2 422 89 P422 139 I4/mmm

40 Ama2 90 P4212 140 I4/mcm

41 Aba2 91 P4122 141 I41/amd

42 Fmm2 92 P41212 142 I41/acd

43 Fdd2 93 P4222 h 3 143 P3

44 Imm2 94 P42212 144 P31

45 Iba2 95 P4322 145 P32

46 Ima2 96 P43212 146 R3

mmm 47 Pmmm 97 I422 3 147 P 3

48 Pnnn 98 I4122 148 R 3

49 Pccm 4mm 99 P4mm 32 149 P312

50 Pban 100 P4bm 150 P321

lattice types and n′ the number of compatible crystal classes. In a second step, one adds for each couple

(Bravais lattice, point group) some glide translation to each of the symmetry elements of the point group,

one after the other, then to two of them and so forth. Doing so allows to obtain non symmorphic space

groups. Only the space groups that are different from those previously obtained are kept. Contrary to

symmorphic space groups, the symmetry elements do not all go through the same point.
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Table 8. The 230 space groups listed by increasing number (second part).

cell point space group cell point space group cell point space group

group No. symbol group No. symbol group No. symbol

151 P3112 178 P6122 205 Pa 3

152 P3121 179 P6522 206 Ia 3

153 P3212 180 P6222 432 207 P432

154 P3221 181 P6422 208 P4232

155 R32 182 P6322 209 F432

3m 156 P3m1 6mm 183 P6mm 210 F4132

157 P31m 184 P6cc 211 I432

158 P3c1 185 P63cm 212 P4332

159 P31c 186 P63mc 213 P4132

160 R3m 6 m2 187 P 6 m2 214 I4132

161 R3c 188 P 6 c2 4 3m 215 P 4 3m

3 m 162 P 3 1m 189 P 6 2m 216 F 4 3m

163 P 3 1c 190 P 6 2c 217 I 4 3m

164 P 3 m1 6/mmm 191 P6/mmm 218 P 4 3n

165 P 3 c1 192 P6/mcc 219 F 4 3c

166 R 3 m 193 P6/mcm 220 I 4 3d

167 R 3 c 194 P6/mmc m 3 m 221 Pm 3 m

h 6 168 P6 c 23 195 P23 222 Pn 3 n

169 P61 196 F23 223 Pm 3 n

170 P65 197 I23 224 Pn 3 m

171 P62 198 P213 225 Fm 3 m

172 P64 199 I213 226 Fm 3 c

173 P63 m 3 200 Pm 3 227 Fd 3 m

6 174 P 6 201 Pn 3 228 Fd 3 c

6/m 175 P6/m 202 Fm 3 229 Im 3 m

176 P63/m 203 Fd 3 230 Ia 3 d

622 177 P622 204 Im 3

As an illustration, let us consider all space groups that can be built from the monoclinic conventional

cell, choosing b for the unique axis. n = 2 Bravais lattices exist, mP and mC, and n′ = 3 crystal classes

are compatible with this cell, 2, m and 2/m. Six symmorphic space groups can first be obtained (see

Table 7): P 2, C2, P m, Cm, P 2/m, and C2/m (No. 3, 5, 6, 8, 10 and 12, respectively). Then, the 2-axis

can be replaced by a 21-axis in space groups No. 3, 5, 10 and 12, yielding only two new space groups

P 21 and P 21/m (No. 4 and 11). Then, the m mirror can be replaced by a c plane in space groups No. 6,

8, 10 and 12 yielding four new space groups P c, Cc, P 2/c, and C2/c (No. 7, 9, 13 and 15, respectively).

Last, a glide translation is added for both the 2-axis and the m mirror in space group No. 10 yielding

P 21/c (No. 14), while doing that in space group No. 12 does not yield any new space group. In total,

13 monoclinic space groups are thus obtained, among which exactly nn′ = 6 symmorphic ones. But

in some cases, more than nn′ symmorphic space groups can be obtained. For example, Amm2 (space

group No. 38, equivalent to C2mm, by interchanging the two axes a and c, and to Cm2m, by cyclic

permutation of the three axes a → c, b → a, c → b) and Cmm2 (space group No. 35) correspond

to two different space groups (though built from the same Bravais lattice, since A and C correspond

to the same lattice type, and the same point group). Indeed, two different orderings of the space groups

symmetry elements along the primary, secondary and tertiary directions can yield different space groups.

In Amm2 space group, the twofold axis is parallel to the centered face while in the Cmm2 space group,

it is perpendicular. As a second illustration, see space groups P 6/mcm and P 6/mmc in Table 8.

2.3.3 The International Tables for Crystallography

It is useful to know how to interpret the information provided in the International Tables for

Crystallography [1] for all space groups. To illustrate this, two selected examples have been
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Figure 14. (Color online) First page of P nma space group taken from the International Tables For Crystallography,
Volume A (page 298) [1], with circled numbers added in blue (see text).

chosen: P nma and I4mm. Only some specific points will be explained here. For a more complete

description, one should refer to Ref. [1].

Figures 14 and 15 are reproductions of the information provided in the ITC for space group P nma,

on which blue circled numbers and a blue box were added for an easier legibility. As concerns the

second page (figure 15), only the top part has been reproduced here. In the bottom part, information

about group-subgroup relation is given: maximal isomorphic and non-isomorphic subgroups, as

well as minimal non-isomorphic supergroups; but it will not be discussed here (see chapter by

Perez-Mato et al.).

1© and 6© are respectively the short and full international (Hermann-Mauguin) symbols of the

considered space group, 2© is its Schoenflies symbol, 3© its point group in short international symbol,

4© its crystal system, and 5© its number. From all this information, one learns that this space group

is non symmorphic, belongs to the orthorhombic primitive (P ) Bravais lattice, and has the following

symmetry elements: planes n ⊥ �a, m ⊥ �b, and a ⊥ �c, and screw axes 21 perpendicular to each of them,
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12

13
14

Figure 15. (Color online) Top part of the second page of P nma space group taken from the International Tables
For Crystallography, Volume A (page 299) [1], with circled numbers and a box added in blue (see text).

that is ‖ �a, �b, and �c. Suppressing in the international symbol the lattice type and the glide translation

from the various space group operations yields the international symbol for the point group: planes n, m

and a become m mirrors and screw axes 21 become rotation axes 2, yielding 2/m 2/m 2/m point group,

in full notation, that is mmm in short notation.

The three diagrams labeled 7© are projections in the (a, b) plane of all symmetry operations that exist

in the unit cell (using the graphical symbols given in Tables 5 and 6), with the following convention:

�a points to the bottom, �b points to the right (�c is thus perpendicular to the paper pointing forwards).

Since there are six different manners to name a, b and c in an orthorhombic cell, this yields six different

international symbols and six different diagrams for the same space group. This information is given

looking at the three diagrams in the ’normal way’ (the top left one corresponds to the same setting as the

symbol given in 1©) and then after rotating clockwise the paper by 90◦ degrees. For symmetry elements

parallel to the (a, b) plane at z �= 0, the spot height z is written next to the graphical symbol. Along

c for example, one can clearly see in the top left diagram the presence of 21 axes at (x0, y0) positions

with x0 = 1/4 and 3/4, y0 = 0, 1/2 and 1 and the presence of a plane a (since the arrow in its graphical

symbol points in the a direction) at z = 1/4. Note also the presence of the inversion (not explicitly

written in the international symbol, but whose presence can be guessed from the existence of planes

perpendicular to the twofold axes or from the name of the point group which is centrosymmetrical).

A last comment deserves to be made: for symmetry reasons, if a symmetry element is present at

� = 0 (where � = x, y or z), it is also present at � = 1/2 and 1, while if it is present at � = 1/4, it is

also present at � = 3/4.

The diagram labeled 8© is the same projection as the top left diagram labeled 7© (that is for the

standard setting of this space group, P nma) except that the equivalent atomic positions are plotted

instead of the symmetry operations. Starting from an atom at some arbitrary position (x, y, z) inside the

unit cell close to the origin and applying all symmetry elements (inversion, symmetry planes and axes,

and lattice translations) yields all the equivalent positions plotted in the figure: note that all positions

inside the unit cell and in its immediate surrounding are plotted. Points represented by © and ,© are

related by inversion, rotoinversion or mirror symmetry. Last, the spot height is also indicated next to

each atom symbol as follows: the symbols + and − stand for +z and −z, while the symbols 1
2
+ and 1

2
−
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stand for 1
2

+ z and 1
2

− z, respectively. Last, it is worthwhile mentioning that the number of equivalent

positions inside the unit cell corresponds to the order of the point group (since the cell is primitive) or,

equivalently, to the number of symmetry operations (since all of them are of order 2): these 8 symmetry

elements are identity, inversion, planes n, m and a and screws axes 21, 21 and 21 along a, b and c,

respectively.

Since the choice of the origin is arbitrary, 9© tells on which symmetry elements it was chosen here: on

the inversion center located on the 21 axis parallel to �b. 10© gives the volume occupied by the asymmetric

unit: the knowledge of the atoms contained in this volume only is sufficient to reconstruct the entire

crystal (applying the symmetry planes and axes first, to obtain the motif, then the lattice translations).

All space group operations except lattice translations are listed in 11© with the following items: a number

(between parenthesis), the nature of the symmetry and its position. For example, operation number (2) is

a twofold screw axis with the glide translation along the c axis and located at 1/4 0 z; operation number

(8) is a glide plane n with glide translation (�b + �c)/2 and located at 1/4 y z. Note that the list contains

8 different symmetry operations, as already mentioned, but not all of them are necessary to generate the

space group. An arbitrary choice of generators is then given in 12©: symmetry operations numbers (1),

(2), (3), and (5), together with the lattice translations. This list is very useful for softwares since it allows

to generate entirely the space group symmetries with a reduced number of symmetry elements. 13© gives

the list of Wyckoff positions for the considered space group: the general one (in the upper block, boxed

in blue) and the special ones (in the blocks below, by increasing degree of symmetry). For each Wyckoff

position, the four following items are provided, from left to right: i- the multiplicity M of the site, that

is the number of equivalent positions in the unit cell, ii- the Wyckoff letter of the site, starting with a

at the bottom position (the most symmetrical one and thus that with the smallest multiplicity M) and

continuing upwards in alphabetical order, iii- the site symmetry, iv- the list of coordinates (modulo 1) for

all equivalent positions obtained by applying symmetry operations (1) to (8) (see 11©) to an initial atom.

As concerns the general position, the initial atom is chosen at an arbitrary position (x, y, z) and the

numbering of the atoms, given between parentheses, is the same as the one for the symmetry operations

in 11©. Note also that the multiplicity of this site (number of coordinates) is equal to the number of

symmetry operations given in 11©, that is to the product of the point group’s order by the multiplicity of

the cell. A Wyckoff site is named by the two first items: site ‘8d’, for example. The general Wyckoff

site ‘8d’ has a multiplicity M = 8, as already known from the information given in the previous page

(diagram 8© and list of symmetry operations 11©) and is located anywhere (on identity ‘1’), since it is

general. If one now considers an atom located on the mirror m perpendicular to �b at y = 1/4, that is

on symmetry element denoted ‘.m.’, the multiplicity is now divided by two (site ‘4c’): for example,

positions (1) and (7) are now the same one, (x, 1/4, z). Last, 14© gives the list of extinction rules, which

will be explained when presenting the reciprocal space’s properties (see section 2.4.2).

As an example, let us consider the structure of LaMnO3, crystallizing in the P bnm

space group (cf. J. Rodríguez-Carvajal, M. Hennion, F. Moussa, A. H. Moudden, L. Pinsard,

and A. Revcolevschi, Phys. Rev. B 57, R3189 (1998)). As can be seen from Fig. 14 and

from Table 4.3.2.1 in the ITC, Volume A [1], this space group is equivalent to P nma by

doing the following permutation: a → b, b → c, and c → a. The asymmetric unit, using this

standard setting P nma, is:
x y z

La 0.0490 0.25 −0.0078

Mn 0 0 0.5

O1 0.4874 0.25 0.0745

O2 0.3066 0.0384 0.7256

Looking at Fig. 14, one immediately notices that La and O1 atoms are located on the 4c Wyckoff site,

Mn on the 4b site and O2 on the 8d site, yielding the motif La4Mn4O12. So once the space group is

known as well as the Wyckoff sites the atoms occupy, only 7 coordinates out of 60 (3 × 20 atoms in the

unit cell) have to be determined in this example in order to completely determine the crystal structure.
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Figure 16. First page of I4mm space group taken from the International Tables For Crystallography, Volume A
(page 398) [1].

Figures 16 and 17 are reproductions of the information provided in the ITC for space group I4mm.

Here again, only the top part of the second page has been reproduced in figure 17. In this symmorphic

body-centered tetragonal space group, a fourfold rotation axis is along c (primary direction) and mirrors

m are perpendicular to 〈100〉 (secondary direction) and to 〈110〉 (tertiary direction). Only two specific

items will be focused on, because of their particularities as compared to the previously discussed space

group. The first difference is the presence here of a symmetry operation of order strictly larger than 2:

the fourfold axis. The latter is thus decomposed in three different symmetry operations in the list of

symmetry operators given in the first page (see operations (3), (2) and (4) in Fig. 16), each of them

generating only one new position: they correspond, respectively, to consecutive applications of the 4

axis, a first time anti-clockwise (2�/4, labeled 4+), a second time (�, labeled 2), and a third time anti-

clockwise, that is once clockwise (3�/4 ≡ −�/4, labeled 4−). The advantage of doing so is that here

again, the total number of symmetry operations is the same as the general Wyckoff site’s multiplicity M ,

as will be seen hereafter. The second difference is the non primitive type of the cell, which has various

implications. First, the symmetry operations are decomposed in two sets due to the multiplicity m = 2

of the unit cell: in the (0, 0, 0)+ set are listed the height symmetry operations of the space group, without

taking into account the body-centering of the cell (identity, axis 4 decomposed in three parts, and the

four mirrors), applying the I−centering on these 8 symmetry operations generates the 8 other symmetry

operations listed in the set ( 1
2
, 1

2
, 1

2
)+. In total, this space group thus contains 16 symmetry operations: 2

(multiplicity of the cell) × 8 (point group’s order). Second, the translation t( 1
2
, 1

2
, 1

2
) is of course added

in the list of selected generators (see Fig. 17). Last, only half of the coordinates are explicitly listed

for all Wyckoff positions and the centering translations (0, 0, 0)+ and ( 1
2
, 1

2
, 1

2
)+ are written above: the
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Figure 17. Top part of the second page of I4mm2 space group taken from the International Tables For
Crystallography, Volume A (page 399) [1].

‘+’ sign indicates that, in order to obtain the complete Wyckoff position, one must add the components

of these translations to the listed coordinates. More generally, for a Wyckoff site of multiplicity M in

a centered cell of multiplicity m, only M/m coordinates are explicitly listed. Note that the numbers

given between parentheses for the coordinates of the general site correspond to those of the symmetry

operations given in the set (0, 0, 0)+ (see Fig. 16).

2.4 Reciprocal space

We have seen, in the previous section, how to describe atomic positions in crystals and the role of

the symmetries in this task. If one now wants to determine experimentally a crystallographic structure,

diffraction measurements can be carried out. Intuitively, such experiments are based on constructive

interference of waves that for a given wavevector of incident beam of X-rays or neutrons amplifies

scattering in directions for which conditions of equiphase with specific periods are encountered. This

naturally leads to a dual picture of the crystal structure, where, typically but not only, a line (a plane)

in the real space for instance gets associated to a perpendicular plane (a line) in the dual space. As a

matter of fact, the scattering amplitudes are computed as coefficients of the Fourier transform of the

atomic charge or nuclear densities (and of magnetic densities if any). It is customary to call the dual

space reciprocal space. This Section is devoted at defining the reciprocal space (some examples will be

given), giving its most important properties. It ends with a brief introduction to the concept of Brillouin

zone.

2.4.1 Definitions and examples

The reciprocal lattice is defined as a network of points in the Fourier space (dual) which are the

extremities of vectors:

�� = h�a ⋆ + k�b⋆ + l�c ⋆ (2.25)
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Figure 18. (Color online) Examples of direct cell (left figure, in green) and reciprocal cell (right figure, in orange)
for two different conventional cells: a- orthorhombic and b- hexagonal.

with h, k, l integers and �a ⋆, �b⋆, �c ⋆ the basis vectors of the reciprocal lattice. The latter are defined as

follows:

�a ⋆ = C
�b ∧ �c

V
, �b⋆ = C

�c ∧ �a
V

, �c ⋆ = C
�a ∧ �b

V
(2.26)

with C a constant and V the volume of the unit cell in direct space defined by:

C =
{

2� in solid states physics

1 in crystallography
(2.27)

V = (�a, �b, �c ) = (�a ∧ �b ) · �c = �a · (�b ∧ �c ) (2.28)

From definitions (2.26), one immediately sees that �a ⋆ is perpendicular to �b and �c, �b⋆ to �c and �a, and

�c ⋆ to �a and �b. More precisely, using the convention of crystallographers (C = 1), eq. (2.26) yield the

following properties:7

�a ⋆ · �a = �b⋆ · �b = �c ⋆ · �c = 1

�a ⋆ · �b = �a ⋆ · �c = 0

�b⋆ · �a = �b⋆ · �c = 0

�c ⋆ · �a = �c ⋆ · �b = 0

(2.29)

As an illustration, figure 18 shows the direct and reciprocal cell for two different conventional unit

cells: orthorhombic (a) and hexagonal (b). For the orthorhombic unit cell (of direct volume V = abc),

the reciprocal space is simply such as: �a ⋆ ‖ �a with a ⋆ = 1/a, �b⋆ ‖ �b with b⋆ = 1/b, and �c ⋆ ‖ �c with

c ⋆ = 1/c, and is thus also orthorhombic. For the hexagonal unit cell (of direct volume V =
√

3 a2c/2),

�a ⋆ and �b⋆ are not parallel to �a and �b, respectively (see Fig. 18-b), and a ⋆ = b⋆ = 2/(a
√

2), while

�c ⋆ ‖ �c (since �c ⊥ �a, �b) and c ⋆ = 1/c. The reciprocal cell is thus also hexagonal but with �⋆ = 60◦ (to

be compared to � = 120◦ in direct space). More generally, the reciprocal cell of the direct cell always

belongs to the same conventional cell.

2.4.2 Properties

The properties of the direct space and the definition of the reciprocal space yield particular properties.

A few of them (the most crucial) will be recalled here.

• The reciprocal lattice of the reciprocal lattice is the direct space lattice.

• The direct space is used to describe the atomic positions in the crystal, the reciprocal space is used to

describe the positions of the diffracted peaks, phonons, magnons, · · ·.

7 Eq. (2.29) can be taken as the defining relations for a dual lattice. They easily are solved to give eq. (2.26).
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• Each family of rows [hkl]⋆ in the reciprocal space is perpendicular to the family of net planes (hkl)

in the direct space, and each family of net planes (uvw)⋆ in the reciprocal space is perpendicular to

the family of rows [uvw] in the direct space.

• Using the definition of the reciprocal space, the d-spacing for a family (hkl) of net planes in the direct

space is simply:

dhkl = 1

| �Q|
= 1√

(h�a ⋆ + k�b⋆ + l�c ⋆).(h�a ⋆ + k�b⋆ + l�c ⋆)

(2.30)

with �Q the scattering vector, defined in diffraction as �Q = �kf − �ki , where �ki and �kf are respectively

the initial and final wave vectors of the X-ray or neutron beam.

• The effect in the reciprocal space of a symmetry operation in the direct space is the following: in a

standard diffraction experiment, i- the symmetry of the reciprocal space is given by the Laue class

(i.e. the inversion is always present) while ii- the extinction rules result from the glide translations

contained in non-symmorphic space group symmetries. Let us illustrate this by two examples:

Example 1. Let us consider a space group containing an axis 21 ‖ �b (the Laue class thus contains an

axis 2 ‖ �b). i- This yields an axis 2 ‖ �b⋆ in reciprocal space (effect of the Laue class), so that Bragg

peaks hkl and h̄kl̄ will have the same intensity. Note that due the centrosymmetry of the reciprocal

space, Bragg peaks h̄k̄l̄ and hk̄l will also have the same intensity as the former two. ii- The glide

translation of the 21 axis, �t = 1
2
�b, yields a translation �t⋆ = 2 �b⋆ along the equivalent axis passing

though the origin in the reciprocal space (effect of a non symmorphic space group symmetry), so that

0k0 Bragg peaks with k odd will be forbidden.

Example 2. Let us now consider a space group containing a glide plane a ⊥ �b (the Laue class thus

contains a mirror m ⊥ �b). i- This yields a mirror m ⊥ �b⋆ in reciprocal space, so that Bragg peaks hkl

and hk̄l will have the same intensity, as well as h̄k̄l̄ and h̄kl̄ due to the presence of an inversion center

in the reciprocal space. ii- The glide translation of the a plane, �t = 1
2
�a, yields a translation �t⋆ = 2 �a ⋆

parallel to the equivalent plane passing through the origin in the reciprocal space, so that h0l Bragg

peaks with h odd will be forbidden.

The extinction rules (or reflection conditions) can be found in the International Tables for

Crystallography [1], as can be seen in the right column on Figures 15 (see 14©) and 17. The general

reflection conditions are first given in front of the general Wyckoff site: they arise from the presence

in the considered space group of non symmorphic symmetry operations and thus concern all atoms. If

for a Bragg reflection, one of these reflection conditions is not fulfilled, then the diffracted intensity

is null. Then the special conditions are given, in front of each special Wyckoff site: for some sites, no

additional reflection condition is mandatory, while for some others, an additional reflection condition is

given. The contribution to the diffracted intensity of the atoms occupying a specific Wyckoff position is

null if the additional special reflection condition listed here is not fulfilled. Let us focus on the example

of P nma (see 14© in Fig. 15). The first general condition ‘0kl : k + l = 2 n’ comes from the n plane

perpendicular to �a and is to be read as follows: a necessary condition for a Bragg peak 0kl not to be

null is that k + l must be even. But this does not mean that all 0kl peaks with k + l = 2 n will have

a non zero intensity (the structure factor could, for a particular motif and particular k and l values,

give zero intensity). ‘hk0 : h = 2 n’ comes from the presence of a a plane perpendicular to �c, while

‘h00 : h = 2 n’, ‘0k0 : k = 2 n’, and ‘00l : l = 2 n’ come from the presence of 21 axes along �a, �b, and

�c, respectively.

Let us now briefly comment the reflection conditions listed for the space group I4mm (see Fig. 17).

This space group is non symmorphic. Nevertheless, it has some extinction rules. The latter arise from

the choice of a body-centered unit cell: h + k + l even is a necessary condition for a Bragg peak

hkl not to be null (first reflection condition in Fig. 17). The other extinctions rules, displayed below,

are just consequences of the first one. More generally, a non primitive lattice (multiplicity m = 2, 3,
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or 4), contrary to a primitive one, always shows an extinction rule on hkl Bragg peaks. This ‘artificial’

extinction rule simply comes from the fact that a cell m times too large is chosen in direct space, so

that the reciprocal cell is m times too small. This means that m − 1 reciprocal lattice points out of m do

actually not exist so should result in zero intensity for any elastic scattering.

2.4.3 The Brillouin zone

It at last is worth recalling the concept of Brillouin zone, which is very useful when dealing with

diffraction and propagating phenomena (phonons, magnons, . . .) or electronic structure of matter. One

defines the first Brillouin zone as the smallest polyhedron enclosed by the perpendicular bisectors of the

nearest neighbors to a given point of the reciprocal space. The first Brillouin zone thus is the equivalent in

the reciprocal space of the Wigner-Seitz cell in the direct space. By construction, i- the whole reciprocal

space is filled by locating a first Brillouin zone at each reciprocal lattice point, ii- the first Brillouin

zone has the same volume as the primitive cell in the reciprocal space. Examples of first Brillouin zones

are displayed figure 19. A first Brillouin zone often contains points of higher symmetry, called special

points. These are marked with a particular symbol (see Fig. 19-c). One for instance distinguishes the

points

�: Brillouin zone’s center

K: middle of an edge between two hexagonal faces

L: center of an hexagonal face

U: middle of an edge between a square face and an hexagonal one

X: center of a square face

W: corner

- a -

- b -

- c -

x

z

y

L

U

X

WK

Σ

Γ

Λ

Figure 19. First Brillouin zone for three different reciprocal lattices: a- two-dimensional rectangular, b- two-
dimensional hexagonal, c- three dimensional cubic F . In figures a and b, the reciprocal lattice points are the solid
blue circles and the first Brillouin zone is colored in orange with the bisectors in black solid lines. In figure c, the

first Brillouin zone is delimited by the black solid lines, x, y, z indicate the directions of �a ⋆, �b ⋆, �c ⋆, and special
positions are labeled by capital letters corresponding to a standard notation (see text).

One more generally defines an nth Brillouin zone in the reciprocal space as the set of points that can be

reached from the origin by crossing exactly n − 1 Bragg planes. A Bragg plane is a plane that bisects a

reciprocal lattice vector. All the Brillouin zones have the same volume. The relevance of the Brillouin
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zones for wave propagation in a crystal is to bring to light all the incident wavevectors �ki to which the

crystal can make undergo a diffraction to �ki + ��, where �� is the reciprocal lattice vector. The condition for

Bragg reflection �kf − �ki = �� indeed may write �ki · 1
2
�� = ( 1

2
��)2, using the fact that diffraction is elastic

and the Friedel law.

3. REPRESENTATION ANALYSIS

A crystal is not solely a geometric entity specified by a space group symmetry. It is made of atoms,

ions or molecules that mutually interact in a number of ways or react to surrounding fields, local

and external. It accordingly exhibits a variety of static and dynamical physical properties that find

transcriptions into a wide range of physical quantities, namely thermodynamic variables featuring a

macrostate, wavefunctions or fields describing quantal or classical microscopic states or excitations,

response functions to experimental probes, . . .. A macroscopic strain, an electric polarization, . . ., a

wavefunction of an individual atom, ion or molecule in its crystal environment, an exciton wavefunction,

. . ., a magnetic moment configuration field, an electric quadrupole tensor field, . . ., a magneto-electric

susceptibility tensor, a dynamical neutron scattering function, . . . are a few among typical examples.

It is explicit from this enumeration that a physical quantity may be of diverse nature, tensorial or

spinorial possibly function of time and space, so prone to change under time or space transforms.

When these belong to a symmetry group it is of crucial interest to establish under which conditions

a particular quantity might be invariant, or to specify the orbit of all its transforms in the instance

where it inherently would be of lower symmetry,8 or else to gauge the fully or partially symmetric

components out of which it is compounded. A natural and elegant mathematical framework to efficiently

achieve these tasks is group action or, equivalently, group representation. Unfortunately, explaining

the associated formalism in details and with rigor requires to define a series of abstract concepts,

demonstrate a number of theorems and describe a variety of unfamiliar algorithmic constructions that

often makes it abstruse, thus hiding the power of the method. Attempt will be made in the following

to provide an intuitive insight. More detailed and technical descriptions may be consulted in the refs.

[7–11]. Section 3.1 discusses at the most elementary level the few concepts necessary to understand

or to perform analysis of finite group linear representations with the help of already tabulated or

computer generated irreducible representations [6, 8–13]. The method is applied to molecule vibrations.

Section 3.2 provides a qualitative description of the irreducible representations of the 3-dimensional

crystal symmetry groups. No time transform is considered. Notice that if the physical property is

dynamical but is not slaved to an external explicitly time dependent field then it ought to be stationary

if it is at thermodynamic equilibrium, in which case it does not depend on an initial time, in particular

dynamical correlations then involve only time intervals. When time reversal is possibly relevant, it is

dealt with in the context of co-representations of groups [14] (see also chapter by Schweizer).

8 According to the Curie’s principle a physical effect cannot have an asymmetry absent from its efficient cause. So one would
have expected only full invariance of the physical quantities which otherwise would be excluded from materialization, but this
would lead to a too poor universe. As a matter of fact, “ c’est la dissymétrie qui crée le phénomène ”. A symmetry breaking might
be merely externally imposed, for instance by applying a stress, an electric field, a magnetic field, . . ., but, most interestingly, it
may occur spontaneously, for instance in bifurcation phenomena or in phase transitions, . . ., owing to space-time correlations in
the physical properties albeit the interactions producing these are themselves symmetric. New phases and associated new physical
quantities (order parameters) emerge in this case. All of the forms of these, as transformed into one another by the broken
symmetries, are equiprobable and therefore should coexist, which gives rise to domains and symmetry restoring dynamic modes
called Nambu-Goldstone. The Curie’s principle thus may be extended to include the spontaneous symmetry breaking phenomena.
It would state that a cause might produce effects of lower symmetry provided that when these all coexist then the whole become
as symmetric as the cause.
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3.1 Qualitative approach

An analysis of representation, in practice, consists at first to identify which symmetry group G is under

concern. This generally is obvious when the symmetries are geometric. If we are interested in the effects

of the orientation invariance of a molecule or a crystal then its point group imposes itself. If the discrete

translation invariance of a crystal is involved, as with any spatial modulation of atomic or molecule

states or any phenomenon propagating within the crystal, then the space group must be considered. It

is emphasized that symmetries other than purely geometric might exist, emerging for instance through

invariance of dynamics, which are less evident to discern and are here merely ignored.

The next stage is to determine the relevant representation space V of the investigated quantity. This

is a vector space each element of which describes a distinct value or functional form of the quantity. It

does not always reveal itself obviously and should be defined carefully to provide the correct intuitions.

This essentially is where physics stands, all the rest being mathematics. It often proves useful to build

V from direct sums or tensor products of more elementary vector spaces. The representation space of the

magnetic configurations in a magnetic crystal for instance may be build as the direct sum V = ⊕
in Vin

of the representation spaces Vin of the magnetic moment �sin on the magnetic position (in) (i : motif

index, n : lattice index). Every magnetic configuration in the crystal then is fully determined by the

vector �v = ⊕
in �sin in V. Addition of configurations and multiplications by a real or a complex scalar

then are evident as well the vector space structure of V. Note that the dimension of V is immediately

obtained as d = dim(V) = ∑
in din, where din is the dimension of each Vin.

It matters then to transcribe the symmetries of the group G in the representation space V. If a space

transformation g ∈ G is performed then each element of V, as a tensor quantity or a function of space,

is transformed into another in V, which defines a necessarily one-to-one g-dependent transformation

�(g) : V → V. As a matter of fact, in all the cases that we might encounter, �(g) is an invertible linear

operator on V, that is to say

�(g)(a �u + b �v) = a �(g)(�u) + b �(g)(�v) ∀a, b ∈ C ∀�u, �v ∈ V (3.1)

It also is generally found out that these linear operators obey to the homomorphism rule:

�(gh) = �(g) ◦ �(h) ∀g, h ∈ G (3.2)

It is in that sense that the application � : g �→ �(g) is said to form a linear representation of the group

G on the representation space V. Let {êm}m=1, ···, d stand for a basis in V. One may write

�(g)(êm) =
∑

n

ên �(g)nm (3.3)

where the d × d invertible matrix �(g) is called the matrix representative of the linear operator �(g).

Note that if �v = ∑
m xmêm and �(g)(�v) = ∑

n yn ên then yn = ∑
m �(g)nm xm. Eq. (3.2) implies that

�(gh) = �(g)�(h) ∀g, h ∈ G (3.4)

The application � : g �→ �(g) of the group G to the group GL(d,C) of d × d invertible matrices

makes up a matrix materialization of the linear representation � of the group G. It defines a matrix

representation of the group G. The choice of another basis {f̂ m} would have led to another matrix

representation � : g �→ �(g) such that

�(g) = S �(g) S−1 ∀g ∈ G (3.5)

where S is the invertible matrix associated with the basis change {êm} → {f̂ m}. This defines a similarity

transformation and the two matrix representations are said equivalent: � ∼ �. A quantity exists that

fully determines the matrix representation up to this equivalence. It is called the character � of the
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matrix representation � and is the function on the group G defined as

�(g) = Tr[�(g)] =
∑

i

�ii(g) ∀g ∈ G (3.6)

It is the invariance of the trace Tr over cyclic permutation of operators that makes the character invariant

with respect to every basis change. This property implies also that the character is constant over the

conjugacy classes of G. It is recalled that two elements g and h of a group G belong to the same

conjugacy class if and only if there exists another element t in the group G such that h = tgt−1.

A quantitative value or a functional form of the physical quantity under concern is explicitly

specified by picking out a vector �v from the representation space V. Its transforms under the symmetries

of a group G are obtained by building up its orbit Orb(�v) = {�(g)(�v) | g ∈ G}, namely the set of its

images by the linear operators �(g) for g running over the group G. Orb(�v) spans a vector space U, by

the linear combinations of its elements every which way. Most choices of �v lead to U = V. It however

may happen that U is of dimension dU strictly lower than the dimension d of V but not null: 0 < dU < d.

U then is an invariant subspace by the group G, that is to say ∀g ∈ G if �u ∈ U then �(g)(�u) ∈ U.9 The

restriction �U of � to the subspace U makes up a linear representation of the group G. According to the

Maschke’s Theorem, in the usual cases we might encounter, there always exist a complement W of U

in the representation space V, that is such that V = U ⊕ W, which is also invariant by G. The restriction

�W of � to the subspace W makes up another linear representation. Since V = U ⊕ W, a basis is built

in V from the union of a basis of U and a basis of W and since U and W are separately invariant by

G the matrix representatives �(g) of the linear operators �(g) with respect to this basis writes in the

same block diagonal form for every g ∈ G, more precisely as the direct sum �U(g) ⊕ �W(g) where

�U(g) (resp. �W(g)) is the matrix representative of the linear operator �U(g) (resp. �W(g)) with respect

to the basis selected in U (resp. in W). Generalization to the cases where the already identified invariant

subspace or its complement contains in turn invariant subspaces is straightforward. It suffices to consider

the restrictions of the linear representation to each of the found out invariant subspaces and select basis

vectors separately in each of these to get the matrix representatives in block diagonal forms:

�(g) = �
1(g) ⊕ �

2(g) ⊕ · · · ⊕ �
n(g) ≡




�1(g) 0 · · · 0

0 �2(g) · · · 0
...

...
. . .

...

0 0 · · · �n(g)


 ∀g ∈ G (3.7)

One says that the matrix representation � is the direct sum �1 ⊕ �2 ⊕ · · ·�n of n matrix (sub-)

representations �i .

The process of block diagonalization stops when no further invariant subspace can be found out. A

matrix representation �i that cannot be decomposed into a block diagonal form is called an irreducible

matrix representation. The linear representation �i to which it is associated by a basis choice is also

said irreducible. Note that several among the �i might be equivalent with each other. The most general

decomposition of a matrix representation � into irreducible matrix representations thus may be written

symbolically as

� ∼ n1�
1 ⊕ n2�

2 ⊕ · · ·ns�
s =

⊕

k

nk�
k (3.8)

9 Consider for instance a charge distribution described in the spherical coordinates (r , 	, �) by functional forms F(r)G(	, �).
These belong to a function space of dimension d = ∞ (d needs not be finite !). Under the spatial rotations R(û, �) the angular
part G(	, �) gets transformed into G(R(û, −�)(	, �)), which gives rise to an orbit of functional forms. It is only when the charge
distribution is special that the function space generated from this orbit is finite dimensional. A distribution described by a spherical
harmonic of order l, F(r)G(	, �) ≡ F(r)Y m

l (	, �), satisfies this condition, in which case the invariant subspace is of dimension
2l + 1.
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where nk is the multiplicity of the irreducible component �k contained in �. The ultimate aim of

representation analysis is to obtain this decomposition. We shall admit without demonstration the

Orthogonality Theorem for the characters �k of the irreducible representations �k:

1

nG

∑

g∈G

(�q(g))⋆ �k(g) =
〈
�q | �k

〉
= �kq (3.9)

The multiplicities nk then are deduced as

nk = 1

nG

∑

g∈G

�(g)⋆�k(g) =
〈
� | �k

〉
(3.10)

Note that 〈� | �〉 = ∑
k n2

k . We conclude that a matrix representation � is irreducible if and only

if the norm of its character � equals 〈� | �〉 = 1. This provides an extremely practical criterion of

irreducibility. Once the decomposition displayed in eq. (3.8) is obtained, it matters to determine the

invariant subspaces Vk
�=1, ···, nk

associated with each occurrence � of the irreducible representation �k

in �. It is shown that the projection (m = n) and shift (m �= n) operators

pk
nm = dk

nG

∑

g∈G

�
k
nm(g−1)�(g) (3.11)

allow performing the task: basis vectors êk
n� of Vk

� can be obtained by applying the projectors pk
nn to

trial vectors ê of V whereas by applying the exchangers pk
nm�=n to any given basis vector êk

n� of Vk
�

another basis vector êk
m� of Vk

� can be deduced. If the irreducible matrix representation �k is contained

more than once (nk > 1) in the matrix representation � then the projectors pk
nn must be applied to as

many trial vectors ê of V as necessary to generate nk basis vectors that cannot be transformed into each

other by the shift operators pk
nm�=n.

3.1.1 An elementary example

Let us illustrate what precedes by the simple example of molecule vibrations. We consider the ammonia

molecule NH3 described in subsection 2.1.3. Its symmetry group is G = 3m. We are interested in the

motion of the N atoms (N = 4 for the NH3 molecule). If R3 stands for the ordinary space then a natural

choice for the representation space may be V = ⊕
i=1, ···, N R

3 ≡ R3N . We are free to define in V the

basis {êi�} such that if �v = ∑
i� vi�êi� then êi� · �v = vi� describes the motion of the i atom along the

� direction (i = 1, . . . , N and � = x, y , z). Under every geometric transformation g of G the atoms

are exchanged and the displacements vi� are rotated or roto-inverted. It is not difficult to get convinced

that this defines invertible linear operators �(g) on the vector space V obeying the homomorphism

rule �(gh) = �(g) ◦ �(h) ∀g, h ∈ G, that is to say a linear representation � of G on V. One more

concretely has

�(g)�v =
∑

i��

�v(g)�� v(g−1i)� êi� =
∑

ij��

�v(g)�� �p(g)ij vj� êi� =
∑

ij��

�(g)ij�� vj� êi� (3.12)

v(g−1i)� stands for the component along � of the displacement of the atom j = g−1i that by application

of g gets into the position of the atom i and is rotated or roto-inverted accordingly. �v(g) is the matrix

representative of a rotation or a rotoinversion in the real space R3. As an example for a rotationR(ẑ, �)

of angle � about the ẑ-axis, one would have

�v(R(ẑ, �)) =




cos � − sin � 0

sin � cos � 0

0 0 1


 (3.13)
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with respect to the basis {x̂, ŷ, ẑ}. If �v denotes the character of �v then �v(R(ẑ, �)) =
Tr[�v(R(ẑ, �))] = (1 + 2 cos �). Composing this rotation with the inversion I we get the rotoinversion

I ◦R(ẑ, �) to which the matrix representative �v(I ◦R(ẑ, �)) = −�v(R(ẑ, �)) with respect to the same

basis is associated, so that �v(I ◦R(ẑ, �)) = Tr[�v(I ◦R(ẑ, �))] = −(1 + 2 cos �). Now, it is recalled

that the trace of a matrix is invariant by any basis change. It follows that �v(R(û, �)) = (1 + 2 cos �)

and �v(I ◦R(û, �)) = −(1 + 2 cos �) whatever the orientation of the rotation û-axis, because we can

always find a basis with û as a ẑ-axis. �p(g) is the matrix representative of the g−1i �→ i transform. Its

matrix elements are given as

�p(g)ij = �(g−1i, j ) (3.14)

where � is the Kronecker symbol: �(a, b) = 1 if and only if a = b and 0 otherwise. The character � of

the matrix representation � then is easily deduced as being given by

�(g) = Tr[�(g)] = Tr[�v(g) ⊗ �p(g)] = �v(g)�p(g) = ±N (g)(1 + 2 cos �) (3.15)

with the + sign for a rotation and the − sign for a rotoinversion, and where ⊗ symbolizes matrix tensor

product. � is the rotation angle associated with g and N (g) the number of atoms invariant under g.

The variables vj� account for not only vibrations, but also for the translation (T) and rotation (R)

of the molecule as a whole. These global motions determine the total linear �P and angular �L momenta

of the molecule and belong to subspaces VT and VR of V that are stable under G, because vibrating

motions never contribute to �P nor to �L by conservation of these quantities. It follows that

�(g) = �T(g) ⊕ �R(g) ⊕ �vib(g) (3.16)

�T(g) operates on polar vectors �T of global translation and �R(g) on axial vectors �� of global rotation

( �� ∧ ∑
i

�OMi defines the displacement of the atoms, initially at the positions Mi , associated with the

rotation of angle � about an axis along �� crossing the center of gravity O of the molecule). Thus if �T is

the character of �T and �R the character of �R then �T(g) = ±(1 + 2 cos �) and �R(g) = (1 + 2 cos �).

As a result the character, �vib of �vib is given as

�vib(g) =
{

(N (g) − 2)(1 + 2 cos �) if g is a pure rotation

−N (g)(1 + 2 cos �) if g is a rotoinversion
(3.17)

Now let us consider back the group G = 3m of the ammonia molecule. It contains 6 elements distributed

over 3 classes: {e}, C1 = {3, 32}, C2 = {m, m3, m32}. It then owns 3 irreducible representations �0, �1

and �2. One indeed may show that for any finite group the number of its irreducible representations

is equal to the number of its conjugacy classes. One also establishes that the sum of square of the

dimensions of the irreducible representations of a finite group is equal to the order of the group. In

the present case we should have d2
0 + d2

1 + d2
2 = 6 with dk the dimension of �k . The only solution in

integers of this equation is d0 = d1 = 1 and d2 = 2. Using the fact that �k(e) = dk , where �k is the

character of �k and the orthogonality theorem for the characters we deduce the character table for the

group G = 3m:

{e} C1 C2

�0 1 1 1

�1 1 1 −1

�2 2 −1 0

The character �vib of �vib takes the following values on the classes of G = 3m: �vib(e) = 6 (N = 4, � =
0), �vib(C1) = �vib(3) = 0 (N = 1, � = �/3) and �vib(C2) = �vib(m) = 2 (N = 2, � = �) (see fig. 3).

We deduce that 〈�0 | �vib〉 = 2, 〈�1 | �vib〉 = 0 and 〈�2 | �vib〉 = 2. Accordingly,

�vib = 2�
0 ⊕ 2�

2 (3.18)
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The vibration modes will consist in 2 singlets with symmetry �0 and two doublets with symmetry

�2. Note that � = 3�0 ⊕ �1 ⊕ 4�2. Applying the projection-shift operators pk
nm (see eq. (3.11))

on trial vectors �v = ∑
i� vi�êi� the basis vectors of the invariant subspaces may be obtained. With

p0
00 = 1

6

∑
g∈G �(g) one obtains ê1� + ê2� + ê3� (from ê1�) and ê4z (from ê4z). Combining these to

reject global motion of the molecule leads to
∑

i êiri
describing in-phase radial vibration and

∑
i êiz −∑

i=1,3(mi/m4)ê4z describing �-phased N-H apical vibration.

3.2 Irreducible representations of the point and space groups

Irreducible characters and irreducible representations (up to similarity) of the point and space groups

are available through tables or computer programs [6, 8–13]. It however is not useless to get a rough

idea of the way they could have been determined.

Elementary algebra can suffice to get the irreducible representations (irreps) of the 32 point groups

GP, this by making use of a series of basic theorems, which we shall merely recall here without providing

proofs:

• 1
nG

∑
g∈G �

k
j l(g) �

q
mn(g−1) = 1

dk
�kq �jn �lm (orthogonality of the irreps).

• 1
nG

∑
g∈G �

k
j l(g) �

q
nm(g)

⋆ = 1
dk

�kq �jn �lm (orthogonality of unitary irreps).

• 1
nG

∑
g∈G(�q(g))⋆ �k(g) =

〈
�q | �k

〉
= �kq (orthogonality of the irreducible characters).

• The trivial representation �0, that trivially associates the scalar unit 1 to every group element g, i.e.

such that �0(g) = 1 ∀g ∈ G, always exists and is irreducible. It then follows from the orthogonality

theorems that ∀�k �=0
∑

g∈G �k(g)nm = 0 & ∀�k �=0
∑

g∈G �k(g) = 0.

• If e is the unit of G then �k(e) = dk (dimension of �k).

•
∑

k �k(e)�k(g) = nG�eg (order of G), in particular
∑

k d2
k = nG.

• The number of the irreducible representations (irreps) of a finite group G is equal to the number of its

conjugacy classes Cu.

•
∑

u nu(�
q
u)⋆(�k

u) = nG�kq (character table line by line orthogonality). �k
u is the value of the character

of the irreps �k over the class Cu and nu the number of elements in Cu.

•
∑

k nu(�k
v)⋆(�k

u) = nG�uv (character table column by column orthogonality).

• The dimension dk of the irreps �k divides the order nG of G: nG

dk
= integer. More generally, if H is an

invariant abelian subgroup of G with index [G : H] = nG

nH
then [G:H]

dk
= integer.

...

Also useful to build the irreps are the decomposition of the group into direct product of subgroups

or semi-direct products of subgroups. An extremely powerful procedure is to generate representations

by induction from subgroups, in particular by the so-called method of little groups when the group is

the semi-direct product of a subgroup by an abelian subgroup.

The irreducible representations of the translation group GT of a crystal are easily obtained. The

group is abelian so that every of its element makes up a conjugacy class by its own. It follows that the

number of the irreps is equal to the order of the group and therefore all its irreps are one-dimensional. GT

is the direct product GTa × GTb × GTc of the groups of translations along each of the three independent

basis vectors �a, �b, �c of the crystal lattice. Under the cyclic Born-von Karman conditions the group

GTa (resp. GTb, GTc) gets cyclic, that is to say there exits integers Na (resp. Nb, Nc) such that the

successive Na (resp. Nb, Nc) applications of the translation �a (resp. �b, �c) gives back the unit �0 of

GTa (resp. GTb, GTc). It follows that the irreps �ka of GTa are solutions of the equation �ka (Na�a) =
�ka (�a) · · · �ka (�a) =

[
�ka (�a)

]Na = �ka (�0) = 1. This means that �ka (�a) is an Na-th root of 1. We may

put �ka (�a) = exp(−2i� �ka · �a) where �ka = (ka/Na) �a ⋆ (ka = 1, . . . , Na) and �a ⋆ · �a = 1. Similarly the

irreps of GTb and GTc may be put to �kb (�b) = exp(−2i� �kb · �b) and �kc (�c) = exp(−2i� �kc · �c) where
�kb = (kb/Nb) �b⋆ (kb = 1, . . . , Nb) and �b⋆ · �b = 1 and �kc = (kc/Nc) �c ⋆ (kc = 1, . . . , Nc) and �c ⋆ · �c = 1.

We easily identify the reciprocal lattice basis vectors �a ⋆, �b⋆, �c ⋆. Now, letting Na (resp. Nb, Nc) tend
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to infinity and making use of the fact that GT = GTa × GTb × GTc, the irreps of GT are labeled by the

reciprocal vectors �k and are given as

�
�k( �T ) = exp(−2i��k · �T ) (3.19)

for every invariance by translation �T = u�a + v�b + w�c (u, v, w integers) of the crystal lattice.

The irreducible representations of the space groups G are more technical to determine. We thus shall

content ourselves with a very qualitative description. A standard procedure is first to observe that its

abelian subgroup of translation GT is a normal subgroup, that is to say ∀h ∈ GT ∀g ∈ G, g−1hg ∈ GT:

if h = �T (translation of vector �T ) and g = (W , w + �S) (orientation symmetry W possibly combined

with a fractional translation w and a lattice translation �S) then g−1hg = W−1 �T , which do belong to

GT since the crystal lattice should be consistent with the orientation symmetry. An equivalence relation

on the irreps of GT then can be defined as �
�k ∼ ��q ⇔ �

�k(W−1 �T ) = ��q( �T ) ⇔ W ⋆�k = �q + ��, where

W ⋆ means that the orientation symmetry applies in the reciprocal space ((W ⋆�k) · �T = �k · (W−1 �T ))

and �� = h�a ⋆ + k�b⋆ + l�c ⋆ (h, k, l integers) is a reciprocal lattice vector. The set {W : W ⋆�k = �k + ��}
endowed with the composition law of the space group, makes up the little co-group G0(�k) of �

�k in G.

It coincides with one of the 32 point groups. Its irreps are then easily determined. The subgroup of the

space group G defined as

G�k =
∑

W∈G0(�k)

(W , w)GT (3.20)

is called the little group of �
�k in G. The G�k maximally factors for �

�k the expansion G = (e, 0)GT +
(W1, w1)GT + (W2, w2)GT + · · · of the space group G over the cosets of GT:

G =
∑

�/∈G0(�k)

(�, 
)G�k (3.21)

One has �⋆�k = �q + �� with �q �= �k : the orientation symmetry � generates the star {�k} of �k. An

irreducible matrix representation �
�kν of the little group G�k is called small (or allowed) if its subduction

(or restriction) to GT leads to the irreducible matrix representation �
�k of GT. The additional label ν

distinguishes between different matrix representations associated with the same �
�k . A little group is a

space group so that every of its elements g is the composition of a lattice translation �T and of a point

symmetry W possibly combined with a fractional translation w. Since by definition �
�kν subduces �

�k , it

follows that

�
�kν(g) = �

�k( �T )Idν
�

�kν(W , w) = exp(−2i��k · �T )Idν
�

�kν(W , w) ∀g ∈ G�k (3.22)

where Idν
is the identity matrix of dimension dν equal to that of �

�kν . As to determine the zeroth block

matrix �
�kν(W , w) of dimension dν the usage is to define new matrices �

�kν(W ) such that

�
�kν(W , w) = exp(−2i��k · �w) �

�kν(W ) (3.23)

As from �
�kν(W1, w1)�

�kν(W2, w2) = exp(−2i��k · �S)�
�kν(W1W2, w12) with �S = w1 + W1w2 − w12 ∈ GT

and where w12 is the fractional translation associated with W12 = W1W2 (note that w12 has nothing to

do with w1w2), we deduce that

�
�kν(W1)�

�kν(W2) = exp(−2i�(W ⋆
1
�k − �k) · �w2) �

�kν(W1W2) (3.24)

If the little group is symmorphic (all the w null) or if the little group is non symmorphic but W ⋆�k − �k = �0
then �

�kν(W1)�
�kν(W2) = �

�kν(W1W2), and �
�kν is a linear matrix representation of the little co-group G0(�k).

On the other hand, if the little group is non symmorphic and there exists (W , w) such that W ⋆�k − �k �= �0
then �

�kν is a projective matrix representation of the little co-group G0(�k) whose determination requires
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specific techniques. This is the case when �k is a point of symmetry or is on a line or a plane of symmetry

of the surface of the Brillouin Zone.

It may be shown that the irreducible representation of the space group G are induced once and only

once from the irreducible representations �
�kν of its little groups G�k:

�
{�k}ν
↑G (g) =

∑

h∈G�k

�(g, h) ⊗ �
�kν(h) (3.25)

with �(g, h)M ,L = 1 if g−1
L ggM ∈ G�k and 0 otherwise. gM and gL are the (�, 
) involved in the coset

expansion G = ∑
�/∈G0(�k)(�, 
)G�k so the irreps �

{�k}ν
↑G (g) are labeled by the star {�k} of �k.

We shall end this section by qualitatively considering back the problem of the molecule vibrations

but now in a crystal of space group G with the same molecule replicated at each node of the crystal. The

representation space is naturally build from the representation V of a single molecule as a direct sum⊕
Nm

V where Nm is the number, in principle infinite, of molecules (lattice points) in the crystal. A linear

representation � is built on considering the effects of the elements of G on the atomic displacements

of the atoms of all the molecules. If � denotes its character then the orthogonality theorem for the

characters displayed in eq. (3.9) tells that the matrix representative of � expands in terms of a direct

sum of �k-components �
�k . As a matter of fact, � is nothing but a Fourier Series. The corresponding

basis vectors as inferred from the projection-shift operators are �k-components of the displacements.

To further proceed with the representation analysis, it then is enough to deal with each �k-component

separately and focus the analysis only at the little groups G�k . In the case of symmorphic space groups

G or for W ⋆�k − �k = �0 we are to some extent brought back to the simpler problem of representation

analysis of a Fourier component of the physical quantity in a point group GP.

4. CONCLUSION

Orientation and translation crystal symmetries in a crystal are mutually constrained in a discretized

medium and thus are limited in number and types. As an outcome the spatial symmetry of every crystal

is always described by one among a finite list of 230 space groups, with the clear advantage that these

and their irreducible representations can all be tabulated. Although initially anticipated, the irreducible

representations of space groups (irreps) are finally not dealt with in depth. The interested reader may

consult Refs. [8–11] for further details.
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