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An introduction to the linear representations of finite groups

R. Ballou

Institut Néel, CNRS / UJF, 25 rue des Martyrs, BP. 166, 38042 Grenoble Cedex 9, France

Abstract. A few elements of the formalism of finite group representations are recalled. As to avoid a too
mathematically oriented approach the discussed items are limited to the most essential aspects of the linear
and matrix representations of standard use in chemistry and physics.

1. INTRODUCTION

Symmetry is ubiquitous in nature and of an extremely wide variety. It may be discrete, such as the space

inversion, the time inversion, the crystal isometries, . . . , or continuous, such as the euclidean isometries,

the galilean invariance, the gauge invariances, . . . . It may be obvious, generally when it is of geometric

nature. It may be hidden, often when it is of dynamical origin, then revealing itself indirectly.1 It may be

more or less blurred, typically as perceived in the complex systems, botanical, biological, . . . . It may be

spontaneously broken, in which instance it becomes the source of a number of non-trivial phenomena,

including the phase transitions, the bifurcations in the non linear processes, . . . , that gives rise to a

wealth of structuration. It suffices for illustration to evoke the uncountable physical phases of matter,

for instance the crystalline and mesomorphic forms or else the magnetic orders among the most familiar

categories, not to mention the dynamic self-organization, the pattern formation, . . . found out in the

other fields. Symmetry in fact scarcely is lowered uniformly so that the broken phase spatially builds up

from different states, transforming into one another by the lost components of the symmetry, and thus is

non uniform and displays defects. These in turn might interact or cross, possibly non commutatively, to

organize themselves or generate further novel textures.

Symmetry gets materialized through a set of transformations of the properties of a system, which,

endowed with the canonical composition law for functions, forms a group whatever the instance.

Accordingly, the adequate framework within which to deal with symmetry is that of the group theory,

including its ramifications into the representation theory to account for the nature of the invariances

of the physical properties, the differential geometry, in particular the Morse theory, to investigate the

extrema of the invariant functions of the physical properties and thus to get insights into the symmetry

breaking phenomena, the algebraic topology, more specifically the homotopy theory, to feature the

topological stability of defects and the formation of textures, . . . . It is clear that this is too vast a field to

1 A case in point is provided by the bound states of the non relativistic isolated hydrogen atom, which displays spectral
degeneracies with respect to the principal n and orbital l quantum numbers. Whereas the l-degeneracy is an evident outcome
of the symmetry group SO(3) of the rotations in the 3-dimensional space R3, the n-degeneracy is specific to the Kepler potentials,
decreasing as the inverse of the radial distance, and emanates from the dynamical symmetry group SO(4). Considering the
scattering states of the continuum in the spectrum, this metamorphoses itself into the dynamical symmetry group SO(3,1). In
other words, using a more intuitive picture, the electron dynamics in a 1/r potential is equivalent to that of a free particle in the
4-dimensional space R4, on a sphere S3 if it is bounded and on a double-sheeted hyperboloidH3 if it is scattered. Another feature
of the electron spectrum is the equal spacing of the energy levels when multiplied by −n3, which suggests duality and originates
from the De Sitter spectrum generating symmetry group SO(4,1). Attempts to express the hamiltonian in terms of operators that
close under commutation lead to anticipate that the largest spectrum generating symmetry group of the hydrogen atom might be
the conformal group SO(4,2).
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describe in a few pages. The ambition of these notes is strongly limited. It is to focus on the mathematics

of the linear representation of finite groups. After short recalls of basic concepts, questions of reduction

and irreducibility are discussed. Next, character theory is succinctly explored. Complete reducibility of

the linear representations of finite groups, the relevance and usefulness of the Schur’s Lemmas, complete

invariant nature of the characters with respect to intertwining and character completeness over class

functions are emphasized. Construction of induced linear representations will be approached and search

methods of irreducible representations will be mentioned only briefly. Of course, the discussed items

are far from providing even the rough idea of all the richness of the group representations. A number

of their facets are only alluded to or merely ignored, for instance concerned with the multi-valued

spinor representations, the projective representations, . . . , not to mention the linear representations of

continuous groups or else the non linear group actions. An extremely wide literature exists on these

topics, quite often purely mathematical, including textbooks or reviews to start with. See for instance

[1–5].

2. BASIC CONCEPTS

A representation of a group G on a mathematical object X designates an homomorphism � : G →
Aut(X) from the group G to the automorphism group Aut(X) of the object X:

�(gh) = �(g) ◦ �(h) ∀g ∈ G ∀h ∈ G (2.1)

G may be any group, finite or infinite, possibly topological in which case it may be (locally) compact or

non compact, n-connected, . . . . X may be any set endowed with a mathematical structure, for instance

a topological space, a differentiable manifold, a module over a ring, . . . . Aut(X) is the group formed by

the set of the bijective functions f : X → X that preserve the mathematical structure of X, endowed with

the canonical composition law ◦ for the functions.

If X is a vector space V over a scalar field K then Aut(V) is the group GL(V, K) of the invertible

linear operators on V:

�(g)(a �u+ b �v) = a �(g)(�u) + b �(g)(�v) ∀g ∈ G ∀(a, b) ∈ K2 ∀(�u, �v) ∈ V2 (2.2)

In this case � is particularized by naming it a linear representation. V is the representation space. It is

customary to call dimension of the representation the dimension d of V. Only the linear representations

of the finite groups G on the vector spaces V over the field C of the complex numbers2 are discussed

in this manuscript, unless otherwise explicitly stated.

With every linear representation � : G → GL(V,K) is associated its kernel ker(�) and its image

im(�), given as

ker(�) = {g ∈ G | �(g) = 1V} and im(�) = {�(g) | g ∈ G} (2.3)

where 1V ∈ GL(V,K) is the identity operator on the representation space V. If �(g) = �(h) then

gh−1 ∈ ker(�). It follows that � is injective if and only if (iff) ker(�) = {e}, where e is the unit element

of G. � by definition is surjective iff im(�) = GL(V,K). If (g, h) ∈ ker(�)2 then �(gh−1) = 1V, namely

gh−1 ∈ ker(�), which implies that ker(�) is a subgroup of G. It similarly is shown that im(�) is a

subgroup of GL(V,K). If g ∈ G and h ∈ ker(�) then �(ghg−1) = 1V, namely ghg−1 ∈ ker(�), which

2 An evident motivation to restrict the scalar field K to the field C of the complex numbers is of course that physics suggests it
as natural, together with the field R of the real numbers. A mathematical motivation is that this avoids unnecessarily cautioning
against a number of algebraic stuffs, because C has zero characteristic, similarly as R, and is algebraically closed, in contrast
to R. These two mathematical properties are relevant to certain aspects of crucial theorems, such as the Complete Reducibility
Theorem, the Schur’s Lemma, . . . . The characteristic char(K) of a fieldK is the positive integer nK the multiples of which makes
up the kernel nKZ of the homomorphism � : m �→ 1K + . . .+ 1K = m · 1K of the additive group of the integer numbers Z to the
additive group of the K-scalars. char(K) by convention is set to zero whenever nK is not finite. A field is algebraically closed if
for every polynomial P(z) of one variable and coefficients in this field, ∃z0 s.t. P(z0) = 0.
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means that ker(�) is a normal subgroup of G,

ker(�)� G (2.4)

A quotient group G/ker(�) is canonically defined by endowing the set of the left cosets of ker(�)

with the internal law of composition � : (g ker(�), h ker(�)) �→ (gh) ker(�). It almost is obvious that

G/ker(�) is isomorphic to im(�),

G/ker(�) ∼= im(�) (2.5)

All these properties actually are generic to the kernel and image of any homomorphism of groups.

A linear representation � : G → GL(V,K) is isomorphic by definition to a linear representation

� : G → GL(W,K) if there exists an isomorphism � : V → W, which is equivariant:

�(g) ◦ � = � ◦ �(g) ∀g ∈ G (2.6)

� is called an intertwining operator or a G-linear map. A standard notation for isomorphic

representations is � ∼ �� ∼ �� ∼ �. The isomorphism of representations is reflexive, symmetric and transitive,

so is an equivalence relation, which gathers the linear representations into equivalence classes.

Any vector space V possesses a dual V#, which canonically is built up by endowing the set of linear

forms on V with pointwise addition (�u# + �v#)( �w) = �u#( �w) + �v#( �w) and pointwise scalar multiplication

(� �v#)( �w) = � �v#( �w), where � ∈ C, �w ∈ V, �u# ∈ V# and �v# ∈ V#.3 Let � : G → GL(V,C) be a linear

representation. An application �# : G → GL(V#,C), g �→ �#(g) such that
(
�#(g)(�v#)

)
(�(g)(�u)) = �v#(�u) ∀g ∈ G, ∀�u ∈ V, ∀�v# ∈ V# (2.7)

can be defined. With �w = �(g)(�u), this is rewritten
(
�#(g)(�v#)

)
( �w) = �v#

(
�(g)−1( �w)

)
. In other words

�#(g)(�v#) = �v# ◦ �(g−1), which makes up another equivalent defining relation and clearly shows

that �#(g) does exist and is unique thanks to the existence and unicity of �(g−1) ∀g ∈ G. More-

over, �#(gh)(�v#) = �v# ◦ �((gh)−1) = �v# ◦ �(h−1) ◦ �(g−1) = �#(g)(�v# ◦ �(h−1)) = �#(g)(�#(h)(�v#)) =
(�#(g) ◦ �#(h))(�v#), ∀�v# ∈ V#, ∀(g, h) ∈ G2, which demonstrates that �# is a group homomorphism.

�# is the dual representation of �. All the theorems established for � are valid for �#, and conversely,

by mere structure transport.

2.1 Canonical examples

Automorphism groups GL(Vd=1,C) of 1-dimensional vector spaces Vd=1 are isomorphic to the

multiplicative group C⋆ of non null complex numbers, insofar as every invertible linear operator �

on Vd=1 is equivalent to the multiplication by a same non null scalar: if ê is the basis vector in

Vd=1 then ∃!a ∈ C⋆ s.t. �(ê) = aê ergo ∀�v ∈ Vd=1 �(�v) = �(vê) = v�(ê) = vaê = avê = a�v. Any

homomorphism � : G → C⋆� : G → C⋆� : G → C⋆ thus makes up a linear representation of dimension d = 1d = 1d = 1 of the

group G. An evocative example is � : GL(d,C) → C⋆, M �→ Det(M), where GL(d,C) designates

the group of d × d non singular matrices with entries in C and Det(M) the determinant of a matrix

M . ker(�) = SL(d,C) consists in the d × d matrices with determinant 1, which thus is a normal

subgroup of GL(d,C). Since im(�) = C⋆ we have GL(d,C)/SL(d,C) ∼= C⋆. GL(d,C) is called the

general linear group of order d over C and SL(d,C) the special linear group of order d over C. It

3 A linear form by definition is an application �v# : V → C from a vector space V to its scalar field C such that �v#(a �r + b �s) =
a �v#(�r) + b �v#(�s), ∀(a, b) ∈ C2, ∀(�r , �s) ∈ V2. It also is called a one-form, a linear functional, a co-vector, a contravariant vector
when the elements of V are called covariant vectors, . . . . This merely emphasizes the wealth of context within which the concept
might be in use, such as differential geometry, measure theory, multilinear algebra, . . . . If V has the finite dimension d then
V# has the same dimension d. A basis {êi

#}i=1,...,d in V# is twinned in fact to any selected basis {êi}i=1,...,d in V such that

êi
#(êj ) = �ij , where �ij is the Kronecker symbol (�ij = 1 iff i = j and �ij = 0 otherwise). When V is infinite-dimensional the

same construction does not end up with a basis. It leads to a family of linearly independent vectors that is not spanning. The linear
forms on a finite-dimensional normed space V are bounded and therefore are continuous.
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is clear that gm ∈ G ⇒ gm+1 ∈ G ∀m ∈ N whence, by increasing to infinity, m crosses integers p

for which there exists strictly positive integers q < p such that gp = gq or else gp−q = e, unless G

is infinite. In other words, whenever the group G is finite each of its element g is of finite order

ng = Minimum [r ∈ N⋆ | gr = e]. Obviously, �(g)ng = �(gng ) = �(e) = 1, which means that �(g)�(g)�(g) is

an ng-ng-ng-th root of 111, the multiplicative unit of C⋆. Now whatever the group G, finite or not, in the event

that one has

�(g) = 1 ∀g ∈ G (2.8)

� is called the trivial representation of the group G. Its significance is to reveal the full invariance of a

physical property with respect to the symmetries abstracted by the elements of the group G.

Indexing with the elements x of a finite set X the basis vectors êx of a vector space V and associating

each element g of a finite group G with the invertible linear operator �X(g) on V that sends êx to ê	(g)(x),

where 	 : G → PX is an homomorphism of the group G into the group PX of the permutations of X,

generates a linear representation �X, which is called the permutation representation of the group G

associated with the set X. Note that the group homomorphism 	 : G → PX defines a representation of

the group G on the set X. It is the usage in that case to state that the group G acts on the set X or else

that X is a G-set. In the specific instance where the set X contains the same number nG of elements as

the group G the permutation representation is isomorphic to the so-called regular representation �G of

the group G. One conventionally defines �G by indexing the basis vectors of the vector space V with the

elements h of the group G, more concisely as êh where h ∈ G, and by associating each element g of the

group G with the invertible linear operator �G(g) on V that transforms the basis vectors, thus G-indexed,

according to the formula

�G(g)(êh) = êgh ∀g ∈ G ∀h ∈ G (2.9)

The regular representation �G is particularized because containing each irreducible representation �i

of the group G with a repetition factor equal to its dimension di . The dimension of �G is the order

nG of the group G. The set {�G(g)(êe) | g ∈ G}, engendered from the single vector êe indexed with

the unit element e of the group G, forms a basis of the representation space V. Conversely, given a

linear representation � : G → GL(V,C), if there exist a vector �v in the representation space V such

that the set {�(g)(�v) | g ∈ G} forms a basis of V then � necessarily is isomorphic to �G. Consider

indeed the isomorphism � : V → V defined by setting �(êh) = �(h)�v. Since � is an homomorphism,

∀(g, h) ∈ G2, �(g) (�(h)(�v)) = �(gh)(�v), but, by definition of �, �(h)(�v) = �(êh) and �(gh)(�v) = �(êgh)

so that �(g) (�(êh)) = �(�G(g)(êh)), which implies that �(g) ◦ � = � ◦ �G(g) ∀g ∈ G, namely that � is

equivariant, whence � ∼ �G.

2.2 Matrix representations

Let V be a vector space with dimension d over the field C. Any element �(g) of the group GL(V,C)

of the invertible linear operators on V is fully determined from the images �(g)(êm) of the basis

vectors êm (m = 1, . . . , d) selected in V. Indeed, ∀�v ∈ V ∃! (x1, . . . , xd ) ∈ Cd : �v =∑m xmêm so that

�(g)(�v) =∑m xm�(g)(êm). Now, �(g)(êm) is a vector of V. Accordingly, ∃! (�(g)1m, . . . , �(g)dm) ∈ Cd

such that

�(g)(êm) =
∑

n

ên �(g)nm (2.10)

If �(g)(�v) =∑n yn ên then yn =
∑

m �(g)nm xm. The d2 complex coefficients �(g)nm make up the

entries of a d × d invertible matrix �(g), called the matrix representative of the linear operator

�(g). Assume that �(g) generically symbolizes the image of an element g of a group G by a

linear representation � : G → GL(V,C), so that ∀ g, h ∈ G, �(gh) = �(g) ◦ �(h). It follows from

00005-p.4



Contribution of Symmetries in Condensed Matter

the equation (2.10) that �(gh)(êm) =∑n ên �(gh)nm and �(g) ◦ �(h)(êm) = �(g)(
∑

s ês �(h)sm) =∑
n ên [
∑

s �(g)ns�(h)sm]. Accordingly,

�(gh) = �(g)�(h) ∀g ∈ G ∀h ∈ G (2.11)

This means that the mapping � : G → GL(d,C) of the group G to the group GL(d,C) of d × d invertible

matrices with entries in C, which to each element g in G associates the matrix representative �(g) of the

linear operator �(g) with respect to the selected basis {ê}m=1,...,d , defines a group homomorphism. This

is called a matrix representation of the group G.

The selection of another basis {f̂ }n=1,...,d would have led to other matrix representatives �(g), giving

rise to another matrix representation � : G → GL(d,C). Associated with the same linear representation

� and merely emerging from the selection of two different bases in the representation space V, the matrix

representations � and � are said similar or equivalent. If S is the invertible matrix associated with the

basis change {ê}m=1,...,d → {f̂ }n=1,...,d , which often is called a similarity transformation, then4

�(g) = S �(g) S−1 ∀g ∈ G (2.12)

� and � are said intertwined with S. Conversely, any two finite dimensional matrix representations

of a finite group intertwined with an invertible matrix are similar. As with the linear representations,

a standard notation for two equivalent matrix representations is � ∼ �� ∼ �� ∼ �. Now, �(g) could have

been interpreted also as the matrix representative with respect to the initial basis vectors êm (m =
1, . . . , d) of a linear operator �(g) associated with another linear representation � : G → GL(V,C). The

equation (2.12) then would mean that there exists an automorphism � of V which is equivariant: �(g) =
� ◦ �(g) ◦ �−1, ∀g ∈ G so that � ∼ �. Conversely, any automorphism � of V corresponds to a change

of bases. Accordingly, the isomorphism of linear representations and that of matrix representations

describe the same equivalence.

As from every matrixM with entriesMij in C is built the complex conjugateM⋆ with the entries

(M⋆)ij = (Mij )⋆, the transpose tM, by column-row interchange, with the entries (tM)ij =Mji and

the adjoint M† = (tM)⋆ with the entries (M†)ij = (Mji)
⋆. Given a matrix representation � : G →

GL(d,C), by associating each element g of the group G with the complex conjugate �
⋆(g), the transpose

t
�(g) and the adjoint �

†(g) of �(g) one respectively defines the conjugate �
⋆, the transpose t

� and the

adjoint �
† of the matrix representation �.

2.3 Direct sums

Let � : G → GL(V,C) be a linear representation. A proper subspace V1 of the representation space V

by definition is stable or invariant under the group G iff

∀�v1 ∈ V �v1 ∈ V1 ⇒ �(g)(�v1) ∈ V1 ∀g ∈ G (2.13)

or, in terms of subsets, �(g)V1 ⊆ V1, ∀g ∈ G. A subspace V1 of V is proper iff it is distinct from V and

the zero-dimensional vector space {�0}. V and {�0} are trivially stable under any group G. The restriction

�V1
(g) of �(g) to V1 determines an automorphism of V1 and follows the group homomorphism rule

�V1
(gh) = �V1

(g) ◦ �V1
(h) ∀(g, h) ∈ G, which means that the application

�V1
: G → GL(V1,C), g �→ �V1

(g) s.t. �V1
(g)(�v1) = �(g)(�v1) ∀�v1 ∈ V1 (2.14)

is a linear representation of the group G on the vector space V1, which is called a subrepresentation

of �.

4 �(g)(f̂ m) =∑n f̂ n �(g)nm = �(g)(
∑

r êr S−1
rm ) =∑r �(g)(êr ) S−1

rm =∑r

(∑
s ês �(g)sr

)
S−1

rm =∑r (
∑

s (
∑

n f̂ n Sns ) ×
�(g)sr ) S−1

rm =∑n f̂ n

(∑
s

∑
r Sns�(g)sr S−1

rm

)
=∑n f̂ n (S �(g)S−1)nm.
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Select a basis {êm} in V1 and extend it to a basis {êm} ∪ {f̂ n} in V, which always is possible whenever

V is finite-dimensional or otherwise once the axiom of choice is allowed.5 A subspace V2
f of V is

linearly spanned by the set of vectors f̂ n. It is called a complement of the subspace V1 in the vector

space V, because any vector �v in V writes uniquely as �v = �v1 + �v2 with �v1 ∈ V1 and �v2 ∈ V2
f . It is

observed that V1 ∩ V2
f = {�0}. If V is finite-dimensional with dimension d and the dimension of V1

is d1 then the dimension of V2
f is d2 = d − d1. If, conversely, a finite-dimensional vector space V

contains two subspaces, V1 with dimension d1 and V2 with dimension d2, such that V1 ∩ V2 = {�0} and

d = d1 + d2 is the dimension of V then every �v in V writes uniquely as �v = �v1 + �v2 with �v1 ∈ V1 and

�v2 ∈ V2. It may be emphasized that a complement of a proper subspace is a proper subspace and that

V and {�0} are the complements of each other in V. One symbolically formulate the fact that two proper

subspaces V1 and V2 of a vector space V are the complements of each other in V as

V = V1 ⊕ V2 (2.15)

In the event that not only the proper subspace V1 but also the selected complement V2 in V is stable

under the group G, the restriction �V2
: G → GL(V2,C) of � to the representation space V2 makes up

another subrepresentation of �. Importantly, ∀g ∈ G ∀�v ∈ V, �(g)(�v) is fully and uniquely determined

by the sum �V1
(g)(�v1) + �V2

(g)(�v2) with �v1 ∈ V1 and �v2 ∈ V2. In addition, �vi ∈ Vi ⇒ �i(g)(�vi) ∈
Vi and �vj ∈ Vj �=i ⇒ �Vi

(g)(�vj ) = 0 (i, j = 1, 2). It is customary to transcribe these properties by

symbolically equating � to the direct sum of �V1
and �V2

:

� = �V1
⊕ �V2

(2.16)

With respect to the basis {êm} ∪ {ên}, built by union of the basis {êm} in V1 and the basis {ên} in V2,

the matrix representatives �(g) of the linear operators �(g) on V write in the block diagonal form

�(g) = �
1(g) ⊕ �

2(g) ≡
(

�
1(g) 0

0 �
2(g)

)
∀g ∈ G (2.17)

namely as the direct sum �
1(g) ⊕ �

2(g) of the matrix representatives �
1(g) of the linear operators �V1

(g)

on V1 with respect to the basis {êm} and of the matrix representatives �
2(g) of the linear operators �V2

(g)

on V2 with respect to the basis {ên}. Again, now to implicitly recall the block-diagonal structure of the

matrix representatives �(g), it is the convention to symbolically write

� = �
1 ⊕ �

2 (2.18)

and, subsequently, to state that the matrix representation � is the direct sum of the sub-matrix

representations �
1 and �

2.

As an illustration, let �G : G → GL(V,C) be the regular representation of a group G on the vector

space V with basis {êg}g∈G and let V1 be the one-dimensional subspace of V consisting in the scalar

multiples of the vector
∑

g∈G êg . V1 evidently is stable under G: ∀�v1 ∈ V1 ∃! a ∈ C : �v1 = a
∑

h∈G êh

so that ∀g ∈ G �G(�v1) = a
∑

h∈G êgh = �v1 ∈ V1. Let V2 be the subspace of V spanned by the nG − 1

vectors (êh − êe)h∈(G−{e}), where e is the unit element of G and nG is the order of G. It easily is shown

that the dimension of the subspace V2 is nG − 1 and that V1 ∩ V2 = {�0}, by noticing that if a
∑

h∈G êh =∑
h∈G,h �=e bh(êh − êe) then

∑
h∈G,h �=e(bh − a)êh − (

∑
h∈G,h �=e bh + a)êe = 0, ergo a = 0 and bh �=e =

0 ∀h ∈ G. Next, by applying the linear operators �G(g) on the nG − 1 vectors (êh − êe)h∈(G−{e}) as

�G(g)(êh �=e − êe) = êgh − êg = (êgh − êe) − (êg − êe), it is straightforwardly inferred that the subspace

V2 is stable under G. Accordingly, the subspaces V1 and V2 thus constructed are effectively complement

5 The axiom of choice is not universally accepted because it leads to strange theorems, the most famous being the Banach-Tarski
paradoxical decomposition. Ignoring it however also leads to disasters, for instance a vector space may have no basis or may have
bases with different cardinalities. As to cure some of the inconveniences, in particular the existence of non-measurable sets of
reals, the axiom of determinacy was put forward in replacement, but this still might not be all satisfactory. Under this axiom every
subset of the set of reals R is Lebesgue-measurable, but, for instance, R as a vector space over the set of rationals Q has no basis.
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of each other and invariant under G so that �G can be put into the direct sum of the subrepresentations

built over these proper subspaces. Another choice of complement could have been made with the nG − 1

vectors êh∈(G−{e}), but this is not stable under G. It suffices to observe that �G(g)(êg−1 ) = êe does not

belong to this complement.

2.4 Maschke’s theorem

A convenient tool to handle the direct sums of proper subspaces is the projection operator. It is

recalled that given the decomposition V = V1 ⊕ V2
f , every vector �v in V by definition writes uniquely

as �v = �v1 + �v2 with �v1 ∈ V1 and �v2 ∈ V2
f . The linear operator 	f that sends every vector �v in V

onto its component �v1 in V1 defines the projection operator of V onto V1 along V2
f . It is clear that

	f ◦ 	f = 	f . It also is almost obvious that the image of 	f is im(	f ) = {	f (�v) | �v ∈ V} = V1, the

kernel of 	f is ker(	f ) = {�v ∈ V | 	f (�v) = �0} = V2
f and the restriction 	f

V1 of 	f to V1 is the identity

1V1
in V1. Conversely, let 	f : V → V be a linear operator on V. If the dimension of im(	f ) = V1 is

d1 and the dimension of ker(	f ) = V2
f is d2 then d1 + d2 = d is the dimension of V. If in addition

	f
V1 = 1V1

, that is to say the restriction 	f
V1 of 	f to V1 is the identity 1V1

in V1, then V1 ∩ V2
f = {�0}.

It then follows that V = V1 ⊕ V2
f . It again is clear that 	f ◦ 	f = 	f , which thus makes up another

equivalent definition of a projection operator 	f . A bijective correspondence is thus established between

the projection operators 	f of V onto V1 and the complements V2
f = ker(	f ) of V1 in V.

Let � : G → GL(V,C) be a linear representation of a finite group G on a finite-dimensional vector

space V over the field C of the complex numbers. Let V1 be a proper subspace of the representation

space V, which is invariant under the group G. Let V2
f be an arbitrary complement of V1 in V, not

necessarily invariant under the group G. Let 	f be the projection operator of V onto V1 bijectively

associated to V2
f . Let 	 be the “average” of 	f over G, which is defined as:

	 = 1

nG

∑

g∈G

�(g) ◦ 	f ◦ �(g−1) (2.19)

where nG is the order of the group G. 	 is a linear operator on V, since it is a function sum of functionally

composed linear operators on V. 	 “commute” with G:

	 ◦ �(h) = 1

nG

∑

g∈G

�(g) ◦ 	f ◦ �(g−1h) = 1

nG

∑

g∈G

�(hg) ◦ 	f ◦ �((hg)−1h)

= 1

nG

∑

g∈G

�(h) ◦ �(g) ◦ 	f ◦ �(g−1h−1h) = �(h) ◦ 	 ∀h ∈ G (2.20)

by using the dummy transformation g �→ hg in the second equality and the identity (hg)−1 = g−1h−1

in the third equality. It follows that V2 = ker(	) is a subspace stable under G: ∀h ∈ G, ∀�v2 ∈
V2, 	(�(h)(�v2)) = �(h)(	(�v2)), but 	(�v2) = �0 by definition of V2, so that �(h)(	(�v2)) = �0, whence

	(�(h)(�v2)) = �0, that is to say �(h)(�v2) ∈ V2. Next,

(	 ◦ 	f )V1 = 1V1
and ker(	 ◦ 	f ) = ker(	f ) = V2

f so that 	 ◦ 	f = 	f (2.21)

Indeed, 	f
V1 = 1V1

since 	f is a projection operator and �v1 ∈ V1 ⇒ �(g−1)(�v1) ∈ V1 by the invariance

of V1 under G, so that ∀�v1 ∈ V1, �(g) ◦ 	f ◦ �(g−1) ◦ 	f (�v1) = �(g) ◦ 	f ◦ �(g−1)(�v1) = �(g) ◦
�(g−1)(�u1) = �v1, ergo ∀�v1 ∈ V1, (	 ◦ 	f )(�v1) = �v1, that is to say (	 ◦ 	f )V1 = 1V1

. 	f and 	 are linear

operators and V2
f = ker(	f ) so that ∀�v2 ∈ V2

f (	 ◦ 	f )(�v2) = 	(�0) = �0, which means ker(	f ) ⊆
ker(	 ◦ 	f ). If (	 ◦ 	f )(�u1) = �0 and �u1 ∈ V1 then �u1 = �0 since (	 ◦ 	f )V1 = 1V1

, which implies that
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ker(	 ◦ 	f ) ⊆ ker(	f ) since V = V1 ⊕ V2
f . It finally is inferred that 	 is a projection operator:

	 ◦ 	 = 	 ◦ 1

nG

∑

g∈G

�(g) ◦ 	f ◦ �(g−1) = 1

nG

∑

g∈G

�(g) ◦ 	 ◦ 	f ◦ �(g−1) = 	 (2.22)

by using the equation 2.20 in the second equality and the equation 2.21 in the third equality. Accordingly,

the G-invariant subspace V2 = ker(	) is a complement of the initially assumed G-invariant subspace V1:

V = V1 ⊕ V2.

A fundamental theorem is thus proven, the so-called Maschke’s Theorem, which states that

whatever the linear representation � : G → GL(V,C)� : G → GL(V,C)� : G → GL(V,C) of a finite group G on a finite-dimensional

vector space V over the field CCC, to every invariant subspace V1 ⊆ VV1 ⊆ VV1 ⊆ V is associated an invariant

complement V2 ⊆ VV2 ⊆ VV2 ⊆ V. With the same proof arguments it is extended, for any finite group G, to any

finite-dimensional vector space V over any scalar field K of any characteristic char(K) that does not

divide the order nG of the group G, this merely by generalizing the average procedure in equation (2.19)

to K-summation and division by nG1K, where 1K is the multiplicative unit of K. It is clear that if

nG ≡ 0 (mod char(K)) then this G-averaging cannot be defined since nG1K = 0K, where 0K is the

additive unit of K.

2.5 Inner products

Another proof of Maschke’s Theorem can be forged using inner products, inspiring generalizations

to compact continuous groups G. An inner product on a vector space V over the field C designates

a two-arguments application 〈◦ | •〉 : V × V → C, which is i- linear in the second argument (•):

〈�u | a �v + b �w〉 = a 〈�u | �v〉 + b 〈�u | �w〉 ∀(a, b) ∈ C2 ∀(�u, �v) ∈ V2, ii- conjugate symmetric: 〈�u | �v〉 =
〈�v | �u〉⋆ ∀(�u, �v) ∈ V2 and iii- positive definite: 〈�v | �v〉 > 0 ∀�v ∈ V − {�0}. It immediately follows from

the two first properties (i and ii) that the inner product is antilinear in the first argument (◦):

〈a �v + b �w | �u〉 = a⋆ 〈�v | �u〉 + b⋆ 〈 �w | �u〉 , ∀(a, b) ∈ C2, ∀(�u, �v) ∈ V2. An inner product in other words

is a positive definite conjugate symmetric sesquilinear form.

A sesquilinear form is the generic name for any application � : V × V → C which is antilinear

in the first argument and linear in the second argument. � uniquely defines an antilinear application 
 :

V → V#, �u �→ �u# ≡ �(�u, •). Conversely, an antilinear application from a vector space V to its dual V#

uniquely determines a sesquilinear form. � is non degenerate iff 
 is injective, which means ker(
) =
{�0} or �(�u, �v) = 0 ∀�v ∈ V ⇔ �u = �0. The sesquilinear form � defined as �(�u, �v) = �(�v, �u)⋆ ∀(�u, �v) ∈ V2

is the conjugate symmetric to �. If � = � (� = −�) then � is called an hermitian form (anti-hermitian

form).

A vector �u is orthogonal to a vector �v with respect to a sesquilinear form � iff �(�u, �v) = 0. Let W

be a subspace of V. The set W⊥ = {�u ∈ V | ∀�v ∈ W, �(�u, �v) = 0} makes up a subspace of V, called

the orthogonal to W with respect to � in V. If W ∩ W⊥ = {�0}W ∩ W⊥ = {�0}W ∩ W⊥ = {�0} then the restriction �W of � to W is

non degenerate, which means that the restriction 
W of 
 to W is injective. If, in addition, W is finite-

dimensional then W# is of the same dimension as W and 
W becomes a bijection. 
 sends every �v ∈ V

to a unique linear form �v# ∈ V#, since it is an application. The restriction �w# of �v# to W obviously is

also unique. To the linear form �w# finally corresponds a unique �w ∈ W, because 
W is a bijection. In

other words, to every �v ∈ V is associated a unique �w ∈ W such that �(�v, �u) = �( �w, �u) ∀�u ∈ W, that is

to say �v − �w ∈ W⊥. It follows that V = W ⊕ W⊥. W⊥ then is called the orthocomplement of W in V.

A sesquilinear form � is positive definite iff �(�v, �v) > 0 ∀�v ∈ V − {�0}, in which case �(�v, �v) =
0 ⇔ �v = �0 whence W ∩ W⊥ = {�0} whatever the finite-dimensional subspace W of V. Thus, to every

finite-dimensional subspace W of a vector space V over the field C endowed with an inner product is

associated an orthocomplement W⊥⊥⊥ in V.

Let � be a linear operator on the vector space V. The transpose of � is the linear operator t� on the

dual space V# defined from the pointwise relation t�(�u#)(�v) = �u#(��v). t�(�u#) is called the pullback of �u#
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along �. If � is invertible then t� = (�−1)#. Let � be a non degenerate sesquilinear form. A linear

operator �† may be defined in V from the pointwise relation �(�u, ��v) = �(�†�u, �v). It is called the

adjoint of � with respect to �. If the application 
 : V → V#, �u �→ �u# ≡ �(�u, •) is bijective, which

is the case only if the vector space V is finite-dimensional, then the adjoint of � always exists, given as

�† = 
−1 ◦ t� ◦ 
.6 A sesquilinear form � by definition is invariant with respect to a linear operator �

iff �(��u, ��v) = �(�u, �v) ∀(�u, �v) ∈ V2. Obviously this is the case iff � is invertible and �†� = 1V, namely

�† = �−1. � then is said unitary. The unitary operators are normal operators. A linear operator � is

normal iff it commutes with its adjoint: � ◦ �† = �† ◦ �. It is diagonalizable and its eigen-spaces are

pairwise orthogonal (spectral theorem for the normal operators). Another subfamily of normal operators

are the self-adoint operators: † = .7

If V is finite-dimensional and {êi}i=1,...,d is the selected basis in V then ∀(�u, �v) ∈ V2,

∃! (u1, . . . , ud ) ∈ Cd s.t. �u = �iui êi and ∃! (v1, . . . , vd ) ∈ Cd s.t. �v = �j vj êj , so that �(�u, �v) =
�i,j u⋆

i �(êi , êj ) vj = U†�V, where U†(≡ tU
⋆
) is the complex conjugate row vector (u⋆

1, . . . , u⋆
d ) and

V the column vector (v1, . . . , vd ). The sesquilinear matrix � with the entries �ij = �(êi , êj ) uniquely

determines � once the basis is given. � is non degenerate iff Det(�) �= 0. A basis {êi}i=1,...,d is

orthonormal with respect to � iff � = Id (d × d unit matrix). Let � be a linear operator and denote

A the matrix representative of � and A† the matrix representative of �† in the {êi}i=1,...,d basis. The

pointwise relation �(�u, ��v) = �(�†�u, �v) is transcribed into tU
⋆
�AV = t (A†U)

⋆
�V = tU

⋆ t (A†)
⋆
�V.

It follows that � A = t (A†)
⋆

� therefore tA⋆ t�
⋆ = t�

⋆ A† or else A† = (t�
⋆
)−1 tA⋆

(t�
⋆
), since by

hypothesis � is non-degenerate. If in addition the chosen basis is orthonormal with respect to � then

A† = tA⋆
.

It is emphasized that inner products can be defined solely on vector spaces over the field R of the

real numbers, which is an ordered field, or the field C of the complex numbers, which is not ordered but

makes up an ordered extension of the field R. The basic reason is that otherwise it becomes meaningless

to require that a sesquilinear form be positive definite. This clearly excludes all the fields with non zero

characteristic, which cannot have an ordered subfield.

2.6 Unitarity and unitarisability

A linear representation � : G → GL(V,C) of a finite group G on a vector space V over the field C by

definition is a unitary representation if the representation space V is endowed with an inner product

〈◦ | •〉 : V × V → C which is invariant under G:

〈�(g)(�u) | �(g)(�v)〉 = 〈�u | �v〉 ∀(�u, �v) ∈ V2, ∀g ∈ G (2.23)

which means that the linear operators �(g) are unitary for every g in G. Another way telling the same

thing is that the linear representation � commutes with the inner product 〈◦ | •〉.

6 It is customary in physics to use the so-called bra-ket notation. The space V then is endowed with an inner product 〈◦ | •〉
(pre-Hilbert space). V is complete for the associated norm (Hilbert space), namely every Cauchy sequence in V converges within
V. A vector is denoted by a ket |�〉 and a linear form by a bra 〈�|. The application of a linear operator O on a ket is described
asO|�〉. Its dual is applied on a bra 〈�| as 〈�|O# to mean (〈�|O#)|�〉 = 〈�|(O|�〉). Its adjoint is applied on a ket |�〉 asO†|�〉
so that 〈�|(O†|�)〉 = (〈�|O#)|�〉⋆. To any ket |�〉 one may associate a bra 〈�| (Riez Theorem). The converse is true solely in
finite dimension. If V is infinite-dimensional then V can be put in bijection only with the subspace of continuous linear forms in
the dual V#. The “discontinuous” bra have no ket counterpart.
7 A bijective correspondence exists between the self-adjoint operatorsH on a Hilbert space V and the families of unitary operators
U(�)�∈R on V with the group property U(�+ �) = U(�) ◦ U(�) and the continuity property U(� → �) → U(�), to be precise
U(�) = exp(i�H) (Stone’s theorem). When the Hilbert space is separable it suffices to assume weak measurability instead of
continuity (von Newman). This bijection is useful in establishing the uniqueness of the irreducible unitary representation of the
algebra of canonical commutation relations on finitely many generators (Stone-von Newman theorem). This is no more the case
with infinitely many generators, concretely in quantum field theory where in general there is no unitary equivalence between
canonical commutation relation representation of the free field and that of the interacting fields (Haag theorem).
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If the representation space V is finite-dimensional with dimension d then a unitary matrix

representation ϒ : G → GL(d,C) of the group G is obtained by selecting in V an orthonormal basis

{êi}i=1,...,d with respect to the inner product 〈◦ | •〉. ϒ associates each element g of the group G to a

unitary matrix representative ϒ(g):

ϒ(g)† ϒ(g) = (tϒ(g)⋆) ϒ(g) = Id ∀g ∈ G (2.24)

where Id is the d × d unit matrix, or else ϒ(g)† = ϒ(g−1) for every element g in the group G.

Let W be a finite-dimensional proper subspace of the representation space V and let W⊥ be

the orhocomplement of W in V. One has �v ∈ W⊥ ⇔ 〈�v | �w〉 = 0 ∀ �w ∈ W and V = W ⊕ W⊥, by

definition of W⊥. Assume that W is invariant under G. It follows, by the equation (2.23) that

�v ∈ W⊥ ⇔ 〈�(g)(�v) | �(g)( �w)〉 = 0 ∀ �w ∈ W for every g ∈ G or else, choosing �u = �(g−1)( �w) and

making use of the G-invariance of W, �v ∈ W⊥ ⇔ 〈�(g)(�v) | �u〉 = 0 ∀�u ∈ W, which merely means that

W⊥W⊥W⊥ is invariant under G. A sub-representation of a unitary representation is obviously unitary for

the restricted inner product. Accordingly, every unitary representation of a finite group G on a vector

space V over the field C that contains a finite-dimensional subspace W invariant under G can be

decomposed into two unitary subrepresentations as

� = �W ⊕ �W⊥ (2.25)

where �W stands for the restriction of � to W and �W⊥ for the restriction of � to the orthocomplement

W⊥ of W in V. The two subrepresentations might in turn be decomposed into subrepresentation and

so on. The process must end after a finite number of iterations if V is finite-dimensional, since by

hypothesis the invariant subspace is a proper subspace so that at each step the dimension of the

subrepresentation spaces to consider is decreased. It nevertheless is emphasized that no conditions is

imposed on the dimension of the representation V, which thus might be infinite. So, at least as far

as G is finite, the dichotomy processes might go on indefinitely and lead to infinite direct sums or even

direct integrals. As a matter of fact, the construction of a meaningful direct integral often can fail, all the

more as the group G is unspecified, and leads to extremely delicate and difficult problems of functional

analysis.

A linear representation � : G → GL(V,C) is unitarisable by definition if an inner product invariant

under G can be defined in the representation space V. Assume that V possesses a basis {êi}. Whatever

the vector �u =∑i xi(�u)êi in V the set of complex numbers {xi(�u)} is uniquely defined. So is the product∑
i x⋆

i (�u)xi(�v) = 〈�u | �v〉, which thus determines an application V × V → C, conjugate symmetric,

linear in the second argument and positive definite (
∑

i | xi(�u) |2 > 0 unless xi(�u) = 0 ∀i). In other

words, an inner product 〈◦ | •〉 in V is defined by declaring that the basis {êi} is orthonormal.8 If the

group G is finite then the application

〈◦ | •〉G : V × V → C, (�u, �v) �→ 〈�u | �v〉G =
∑

g∈G

〈�(g)(�u) | �(g)(�v)〉 (2.26)

can always be defined. It is straightforwardly shown that i- 〈◦ | •〉G is linear in the second argument

because 〈◦ | •〉 is linear in the second argument and �(g) is a linear operator on V for every g ∈ G,

ii- 〈◦ | •〉G inherits from 〈◦ | •〉 the conjugate symmetry property, and iii- 〈◦ | •〉G is positive definite

8 Every regular representation �G of a finite group G for instance is obviously unitarisable. It is made unitary merely by declaring
that the G-indexed basis vectors êh are orthonormal in the representation space.
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because the sum of strictly positive numbers is strictly positive. It further is found out that

〈�(g)(�u) | �(g)(�v)〉G =
∑

h∈G

〈�(h) {�(g)(�u)} | �(h) {�(g)(�v)}〉

=
∑

h∈G

〈�(hg)(�u) | �(hg)(�v)〉 =
∑

k∈G

〈�(k)(�u) | �(k)(�v)〉

= 〈�u | �v〉G ∀g ∈ G, ∀(�u, �v) ∈ V2 (2.27)

In other words, 〈◦ | •〉G is an inner product which is invariant under G. The linear representation

� becomes a unitary representation by endowing the representation space V with the inner product

〈◦ | •〉G. Note that every change of inner products is equivalent to a basis change.9

A fundamental theorem is thus proven, which states that every linear representation of a finite

group G on a vector space V over the field C is unitarisable and therefore isomorphic to a unitary

representation. It thus can always be decomposed into subrepresentations whenever there exists a

finite-dimensional proper subspace invariant under G in the representation space. The group average

displayed in the equation (2.26) is the so-called Weyl’s Trick. It already was employed in a disguised

manner for a projection operator in the equation (2.19). It can be extended to linear representations

of topological groups,10 provided the summation over the group elements can be generalized to an

appropriate integration.11

One finally may wonder whether the unitarity concept is worth extending to invariance with respect

to hermitian forms not necessarily positive definite, to deal with linear representations on vector spaces

9 A basis {f̂ i} orthonormal with respect to 〈◦ | •〉G can even always be built, using for instance the Gram-Schmidt procedure:

f̂ i =
�si√

〈�si | �si〉G
with ŝ1 = ê1 and �sn = êi −

n∑

j=1

〈
ên | ŝj

〉
G〈

ŝj | ŝj

〉
G

ŝj (n > 1) (2.28)

Of course, the change from the basis {êi} to the basis {f̂ i} describes nothing but a similarity transformation.
10 A topological group by definition is a set G endowed with a group structure and a topological structure such that the group
operation Gop : (g, h) �→ gh−1 is a continuous function, to be precise the inverse image of any open set of G by this function
is an open set of the topological product space G × G. A topological space is separated iff for any pair of distinct points
there exists disjoint neighborhoods (Hausdorff). It is quasi-compact iff a finite cover can be extracted from every open cover
(Borel-Lebesgue). It is compact iff it is separated and quasi-compact. It is locally compact iff every point possesses a compact
neighborhood. It is simply connected iff every loop is homotopic to the null loop. A loop is a continuous function � : [0, 1] → G
such that �(0) = �(1). A loop at a point g is null iff im(�) = {g}. A loop � is homotopic to a loop � iff there exists a continuous
function � : [0, 1] × [0, 1] → G such that �(0, �) = �(1, �) ∀� and �(�, 0) = �(�), �(�, 1) = �(�) ∀�. A topological group is
m-connected iff at every point it shows m homotopy classes of loops. Its representations then might be m-valued, but for each
multiply-connected group there exists a simply connected group, the universal cover, that is homomorphic to it. A few examples:
SU (n) is compact simply connected. SO(n) is compact 2-connected and its universal cover is Spin(n). Spin(3) is isomorphic to
SU (2). O(p, q) (0 < p ≤ q) is non-compact 4-connected. . . .

A field is topological iff its additive and multiplicative groups are topological. A vector space on a topological field
endowed with a topological structure such that the vector addition and the scalar multiplication are continuous is topological.
A continuous representation of a topological group G on a topological vector space V over the field C is a linear representation
� : G → GL(V,C) such that the function r : G × V → V, (g, �v) �→ r(g, �v) = �(g)(�v) is continuous on the two variables g ∈ G
and �v ∈ V.
11 If G is a locally compact topological group then there always exist a measure dg and only one carried by G and enjoying
the properties i-

∫
G
F(g)dg =

∫
G
F(gh)dg for every h in G and every continuous function F on G (invariance of dg under

right translation) and ii-
∫

G
dg = 1 (mass normalization). If G is compact then dg is also invariant under left translation:∫

G
F(g)dg =

∫
G
F(hg)dg, in which case dg is called the bi-invariant or Haar measure of G. If the group G is finite of order

nG, the measure dg is obtained by assigning to each g in G a mass equal to 1/nG. If G is the group SO(2) of the planar
rotations and if every g ∈ SO(2) is represented in the form g ≡ exp(i�) (� taken modulo 2	) the invariant measure is d�/2	.
As a matter of fact, the concrete construction of the Haar measure generally is far from being obvious, except possibly for
groups of geometric nature (O(n,K), SO(n,K), U (n,K), . . .). An efficient method can be worked out for a Lie group G of
dimension n represented by unitary matrices U = exp(iH) of order N . The hermitian matrix H belongs to the associated Lie
algebra G and can be parametrized as H(x) =∑p xpXp with xq = Tr(HXq ), by means of the generators Xp chosen such that[
Xp , Xq

]
= iCpqrXr and Tr(XpXq ) = �pq . As from the invariant metric Tr(dU†dU) = −Tr

[
U−1dUU−1dU

]
= �pq (x)dxpdxq
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over fields with non zero characteristic. A more generalized approach might even be considered, since

sesquilinear forms might be defined on any module over a ring for an unspecified antiautomorphism

(in place of the conjugate complex involution). The drawback is that the crucial result according to

which every proper subspace possesses an orthocomplement then would be lost. Isotropic subspaces,

the vectors of which are all orthogonal to at least one of their own non null vectors, might exist, that

thus might not necessarily have a complement.

2.7 Irreducibility and reduction

A linear representation of a group is said irreducible if its representation space contains no proper

invariant subspace under the action of the group and reducible otherwise. A reducible representation is

not necessarily decomposable into subrepresentations, since this requires that to the identified invariant

subspace is associated an invariant complement. A linear representation then might be reducible but

indecomposable. A linear representation is said completely reducible if it is decomposable down to

irreducible components.

Let � : G → GL(V,K) and � : G → GL(W,K) be two linear representations intertwined with the

isomorphism � : V → W. Assume that there exists a G-invariant subspace V1 in V and denote W1 its

image by � in W. W1 obviously is a subspace of W, which is G-invariant: �w1 ∈ W1 ⇒ �−1( �w1) ∈ V1 ⇒
(� ◦ �−1)( �w1) ∈ V1 ⇒ (� ◦ � ◦ �−1)( �w1) = �(g)( �w1) ∈ W1. It follows that every linear representation

isomorphic to a reducible linear representation is itself reducible. If V2 is a G-invariant complement to

V1 in V then its image W2 by � is a complement of W1 in W. Indeed, the restriction of � to Vi (i = 1, 2)

defines two isomorphisms �i : Vi → Wi (i = 1, 2) so that �v ∈ V1 ∩ V2 ⇔ �(�v) ∈ W1 ∩ W2 and the

dimensions of Vi and Wi (i = 1, 2) are the same. W2 of course is also G-invariant. This means that

every linear representation isomorphic to a decomposable linear representation is itself decomposable.

Assume now that there is no G-invariant subspace V1 in V then obviously there can be no invariant

subspace in W, otherwise its image by �−1 would be a G-invariant subspace in V in contradiction

with the hypothesis. Accordingly, every linear representation isomorphic to an irreducible linear

representation is itself irreducible. It similarly is shown that every linear representation isomorphic to

a reducible but indecomposable linear representation is itself reducible but indecomposable and every

and the identity d(eK) =
∫ 1

0
dze(1−z)KdKezK it is inferred that

∫

G

F(U) dU =
∫

X

√
Det(�(x)) F(x) dx with �pq (x) =

∫ 1

−1

(1 − |z|) exp(z
∑

r

xr Crqp) dz

�(x) is diagonalized by the same unitary matrix as the n× n real antisymmetric matrix M(x) = −M†(x) with the entries
Mpq (x) =∑r xr Crqp . It follows that if ±i�j (�j ∈ R+) denotes the eigenvalues of the matrixM(x) then

Det(�(x)) =
∏

�i

sin2(�i/2)

(�i/2)2

The eigenvalue problemM(x)v = i�v is equivalent to solving the equation [V ,H(x)] = �V with V =∑p vpXp . It is observed

that S†(�V)S = S†(VH(x) −H(x)V)S = S†(VSS†H(x) −H(x)SS†V)S. Thus, if S is the matrix that diagonalizes H(x) then
(S†VS)ij (νi − νj − �) = 0: the eigenvalues �k ofM(x) needed to evaluate the Haar measure are differences of eigenvalues νi of
H(x).

Assume that � : G → GL(V,C) is a linear representation of a compact group G and assume that the representation space is
endowed with an inner product 〈◦ | •〉. The quantity 〈�u | �v〉G =

∫
G
〈�(g)(�u) | �(g)(�v)〉 dg (Weyl’s Trick) is well defined since

G is compact and g �→ 〈�(g)(�u) | �(g)(�v)〉 is continuous. It is clearly Hermitian and it is G-invariant since the Haar measure is

right invariant. It finally is positive definite: 〈�v | �v〉G =
∫

G
〈�(g)(�v) | �(g)(�v)〉 dg > 0, ∀�v �= �0 since 〈�(g)(�v) | �(g)(�v)〉 > 0. We

thus have demonstrated that every linear representation of a compact group is unitary. Using similar arguments as with the
unitary representation of finite groups it then is shown that every finite-dimensional linear representation of a compact group is
completely reducible. As a matter of fact, as far as only the finite-dimensional representations on the vector spaces over the field
C are considered, almost all the theorems that are proved for finite groups are safely extended to compact groups, be it that at
some places a sum must be replaced by an integral.
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linear representation isomorphic to a completely reducible linear representation is itself completely

reducible. It is the usage also to call irreducible (resp. reducible and decomposable, reducible but

indecomposable, completely reducible) the matrix representation obtained from an irreducible (resp.

reducible and decomposable, reducible but indecomposable, completely reducible) linear representation

by selecting a basis in the representation space.

Complete Reducibility Theorems may be formulated for certain families of linear representations.

Among the most important for the physics of the finite groups of symmetry is the one which states that

every linear representation of a finite group on a finite-dimensional vector space over the field of

complex numbers is completely reducible. As to prove it one proceeds by induction on the dimension d

of the representation space V. Assume that the statement holds for all the representations of dimension

smaller than d, and let � be a linear representation of dimension d. If V is irreducible, then there

is nothing to prove. Otherwise, there exists a proper subspace V1, therefore of dimension d1 < d,

invariant under G. According to the Maschke’s Theorem, V1 has in V a complement V2, therefore

of dimension d2 < d, which is also invariant under G. Accordingly, � = �1 ⊕ �2, where �i (i = 1, 2) is

the restriction of � to Vi (i = 1, 2). Now, by the induction hypothesis the subrepresentation �i (i = 1, 2)

is completely reducible, since di < d (i = 1, 2). So the same is true of �, which ends the proof. Note that

although the mathematical induction might suggest that the theorem might be true for infinite countable

dimension, the corresponding extension would make up an abuse at this step for the Maschke’s Theorem

is demonstrated only for finite-dimensional V.

The theorem is straightforwardly extended to the linear representation of the finite groups on the

finite-dimensional vector spaces over the fields whose characteristic does not divide the order of the

group, from the corresponding extension of the Maschke’s Theorem. Using the Weyl’s Trick the theorem

also is extended to the linear representation of the compact groups on the finite-dimensional vector

spaces over the field C. Note, meanwhile, that the finite groups are compact, for the discrete topology. It

happens that finally the infinite-dimensional case does not cause excessively more troubles for compact

groups. It indeed is shown that every continuous representation of a compact group on a Hilbert

space V, be it infinite-dimensional, is isomorphic to the Hilbert sum of finite-dimensional unitary

representations and the set of G-finite vectors is dense in V. A Hilbert sum of unitary representations

�� : G → V� is the unitary representation ⊕̂��� : G → ⊕̂�V� = {(�v�) | �v� ∈ V� ∧
∑

� ‖�v�‖2
� < ∞} on

the Hilbert sum of the representation spaces V�, that coincides with �� on each � sector. ⊕̂�V� is the

Hilbert space with inner product ((�u�), (�v�)) =∑� 〈�u�, �v�〉� and contains ⊕�V� as a dense subspace

with V�⊥V∀� �=�. A set of G-finite vectors is the set of all vectors �vf in in V such that the dimension of

the vector space spanned by {�(g)(�vf in), g ∈ G} is finite. It follows in particular that the irreducible

unitary representations of the compact groups are all finite dimensional. A proof is provided first by

showing that there always exists a finite-dimensional G-invariant (closed) subspace in V, for instance the

eigenspace of any non zero eigenvalue of a G-averaged compact operator on V, and next, using the Zorn’s

Lemma, by establishing that the set ⊕̂�V�, partially ordered by inclusion, necessarily shows a maximal

element. As a result ⊕̂�V� cannot be different from V, otherwise there would exist V� ∈ (⊕̂�V�)⊥ in

violation of the maximality. Note that the “Zorn’s Lemma” is equivalent to the axiom of choice (see

footnote 5). Non compact groups do show infinite-dimensional representations which are more delicate

to handle or else linear representations that cannot be isomorphic to unitary representations or reducible

representations that are indecomposable.12

12 Although to some extent either exotic or pathological for what might concern physical systems the counterexamples to the
complete reducibility of the linear representations are not that uncommon, even with finite groups, and it always is instructive to
have scrutinized at least one. Consider for instance the matrix representation

� : Cp =
〈
s | sp = e

〉
→ GL(2,Z/qZ), sk �→

(
1 k
0 1

)

of the cyclic group Cp of order p and generator s on the linear group of the 2 × 2 invertible matrices with entries in the field Z/qZ
of characteristic char(Z/qZ) = q. At first it is observed that if q does not divide p then � cannot be a group homomorphism and
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Now, let � : G → GL(V,C) be a completely reducible linear representation of a finite group G.

Choose an initial G-invariant subspace, find its complement and perform a first decomposition into two

sub-representations, then proceed similarly on each of these and so on until getting only irreducible

sub-representations. Grouping isomorphic irreducible summands, one most generally would write

� = �1 ⊕ �2 ⊕ . . .⊕ �s =
⊕

k �k , where �k is isomorphic to the direct sum of nk copies of an irreducible

linear representation �k : G → GL(Vk ,C), these by construction being non-isomorphic for different k’s.

A symbolic manner transcribing all this is

V ∼=
⊕

k

V
⊕nk

k and � ∼ n1�1 ⊕ n2�2 ⊕ · · · ⊕ ns�s ≡
⊕

k

nk�k (2.29)

where V
⊕nk

k is isomorphic to the subspace Xk of V spanned by the different G-invariant subspaces

of V associated with each copy of �k and nk defines the multiplicity of the irreducible component

�k contained in �. It is customary to call � =⊕k �k the canonical decomposition of �, or else the

decomposition of � into isotypical components �k . An irreducible matrix representation �
k : G →

GL(dk,C) is associated with the irreducible linear representation �k : G → GL(Vk ,C) as soon as a

basis is selected in the representation space Vk . With every isomorphism of V that transforms a

given copy of Vk in V to another copy of Vk in V is associated two distinct bases in one-to-one

correspondence and two isomorphic irreducible matrix representations. A basis of Xk
∼= V

⊕nk

k thus

may be built from different isomorphisms in V sending an initial copy of Vk in V to the different

copies of Vk in V. With respect to this basis the linear representation �k is associated to a matrix

representation �
k : G → GL(nkdk,C) isomorphic to the direct sum of nk copies of the irreducible matrix

representations �
k : G → GL(dk,C). A basis in V is obtained from the union of the bases built on each

subspace Xk , since V is the direct sum of the Xk
∼= V

⊕nk

k . The matrix representation � : G → GL(d,C)

associated with the linear representation � : G → GL(V,C) with respect to this basis in V is given as

the direct sum � = �
1 ⊕ �

2 ⊕ . . .⊕ �
s =⊕k �

k . It again is standard to write

� ∼ n1�
1 ⊕ n2�

2 ⊕ · · · ns�
s =
⊕

k

nk�
k (2.30)

and customary to call � =⊕k �
k the canonical decomposition of �, or else the decomposition of �

into isotypical components �
k . A similar procedure may be replicated to get canonical decompositions

of linear representations of compact groups, possibly by using Hilbert sums of representations. Note

that at this stage it is not sure whether the canonical decomposition is unique, so deserves its name, and

whether the nk are unambiguously defined.

therefore cannot be a matrix representation associated with a linear representation. Next ker(�) = {e}, that is to say � is injective,
iff q = p. Now assuming that either q divides p or equals p, the one-dimensional space spanned by the (1, 0) vector is invariant
under Cp , but it has no invariant complement: the representation is reducible but indecomposable. In a different context, if l
is a prime then the set Zl = inv.lim.Z/lnZ of l-adic integers makes up a compact topological group, which has the continuous
reducible but indecomposable representation

� : Zl → GL(2,Ql), x �→
(

1 x

0 1

)

on a 2-dimensional vector space over the field Ql of l-adic numbers. This example tells that “compact group” and “continuous
representation” are not enough conditions. The basis field must be C. Substituting the additive group R for Zl and the
automorphism group GL(2,C) for GL(2,Ql) a third example of continuous representation is obtained, which again is reducible
but indecomposable. It also is not unitarizable. In this case the failure of complete reducibility is to ascribe to the fact that R is
not compact. It is only locally compact, because it is not bounded. The compact subsets of Rn (Cn) are the closed and bounded
subsets of Rn (Cn).

00005-p.14



Contribution of Symmetries in Condensed Matter

2.8 Schur’s lemmas

It is clear that there exists a number of ways to decompose reducible linear representations down

to irreducible components, so that to proceed further it is necessary to get deeper insights into their

isomorphisms. As a matter of fact, the irreducible linear (or matrix) representations are special in their

intertwining. This is formulated in the Schur’s Lemmas:

Let �1 : G → GL(V1,C) and �2 : G → GL(V2,C) be two irreducible representations of a finite

group G and let HomG(V1, V2) = {� : V1 → V2 | �2(g) ◦ � = � ◦ �1(g) ∀g ∈ G} be the vector space of

intertwining operators from V1 to V2. Then, denoting dHomG(V1,V2) the dimension of HomG(V1, V2),

Schur 1 − �1 ∼ �2 ⇐⇒ dHomG(V1,V2) = 1

Schur2 − �1 ≁ �2 ⇐⇒ dHomG(V1,V2) = 0

A proof is provided by observing that ker(�) = {�v ∈ V1 | �(�v) = �02} is a G-invariant subspace of

V1 and im(�) = {�(�v) | �v ∈ V1} is a G-invariant subspace of V2: �v ∈ ker(�) ⇒ �(�1(�v)) = �2(�(�v)) =
�2(�02) = �02 ⇒ �1(�v) ∈ ker(�) and �v ∈ im(�) ⇒ ∃�u ∈ V1 : �(�u) = �v ⇒ ∃�w = �1(�u) ∈ V1 : �( �w) =
�(�1(�u)) = �2(�(�u)) = �2(�v) ⇒ �2(�v) ∈ im(�). The irreducibility of �1 and �2 leaves ker(�) = {�01}
or V1 and im(�) = V2 or {�02} as the only options. � is non zero iff ker(�) = {�01}, which means

that � is injective, and im(�) = V2, which means that � is surjective, that is to say iff � is an

isomorphism. As a consequence, �1 ∼ �2 ⇔ V1
∼= V2 ⇔ HomG(V1, V2) �= {0}, which partially proves

Schur 1, and �1 ≁ �2 ⇔ V1 ≇ V2 ⇔ HomG(V1, V2) = {0}, whence dHomG(V1,V2) = 0, which ends the

proof of Schur 2.

V1
∼= V2 ⇔ HomG(V1, V2) ∼= EndG(V1) ∼= EndG(V2), where EndG(Vi) (i = 1, 2) is the vector

space of the endomorphisms �i (i = 1, 2) of Vi (i = 1, 2) that commute with G : �i(g) ◦ �i = �i ◦
�i(g) (i = 1, 2) ∀g ∈ G. Unlike HomG(V1, V2 ≇ V1), which is only a vector space, EndG(Vi) (i = 1, 2),

endowed with the canonical composition law ◦ for the functions, shows the structure of a division

algebra, with unit ǫi (i = 1, 2) and composition inverse for each of its non zero elements. Now, select a

non zero �1 in EndG(V1) and pick up another arbitrary � ∈ EndG(V1). Obviously � ◦ �−1
1 ∈ EndG(V1). It

is implicitly assumed that the representation space V1 is finite-dimensional. Accordingly, as the field C

is algebraically closed, there always exists for � ◦ �−1
1 an eigenvalue � ∈ C: ker(� ◦ �−1

1 − �ǫ1) �= {�0}.
On the other hand, [(� ◦ �−1

1 − �ǫ1) ◦ �1(g)](�v) = [�2(g) ◦ (� ◦ �−1
1 − �ǫ1)](�v) = �0, ∀g ∈ G and ∀�v ∈

ker(� ◦ �−1
1 − �ǫ1): ker(� ◦ �−1

1 − �ǫ1) is a G-invariant subspace of V1. The irreducibility of �1 then

implies that � ◦ �−1
1 − �ǫ1 = 0, that is to say � = ��1 or else EndG(V1) ≡ C�1. In other words �1 ∼ �2

iff every intertwining operator from V1 to V2 is isomorphic to an endomorphism of V1 proportional to

�1, whence dHomG(V1,V2) = 1, which ends the proof of Schur 1.

Schur’s Lemma are straightforwardly generalized to finite-dimensional irreducible representations

of compact groups, using the same proof arguments. With infinite-dimensional representations discrete

eigenvalues might not necessarily exist and one has to resort to the spectral theorem for normal bounded

operators, which states that for any � in EndG(V) there exists a projection valued measure � such

that � =
∫

spec(�)
�d� and that the only bounded endomorphisms of V commuting with � are the ones

commuting with the self-adjoint projection �(B) for each Borel subset B of the spectrum spec(�).

Whatever the case, Schur 1 obviously implies that

� : G → GL(V,C) is irreducible ⇐⇒ HomG(V, V) ≡ EndG(V) ∼= C 1V

Schur’s Lemma may be extended to scalar fieldsK other than the field C of complex numbers under

the weaker formulation:

�1 ∼ �2 ⇐⇒ dHomG(V1,V2) = dEndG(Vi ,K) (i=1,2) �= 0

�1 ≁ �2 ⇐⇒ dHomG(V1,V2) = 0
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which is inferred solely from the G-invariance of the subspaces ker(�) and im(�) for any � in

HomG(V1, V2) and the irreducibility of �1 and �2. It also is clear that any non zero � in HomG(V1, V2)

is an isomorphism and therefore HomG(V1, V2
∼= V1) ∼= EndG(Vi ,K) (i = 1, 2), endowed with the

canonical composition law ◦ for the functions, shows the structure of a division algebra over the

field K. This leads to three possibilities: i- if K is algebraically closed then dEndG(Vi ,K) (i=1,2) = 1 and

EndG(Vi ,K) (i = 1, 2) ∼= K 1V
∼= C 1V, ii- if K is real closed, that is to say if K is not algebraically

closed but its closure is a finite extension, then by virtue of the (1,2,4,8)-Theorem on the real division

algebras and since it implicitly is clear that EndG(Vi ,K) (i = 1, 2) is associative but not necessarily

commutative, dEndG(Vi ,K) (i=1,2) may take the values 1, 2, 4 and the division algebra EndG(Vi ,K) (i = 1, 2)

may be isomorphic to either R 1V,C 1V or Q 1V, where Q stands for the field of quaternions.13 iii- if K

is neither algebraically closed nor real closed then dEndG(Vi ,K) (i=1,2) is the square of an integer.

The transcription of the Schurs Lemmas into the language of complex matrix representations of

finite groups is easily inferred as:

Schur 1 - If � : G → GL(d,C) is an irreducible complex matrix representation of dimension d of a

finite group G then every d × d matrix A commuting with � is a multiple of the d × d identity

matrix 1d :

{� irreducible} ∧ {�(g) A = A �(g) ∀g ∈ G} ⇒ ∃� ∈ C : A = � 1d

Schur 2 - No intertwining may exist between two irreducible complex matrix representation of a finite

group G except if these are associated with isomorphic representation spaces:

{�1,2 irreducible} ∧ {�2(g) A = A �
1(g) ∀g ∈ G} ⇒ {A = 0 or �

1 ∼ �
2}

Schur’s Lemmas have a number of impacting outcomes. Schur 1 for instance implies that every

irreducible complex representation � : G → GL(V,C) of an abelian group G is 1-dimensional: ∀g ∈
G, since G is abelian, �(g)�(h) = �(gh) = �(hg) = �(h)�(g) ∀h ∈ G, whence, since � is irreducible,

∃�g ∈ C : �(g) = �g1V, by Schur 1. It follows that ∀�v ∈ V �(g)(�v) = �g�v ⇒ �(g)(�v) ∈ Span(�v), that

is to say every 1-dimensional subspace Span(�v) = {a �v | a ∈ C} of V necessarily is G-invariant.

The irreducibility of � then implies that the representation space V itself is 1-dimensional. This

easily is generalized to compact groups using similar arguments,14 but fails with scalar fields K

that are not algebraically closed. A simple illustration is provided by the real representations � :

C3 = 〈s| s3 = e〉 → GL(V,R) of the cyclic group C3. If � is irreducible then it either is isomorphic

to the 1-dimensional trivial representation or to the 2-dimensional representation that associates the

generator s of C3 to the 2-dimensional geometric rotation by an angle 2	/3 in a plane. The matrix

representative of this rotation with respect to any selected basis in V has complex eigenvalues. It thus

13 The (1,2,4,8)-Theorem can be given different equivalent formulations. It in particular states that, up to isomorphism, the
only division algebra over a real closed field are the 1-dimensional real algebra R, the 2-dimensional complex algebra C, the
4-dimensional quaternion algebra Q and the 8-dimensional octonion algebra O. At each increase of the algebra dimension an
essential property is lost: a nonidentical involution must be introduced to get C, commutativity is lost with Q then associativity
is lost with O, but these algebra still are alternative. Algebras of higher dimension are constructed using the dimension-doubling
Cayley-Dickson process: (x1, x2)(y1, y2) = (x1y1 − y2x⋆

2 , x⋆
1y2 + y1x2), (x1, x2)⋆ = (x⋆

1 ,−x2). According to this, the next in the
list is the 16-dimensional sedenion algebra S, which is no more alternative nor a division algebra, but retains the property of
power associativity. The (1,2,4,8)-Theorem encompasses the weaker previous Frobenius’, Hurwitz’s and Zorn’s Theorems on the
real division algebras, but unlike these is not proved algebraically. It actually emerges as a corollary to a theorem of topological
nature: the existence of an arbitrary division algebra of dimension n over the reals implies parallelizability of the sphere Sn−1

but according to the Bott-Milnor-Kervaire Theorem spheres are parallelizable only in dimensions n = 1, 2, 4, 8 (a manifold is
parallelizable iff the tangent space at each point stay isomorphic to its transform induced by any parallel transport along a curve).
There exists a variety of other avatars of the (1,2,4,8)-Theorem, in Topology (Hopf bundles over the spheres Sn, . . .), in Geometry
(construction of exceptional Lie algebra, . . .), in Number Theory (a sum of n squares of integers times another sum of n squares
of integers is a sum of n squares of integers iff n = 1, 2, 4, 8, . . .), . . . .
14 A number of way exists to establish that all the irreducible representations of a compact group are 1-dimensional iff G is
abelian. One may use for instance the fact that the commutator group CG = {ghg−1h−1 | g, h ∈ G} = {e} iff G is abelian and that
this acts trivially on 1-dimensional representations.
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cannot be diagonalized with only real entries in the diagonals. As a matter of fact, it can be shown that

the irreducible representations � : G → GL(V,K) of an abelian group G are 1-dimensional over the

endomorphism ring EndG(V,K), which makes up an extension field of the field K.

Schur 2 allows demonstrating that the canonical decomposition of completely reducible linear

representations is unique. Let � =⊕k �k and 	 =⊕k �k be canonical decompositions of two

linear representations � : G → GL(V,C) and 	 : G → GL(U,C). Any � in HomG(U, V) maps the

representation space Zk
∼= U

⊕mk

k of �k to the representation space Xk
∼= V

⊕nk

k of �k , because every

restriction �kq of � from a copy of Uk to a copy of Vq intertwines with two irreducible representations so

is null as soon as k �= q by virtue of Schur 2. In the more intuitive language of matrix representations, if

� =⊕k �
k and � =⊕k ϒk are two canonical decompositions and if � and � are intertwined with

a matrix S then this cannot contain a non null off-diagonal block Sk,q �=k with which the isotypical

components �
k of � and ϒq �=k of � would be intertwined. It follows, by taking for 	 an irreducible

representation �k : G → GL(Vk ,C), that every sub-representation of � which is isomorphic to an

irreducible representation �k is contained in �k , which gives an intrinsic description of �k as isomorphic

to the direct sum of all the copies of �k contained in �. Accordingly, the canonical decomposition does

not depend on the manner it might be performed, which proves its uniqueness.

Another consequence of the Schur’s Lemmas, of utmost practical relevance for irreducible matrix

representations, is the so-called Orthogonality Theorem. Whatever the two irreducible representations

�k : G → GL(Vk ,C) and �q : G → GL(Vq ,C) of a finite group G and the linear application � from Vq

to Vk , the average of � over the group G, which is defined as

� = 1

nG

∑

g∈G

�k(g) ◦ � ◦ �q(g−1) (2.31)

is an intertwining operator: �k(h) ◦ � = � ◦ �q(h) ∀h ∈ G.15 In other words, � ∈ HomG(Vq , Vk). It

then follows from the Schur’s Lemmas that �k ∼ �q ⇔ � = �1Vk
∼=Vq

and �k ≁ �q ⇔ � = 0. � =
Tr [�] /Tr

[
1Vk

]
, since

Tr [�] = 1

nG

∑

g∈G

Tr
[
�k(g) ◦ � ◦ �q(g−1)

] �k∼�q= 1

nG

∑

g∈G

Tr
[
�q(g) ◦ � ◦ (�q(g))−1

]
= Tr [�]

and Tr
[
1Vk

]
= dk , where dk is the dimension of �k . Now, selecting a basis in Vk and a basis in Vq , the

linear representations �k and �q and the linear operators � and � get associated respectively with matrix

representations �
k and �

q and dk × dq (k lines − q columns) matrices T and S. In terms of matrix

elements of the corresponding matrices the equation (2.31) writes:

Sjn =
1

nG

∑

g∈G lm

�
k
j l(g) Tlm �

q
mn(g−1) (2.32)

which comes out as a linear form with respect to the variables Tlm. If �
k ≁ �

q , that is to say if k �= q,

then this form vanishes for all systems of values of the Tlm. Its coefficients therefore are null, whence∑
g∈G �

k
j l(g) �

q
mn(g−1) = 0 for arbitrary j , l, m, n. If �

k ∼ �
q , that is to say if k = q, then Sjn = ��jn

15

�k(h) ◦ � ◦ (�q (h))−1 = 1

nG

∑

g∈G

�k(h) ◦ �k(g) ◦ � ◦ (�q (g))−1 ◦ (�q (h))−1

= 1

nG

∑

g∈G

�k(hg) ◦ � ◦ (�q (hg))−1 = � ∀h ∈ G.
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with � = Tr [�] /dk = (1/dk)
∑

lm �lmTlm, whence

1

nG

∑

g∈G lm

�
k
j l(g) Tlm �

q
mn(g−1) =

(
1

dk

∑

lm

�lm Tlm

)
�jn (2.33)

which, by equating the coefficients of the Tlm, gives 1
nG

∑
g∈G �

k
j l(g) �

q
mn(g−1) = 1

dk
if l = m and j = n

and 1
nG

∑
g∈G �

k
j l(g) �

q
mn(g−1) = 0 otherwise. All the possibilities are summarized under the compact

formula:

1

nG

∑

g∈G

�
k
j l(g) �

q
mn(g−1) = 1

dk

�kq �jn �lm (2.34)

where �kq stands for a generalized Kronecker symbol, defined as �kq = 1 if �
k ∼ �

q and �kq = 0 if

�
k ≁ �

q . �jn (resp. �lm) is the standard Kronecker symbol �jn = 1 (resp. �lm = 1) iff j = n (resp.

l = m) and 0 otherwise. If the matrix representations are unitary then �
q
mn(g−1) = ((�q(g))−1)mn =

((�q(g))†)mn = �
q
nm(g)⋆, which leads to the alternative formula:

1

nG

∑

g∈G

�
k
j l(g) �

q
nm(g)

⋆ = 1

dk

�kq �jn �lm (2.35)

The theorem can be proved also by directly using any pair of irreducible matrix representations �
k and

�
q and applying the Schur’s Lemmas to the matrix A =∑g∈G �

k(g) � �
q(g−1), where � is a dk × dq

matrix with entries all null except at line l and column m where it is set to �lm = 1. The theorem is

straightforwardly extended to the finite-dimensional linear representations of compact groups G on the

vector spaces over the field C. It suffices in the proof to replace every normalized sum 1
nG

∑
g∈G . . . over

a finite group G by the corresponding integration
∫

G
. . . dg using the Haar measure dg of the compact

group G. It also is extended to every ground field K whose characteristic char(K) that does not divide

the order nG of the group G, except only that 1
nG

∑
g∈G �

k
nm(g) �

q
mn(g−1) can fail to give 1

dk
if K is not

algebraically closed. This can be determined from the Galois Theory of the centre of the division algebra

EndG(V,K).

3. CHARACTER THEORY

What now one needs are effective methods for reducing a linear representation and constructing the

irreducible components of its representation space, to allow discerning the invariances of a physical

quantity with respect to a symmetry group. It is obvious from the considerations of the previous sections

that, quite quickly, this might become cumbersome. Invariants over the isomorphism classes of the

linear representations should be of the greatest help, at the condition that these also allow distinguishing

between non isomorphic linear representations.

Whatever the finite dimensional linear representation � : G → GL(V,C) of a compact group G the

linear operators �(g) for every element g in the group G are diagonalizable, since � is unitarisable

and unitary operators are diagonalisable with pairwise orthogonal eigenspaces (cf. spectral theorem

for normal operators). It is recalled that finite groups are compact, for the discrete topology. As

a matter of fact, with finite groups it even may be asserted that all the eigenvalues of �(g) are

roots of unity, since every element g ∈ G necessarily is of finite order, that is to say ∃ng : gng = e

so that �(g)©ng = 1V. Numerical invariants may be deduced from the symmetric functions of these

eigenvalues, more precisely from the coefficients �n(g) of the characteristic polynomial Det[�(g) −
�1V ] = (−1)d�d +∑d

n=1 �n(g)�d−n, where d is the dimension of the representation space V. Among

the most familiar are the coefficient �d (g) = Det[�(g)] of the constant term and the coefficient
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�1(g) = (−1)d−1 Tr[�(g)] of the sub-leading term. It is clear that Det[� ◦ �(g) ◦ �−1] = Det[�(g)]16

and Tr[� ◦ �(g) ◦ �−1] = Tr[�(g)]17 whatever the invertible linear operator � on V. Thus, Det[�(g)] and

Tr[�(g)] show the required invariance over every isomorphism class of linear representations. Now, it

follows from the multiplicativity of the Determinant that Det[�(g) ◦ �(h)] = Det[�(g)]Det[�(h)], which

means that the application g ∈ G �→ Det[�(g)] ∈ C makes up a 1-dimensional representation of G. It

thus turns out that the Determinant invariant is often unable to distinguish between different classes

of isomorphism when, by contrast, the Trace invariant, which is not multiplicative, can. So this is the

searched invariant. It actually will be shown below that the complex-valued function on G defined as

� : G → C, g �→ �(g) = Tr[�(g)] (3.1)

is a complete invariant, in the sense that it uniquely determines the linear representation � : G →
GL(V,C) up to isomorphism. � defines the character of the linear representation �.

3.1 Elementary properties

Let � : G → GL(V,C) be a d-dimensional linear representation of a finite (or even continuous compact)

group G and let � : G → GL(d,C) be the matrix representation associated to � with respect to the basis

vectors êm (m = 1, . . . , d) selected in the representation space V. It follows from the definition of the

trace of a linear operator that

�(g) = Tr
[
�(g)
]
= Tr [�(g)] =

∑

i

�ii(g) ∀g ∈ G (3.2)

It is the usage to also call � the character of the matrix representation �. The trace of a product of

matrices being invariant by cyclic permutation, we have ∀g ∈ G Tr[S �(g) S−1] = Tr[�(g)], whatever

the invertible matrix S. Of course, this is nothing but the transposition to the matrix representations of

the group G of the invariance of the character � over an isomorphism class. ��� concretely is independent

of any choice of basis vectors in the representation space V.

• �(e) = d�(e) = d�(e) = d, where e is the unit element of G. �(e) = Tr [�(e)] = Tr [Id ] =∑d
i=1 1 = d, where Id is the

d × d unit matrix.

• �(g−1) = �(g)⋆�(g−1) = �(g)⋆�(g−1) = �(g)⋆ and | �(g) | ≤ d ∀g| �(g) | ≤ d ∀g| �(g) | ≤ d ∀g in every finite group GGG. ∀g ∈ G ∃ng ∈ N : gng = e (unit element

of G), otherwise the successive powers of g would generate an infinite group. It follows that

�(gng ) = �(g)ng = 1d . It then is directly clear that �(g) is diagonisable. Let ǫ1(g), . . . , ǫd (g)

be the g-dependent eigenvalues of �(g). Obviously, ǫi(g)ng = 1, which means that ǫi(g) is a

root of unity, ∃ �i(g) : ǫi(g) = ej�i (g) with j =
√
−1. Now, �(g)⋆ = Tr [�(g)]⋆ =∑i ǫi(g)⋆ =∑

i ǫi(g)−1 = Tr
[
�(g)−1

]
= Tr
[
�(g−1)

]
= �(g−1) whereas | �(g) | = | Tr [�(g)] | = | ∑i ǫi(g) | ≤∑

i | ǫi(g) | =∑i 1 = d. Note that by the theorem of Lagrange the order ng of g divides the order

nG of the group G. So the eigenvalues ǫ1(g), . . . , ǫd (g) of �(g) are roots of unity of orders dividing

the order nG of the group G. More generally, every linear representation of a compact group and à

fortiori of a finite group is unitarisable. An inner product thus may be defined in the representation

space V so that �(g−1) = �(g)−1 = �(g)† ∀g ∈ G. In terms of matrix representations with respect to

16 A Determinant most generally designates every alternating d-linear form F: End(M, A) → A on the module End(M, A) of the
endomorphisms on a free module M of dimension d over a commutative ring A. F is unique up to the image F(1M) of the identity
endomorphism 1M. One standardly put F(�)/F(1M ) = Det[�]. It results from the functorial properties of the exterior algebra on
the module M that Det is multiplicative: Det[� ◦ �] = Det[�]Det[�] ∀(�, �) ∈ End(M, A)2. As an obvious consequence, the image
by Det of any composition of endomorphisms �i is invariant by any permutation 	 of these: Det[©i�i ] = Det[©i�	(i)].
17 A Trace most generally designates every linear form F: End(M, A) → A on the module End(M, A), of the endomorphisms
on a free module M of dimension d over a commutative ring A, enjoying the property F(� ◦ �) = F(� ◦ �) ∀(�, �) ∈ End(M, A)2.
F is unique up to the image F(1M) of the identity endomorphism 1M. One standardly put F(�)/F(1M ) = Tr[�]/d. Obviously, by
substituting  ◦ � for � and so on, the property F(� ◦ �) = F(� ◦ �) implies that the Trace of any composition of endomorphisms
is invariant under cyclic permutation, whence Tr[� ◦ � ◦ �−1] = Tr[�] for invertible linear operators on a vector space. Note that
Det[e�] = eTr[�].
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an orthonormal basis, this transposes to �(g−1) = �(g)† = t
�(g)

⋆ ∀g ∈ G (cf. Sections 2.5 and 2.6),

whence �(g−1) = Tr[�(g−1)] = Tr[t
�(g)

⋆
] = �(g)⋆ ∀g ∈ G.

• If �# is the character of the representation �# dual to the linear representation � with character � then

�#(g) = �(g−1) ∀g ∈ G�#(g) = �(g−1) ∀g ∈ G�#(g) = �(g−1) ∀g ∈ G. �#(g) indeed acts on every linear form on V as the composition with �(g−1)

: ∀�v# ∈ V# = Hom(V,C), �#(g)(�v#) = �v# ◦ �(g)−1.

• The character of � =⊕i �
i� =⊕i �
i

� =⊕i �
i is � =∑i �i� =∑i �i� =∑i �i , where �i stands for the character of �

i . Evident from the

property Tr [A⊕ B] = Tr [A] + Tr [B] for any pair of matrices A and B.

3.2 Orthogonality theorem

Getting back to the equation 2.34 and setting j = l and n = m then summing over all j and all n and

finally using the identity
∑

jn(�jn)2 =∑jn(�jn) = dk , one ends up at

1

nG

∑

g∈G

(�q(g))⋆ �k(g) =
〈
�q | �k

〉
= �kq (3.3)

where �k and �q are the characters of the irreducible representations �k : G → GL(Vk ,C) and �q :

G → GL(Vq ,C). �kq is a generalized Kronecker symbol, defined as �kq = 1 if �k ∼ �q and �kq = 0

if �k ≁ �q . The notation 〈� | �〉 is used to emphasize that the quantity 1
nG

∑
g∈G(�(g))⋆ �(g) does

define an inner product in the vector space C [G] of complex-valued functions on G, being obviously

linear with respect to �, conjugate symmetric and positive definite (〈� | �〉 > 0 ∀� ∈ C [G] − {0}).18

Equation (3.3) makes up the First Orthogonality Theorem for the Characters and has far-reaching

consequences.

Consider a decomposition � = �1 ⊕ . . .⊕ �s of a linear representation � : G → GL(V,C) with

character � into the irreducible representations �k : G → GL(Vk ,C) with characters �k . It results from

the additivity property of the characters that � = �1 + . . .+ �s and from the linearity of the inner

product that 〈�q | �〉 =
〈
�q | �1

〉
+ . . .+ 〈�q | �s〉. According to the First Orthogonality Theorem for

the Characters,

�q ∼ �k ⇐⇒
〈
�q | �k

〉
= 1

�q ≁ �k ⇐⇒
〈
�q | �k

〉
= 0

It follows that 〈�q | �〉 determines the number of �k isomorphic to �q contained in the decomposition

of �. As previously transcribed in the equation (2.29), this number is nothing but the multiplicity nq of

�q in the expansion of the representation � over its irreducible components �k:

� ∼
⊕

k

nk�k =⇒ nq =
〈
�q | �

〉
(3.4)

The multiplicity of the trivial representation in this expansion for instance is
∑

g∈G �(g). Obviously

nq = 〈�q | �〉 does not depend on the chosen decomposition, which means that the decomposition of a

finite-dimensional linear representation of a finite group into irreducible representations is unique.

This in turn immediately implies that every two completely reducible linear representations with the

same character are necessarily isomorphic, for they contain each given irreducible representation the

same number of times. Characters thus are in one-to-one correspondence with isomorphic classes of

linear representations, which is the essence of the Theorem of Complete Invariance of the Characters.

18 Of course, this may be extended to compact groups as
∫

G
(�q (g))⋆ �k(g)dg =

〈
�q | �k

〉
= �kq by using the Haar integration

and to every ground field K whose characteristic char(K) that does not divide the order nG of the group G, with the proviso to
keeping in mind that the square norm 〈�q | �q 〉 can fail to give 1 if K is not algebraically closed, that is to say we always have

orthogonality but not necessarily orthonormality.
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Given that every decomposition of a linear representation � uniquely writes � ∼⊕k nk�k every

character uniquely writes � =∑k nk�
k . Computing the square norm of � and taking account of the First

Orthogonality Theorem for the Characters one gets

〈� | �〉 =
〈
∑

q

nq�
q |
∑

k

nk�
k

〉
=
∑

qk

nqnk

〈
�q | �k

〉
=
∑

k

n2
k (3.5)

∑
k n2

k is equal to 1 only if one of the nk’s is equal to 1 and the others to 0, that is if � is isomorphic to

one of the irreducible representation �k , whence if ��� is the character of a representation then 〈� | �〉〈� | �〉〈� | �〉
is the sum of squares of integers and 〈� | �〉〈� | �〉〈� | �〉 = 1 iff ��� is irreducible. We obtain thus a very convenient

irreducibility criterion.

3.3 Dimensional closure

Consider the regular representation �G of a finite group G (cf. Section 2.1). �G by definition transcribes

the left action of the group G on the representation space VG spanned by basis vectors êh indexed

with the group elements h ∈ G by permuting these as �G(g)(êh) = êgh ∀g ∈ G ∀h ∈ G. It is clear

by the group properties that gh = h ⇔ g = e, where e is the unit element of G. It follows that

�G(g)(êh) = êh ⇔ g = e. This means that the diagonal elements of the matrix representatives �G(g)

of the linear operators �G(g) with respect to the basis {êh}h∈G are all null for g �= e and all equal to 1 for

g = e. The character �G of of the regular representation �G then is given by the formula:

�G(g) =
{

nG if g = e

0 otherwise
(3.6)

where nG is the order of G. One finds that 〈�G | �G〉 = 1
nG

∑
g∈G(�G(g))⋆ �G(g) = 1

nG
n2

G = nG. So �G

is far from being irreducible. If �q stands for the character of an irreducible representation �q : G →
GL(Vq ,C) with dimension dq of the group G then one also computes

nq =
〈
�q | �G

〉
= 1

nG

∑

g∈G

(�q(g))⋆ �G(g) = 1

nG

(�q(e))⋆ �G(e) = 1

nG

dq nG = dq

It follows that

�G =
⊕

k

dk�k (3.7)

that is to say the number of times each irreducible linear representation �k�k�k is contained in the regular

representation �G�G�G is equal to the dimension dkdkdk of that irreducible representation. The equation (3.7)

implies that �G(g) =∑k dk�
k(g) for all g in G. Taking g = e leads to the dimensional closure identity

∑

k

d2
k = nG (3.8)

since �G(e) = nG and �k(e) = dk . This identity is useful in the determination of the irreducible

representations of a group G, to check in particular that all of these have been found out. If g �= e

then, since �G(g �= e) = 0,
∑

k

dk�
k(g �= e) = 0 (3.9)

Note that the span VG of {êh}h∈G is isomorphic to the vector spaceC [G] of complex valued functions

on the group G. As to build an isomorphism it suffices to match the basis vector êh in G with the

function �h : G → C, g �→ �gh. Under this isomorphism the elements g in G act on the left on C [G]

by sending the function � to the function �G(g)(�) such that �G(g)(�)(h) = �(g−1h). As a matter
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of fact, this is the way to generalize the concept of regular representations to the compact groups.

The representation space VG then is isomorphic to the Hilbert space L2(G,C) of the square integrable

functions on the group G and �G(g) for each g ∈ G operates on this space by sending every � ∈ L2(G,C)

to �G(g)(�) ∈ L2(G,C) defined as �G(g)(�)(h) = �(g−1h) ∀h ∈ G. It again is shown that the number

of times each irreducible linear representation �k is contained in the regular representation �G is equal

to the dimension dk of that irreducible representation, but now no dimensional closure prevails since the

group G is not finite. The regular representation �G then is infinite-dimensional.

3.4 Class functions

Owing to the invariance Tr[� ◦ � ◦ �−1] = Tr [�] of the Trace of any pair (�, �) of invertible linear

operators on any vector space, the character � of every linear representation � : G → GL(V,C)

is conjugation-invariant:

�(tgt−1) = Tr[�(t) ◦ �(g) ◦ �(t−1)] = Tr[�(g)] = �(g) ∀g ∈ G ∀h ∈ G (3.10)

It is recalled that two elements g and h of a group G are conjugate iff there exists another element

t in the group G such that h = tgt−1. Conjugacy is an equivalence relation that partitions the group

G into conjugacy classes Ci . A complex valued function � on G is called a class function iff

�(tgt−1) = �(g) ∀g ∈ G ∀t ∈ G, that is to say iff it is constant over each conjugacy class Ci . It is

clear from the equation (3.10) that every character � of a linear representation � : G → GL(V,C) of

a finite group G is a class function.

The set of the class functions on a group G, endowed with addition and scalar multiplication makes

up a subspace C [CG] of the vector space C [G] of the complex valued functions on G. Whatever the

linear representation � : G → GL(V,C) of a finite group G and whatever the complex valued function

� ∈ C [G], we always may define a linear operator on V as:

�� =
∑

g∈G

�(g)�(g) (3.11)

� is a class function iff �� commutes with the group G through any linear representation �:19

� ∈ C [CG] ⇐⇒ �(h) ◦ �� = �� ◦ �(h) ∀h ∈ G. (3.12)

It follows that if � is a class function and � is isomorphic to an irreducible representation �k : G →
GL(Vk ,C) of the group G with character �k then, by Schur 1, ∃� ∈ C : �� = �1Vk

(cf. Section 2.8). �

can be determined by computing Tr
[
��

]
.20 As a partial conclusion, we write

� ∈ C [CG] and �� ∼
∑

g∈G

�(g)�k(g) =⇒ �� =
nG

dk

〈
�⋆ | �k

〉
1Vk

(3.13)

19

� ∈ C [CG] ⇒ �(h) ◦ �� ◦ �(h−1) =
∑

g∈G

�(g)�(hgh−1) =
∑

u(=hgh−1)∈G

�(h−1uh)�(u) = ��

and

�(h) ◦ �� ◦ �(h−1) = �� ⇒
∑

u∈G

�(h−1uh)�(u) =
∑

u∈G

�(u)�(u) ⇒ �(h−1uh) = �(u)

Note that the last deduction is obvious if we take for � the regular representation �G.
20

Tr
[
��

]
= Tr


∑

g∈G

�(g)�k(g)


 =
∑

g∈G

�(g)Tr
[
�k(g)
]
=
∑

g∈G

�(g)�k(g) = nG

〈
�⋆ | �k

〉
and Tr

[
�1Vk

]
= dk .
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where nG is the order of G and dk the dimension of Vk . Now, assume that the class function

� is orthogonal to the character �k of every irreducible representation �k then, by virtue of the

equation (3.13), �� =
∑

g∈G �(g)�(g) is zero so long as � is irreducible and by the decomposition

into irreducible representations we conclude that �� is always zero. Applying this to the regular

representation �G and computing the image under �� of the basis vector êe indexed with unit element e

of G, we obtain

��(êe) =
∑

g∈G

�(g)�G(g)(êe) =
∑

g∈G

�(g)(êg) (3.14)

but ��(êe) = 0, since �� is zero, therefore �(g) ∀g ∈ G, whence � is the null function on G. In short
〈
�⋆ | �k

〉
= 0 ∀�k =⇒ � = 0 (3.15)

It is on the other hand clear from the equation (3.3) that the characters �k of the irreducible

representations of the group G make up an orthonormal system in the space of the class functions

C [CG]. In other words the characters of the irreducible representations of a finite group G form an

orthonormal basis for the space of the complex class functions C [CG]C [CG]C [CG], which is the expression of

the Theorem of Character Completeness over the Class Functions. Again this is straightforwardly

generalized to the compact groups G by using the Haar integration for summation over G and

considering the Hilbert space L2(CG,C) of the square integrable class functions on G. With the other

ground fields K the application of Schur 1 on the linear operator �� will involve the division algebra

End(Vk ,K).

As an immediate consequence, the number of irreducible representations of a finite group G up

to isomorphism is equal to the number nC of conjugacy classes of G. Indeed, if C1, . . . ,CnC are the

distinct conjugacy classes of G then every class function � ∈ C [CG] is fully determined by its values

�Ci
∈ C on each conjugacy class Ci . It therefore has nC degrees of freedom. This merely means that the

dimension of C [CG] is nC, but, by the Character Completeness over the Class Function, this is equal

to the number of irreducible representations of G. This is still true of compact groups, but without any

interest since there then are infinitely many classes and infinitely many irreducible representations in the

group G.

Completeness means that every class function � ∈ C [CG] on a group G is the linear combination

� =∑k

〈
�k | �

〉
�k of the characters �k of the irreducible representations �k of the group G. With the

class function �g that takes the value 1 for every element of the class Cg = {h ∈ G | ∃ t ∈ G, h = tgt−1}
and 0 elsewhere, we compute

〈
�k | �g

〉
= nCg

nG
(�k(g))⋆ where nCg

is the number of elements in the class

Cg and nG the order of the group G. It follows, by definition of �g , that

nCg

nG

dC[CG]∑

k=1

(�k(g))⋆�k(h) = �g(h) =
{

1 if h ∈ Cg

0 if h /∈ Cg

(3.16)

where dC[CG] is the dimension of C [CG], which, it is recalled, is equal to the number of classes nC in G.

Equation 3.16 makes up the Second Orthogonality Theorem for the Characters.

3.5 Character tables

Character Orthogonality, Complete Invariance and Completeness over the Class Functions offer the

great advantage to allow globally handling all the irreducible linear representations of a finite group

G up to isomorphism by means of the so-called Character Table. This is a square matrix with rows

labelled by the isomorphism classes of irreducible representations, columns labelled by the conjugacy

classes of the group and entries given by the values of the character for each isomorphism class of

irreducible representation and for each conjugacy class. Every linear representation of the group can be

characterized from this table by determining the multiplicities of its irreducible components from the

00005-p.23



EPJ Web of Conferences

inner product with the rows of the table and even its decomposition into isotypical components from

projection operators on the representation space built over the irreducible characters as discussed in the

Section 3.6.

Given a finite group G the first stage to construct its Character Table is to find its conjugacy classes.

A series of properties of conjugate elements exist that ease this search. A few of them are:

⋆ The unit element e of every group always forms a conjugacy class {e} by its own.

⋆ In an abelian group every element form a conjugacy class by its own.

⋆ The orders of the elements of the same conjugacy class Ci are all equal, since obviously g
ngi

i =
e and ∃t ∈ G : hi = tgi t

−1 ⇒ h
ngi

i = (tgi t
−1)(tgi t

−1) . . . (tgi t
−1) = tg

ngi

i t−1 = e.

⋆ If hi is conjugate to gi then h−1
i is conjugate to g−1

i so that all the inverses of the elements of a given

conjugacy class Ci belong to a same conjugacy class C−1
i . If gi and g−1

i are conjugate then we a have a

single conjugacy class, Ci = C−1
i , which is said ambivalent, otherwise we have two distinct conjugacy

classes Ci �= C−1
i , which are said inverse of each other.

⋆ If nCi
stands for the number of elements in each conjugacy class Ci then, inherently to the partition

of the group G into conjugacy classes, we have the class equation
∑

i nCi
= nG where nG is the order

of the group G.

⋆ The elements of the conjugacy class Ci of any given element gi of the group G are in bijective

correspondence with the cosets of the normalizer NG(gi) = {t ∈ G | tgi t
−1 = gi}. NG(gi) is a

subgroup of G so that G = e NG(gi) + . . .+ sj NG(gi) + . . .+ s[G:NG(gi )] NG(gi), where [G : NG(gi)]

defines the index in G of NG(gi). Conjugating gi with any element sj t of the coset sj NG(gi) we

get (sj t)gi(sj t)−1 = sj tgi(t
−1s−1

j ) = sj gis
−1
j . On the other hand, if (sj t)gi(sj t)−1 = (skr)gi(skr)−1

then (skr)−1sj t gi (sj t)−1skr = gi so (skr)−1sj t = h ∈ NG(gi) or else sj = sk(rht−1) which means

sj NG(gi) = sk NG(gi). It then is inferred that the conjugation of gi by the elements of distinct cosets

leads to distinct conjugates. Thus each conjugate of gi by an element of the coset sj NG(gi) can be

uniquely labelled by this coset as g
j
i . It follows that nCi

is the index [G : NG(gi)] in G of the normalizer

of the representative gi of the conjugacy class Ci , but by the Lagrange Theorem [G : NG(gi)] =
nG/nNG(gi ). Therefore nCi

is a divisor of nG. It is recalled more generally that the normalizer NG(S) of

a subset S of elements of a group G is defined as NG(S) = {t ∈ G | tSt−1 = S}. A related concept is

the centralizer CG(S) of the subset S, which is defined as CG(S) = {t ∈ G | tS = St}. It goes without

saying that, obviously, the normalizer NG(gi) of a single element gi of the group G is identical to the

centralizer CG(gi) = {t ∈ G | tgi = gi t} of that element gi in the group G.

⋆ The intersection Z(G) = ∩g∈GCG(g) defines the Center of G. Z(G) is an abelian subgroup of G and

contains all the elements of the group G that form a class by their own.
...

The second stage to construct the Character Table of a finite group G is to get the list of the character

�k of its irreducible linear representations �k . In the case of small enough groups the already established

theorems may be enough to find them all. We recall the elementary property �k(e) = dk , the equations∑
k d2

k = nG and
∑

k dk�
k(g �= e) = 0 inferred from the regular representation �G =∑k dk�k , the

equality dC[CG] = nC between the total number of the �k and that of the conjugacy classes Ci and,

of course, the orthonormality of the �k . Denoting �k
i the value of the character �k of an irreducible

representation �k : G → GL(Vk ,C) over a conjugacy class Ci , the first orthonormality equation (3.3)

re-writes:

∑

i

nCi
(�

q
i )⋆�k

i = nG�kd (3.17)

where nCi
is the number of elements in the conjugacy class Ci and nG the order of the group G. This

makes up a “Row-by-Row Orthogonality Theorem” for the Character Table. The second orthonormality
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equation (3.16) re-writes:

∑

k

�k
i (�k

j )⋆ = nG

nCi

�ij (3.18)

which makes up a “Column-by-Column Orthogonality Theorem” for the Character Table. It finally may

be remembered that, since G is a finite group, the character value �k
i is the sum of dk terms each of

which is an ngi
-root of 1, the multiplicative unit of the complex numbers, where ngi

is the order of the

elements gi of the class Ci .

Consider for purpose of illustration the geometric group of the rotations in the 3-dimensional space

about the center of a tetrahedron that leaves the tetrahedron invariant. It is denoted G = 23 by the

crystallographers and consists in 2-fold rotations about 3 distinct axes, that permute the summits by

pairs, and 3-fold rotations about 4 distinct axes, that permute three summits circularly. The group,

mathematically, is isomorphic to the group of even permutation of a set {a, b, c, d} of 4 objects. It is

recalled that a permutation 	 is even iff it decomposes itself into an even number of transpositions,

that is to say iff its signature is sign(	) = +1. We have 3 elements of order 2: {gx ≡ (ab)(cd)},
{gy ≡ (ac)(bd)}, {gz ≡ (ad)(bc)} and 8 elements of order 3: {gt ≡ (abc)}, gtgx , . . ., {g2

t ≡ (acb)},
g2

t gx , . . .. With the unit e this corresponds to a group of order n23 = 12. One easily establishes that

gtgxg−1
t = gz , gtgzg

−1
t = gy , gtgyg−1

t = gx and g2
t (gtgx)g−2

t = gxg−2
t = gtgyg−1

t = gtgy , . . ., which

leads to distinguish 4 conjugacy classes: C1 = {e}, C2 = {gx , gy , gz}, C3 = {gt , gtgx , gtgy , gtgz} and

C4 = {g2
t , g2

t gx , g2
t gy , g2

t gz}. We then must have 4 irreducible representations �k (k = 1, 4) with

character �k (k = 1, 4) and dimension dk (k = 1, 4). It is recalled that dk �= 0 ∀k so the dimensional

closure equation
∑

k d2
k = n23 imposes that d1 = d2 = d3 = 1 and d3 = 3. One of the irreducible

representations, �1, necessarily is the trivial representation contained exactly once in the regular

representation, whence �1
j = 1 (j = 1, 4), which fills the first row of the Character Table. Since

�k(e) = dk , we have �k
1 = 1 (k = 1, 3) and �4

1 = 3, which fills the first column of the Character Table.

The other elements of the Character Table can be inferred from the orthogonality theorems for the

character, keeping in mind that �k
2 (k = 2, 3) are square roots ±1 of 1, �k

3 (k = 2, 3) and �k
4 (k = 2, 3) are

cubic roots {1, �, �⋆} of 1 with � = exp ( 2i	
3

), �4
2 the sum of d3 = 3 square roots of 1 and �4

j (j = 3, 4)

the sum of d3 = 3 cubic roots of 1. Considering the C1 − C2 column-by-column orthogonality we get

1 + �2
2 + �3

2 + 3�4
2 = 0, with �2

2 = ±1 and �3
2 = ±1. �4

2 à priori can take the values −3,−1, 1, 3, to

which would correspond respectively the values 8, 2,−4,−10 for �2
2 + �3

2. It follows that the only

consistent values are �2
2 = 1, �3

2 = 1 and �4
2 = −1, which fills the second column of the Character Table.

The C1 − C3 and C2 − C3 column-by-column orthogonality then imposes that 1 + �2
3 + �3

3 = 0 and

�4
3 = 0. One similarly has 1 + �2

4 + �3
4 = 0 and �4

4 = 0 by the C1 − C4 and C2 − C4 column-by-column

orthogonality, which immediately fills the 4-th row. 1 + �2
j + �3

j = 0 (j = 3, 4) implies that if �2
3 = �

then �3
3 = �⋆ in which case �2

4 = �⋆ then �3
4 = � by the C3 − C4 column-by-column orthogonality. We

finally get the Character Table:

Table 1. Character Table of the Tetrahedron Group 23.

C1 = {e} C2 = {gx , gy , gz} C3 = {gt , gtgx , gtgy , gtgz} C4 = {g2
t , g2

t gx , g2
t gy , g2

t gz}
�1 1 1 1 1

�2 1 1 � = exp ( 2i	
3

) �⋆ = exp ( 4i	
3

)

�3 1 1 �⋆ = exp ( 4i	
3

) � = exp ( 2i	
3

)

�4 3 −1 0 0

The construction of the Character Table as above performed is rather unwieldy and reveals

itself inefficient as the order nG of the group G is increased. As a matter of fact, a number of

additional theorems may be formulated that offer tools to forge powerful search algorithms, taking

advantage of decompositions of groups into direct or semi-direct products of subgroups or else direct
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sums of subgroups, involving the concept of induced representation, making use of conjugacy class

multiplication, exploiting arithmetic properties of the characters, . . . . A few of these theorems and

methods will be approached in the following but only sketchily.

3.6 Projectors and exchangers

As to fully discern the effects of a symmetry group in the concrete instances it actually is inevitable to

have to explicitly determine the invariant subspaces of the linear representations. One then is sent back

to the discomforts of the arbitrariness associated with the intertwinings of the representations and of the

consequent lack in general of a natural decomposition of a completely reducible linear representation

� : G → GL(V,C) of a group G into the irreducible representations �k : G → GL(Vk ,C). This clearly

prompts us to formulate a standard method, although not unique, of reduction.

An exception is the coarse-grained canonical decomposition � =⊕k �k of the linear representation

� into isotypical components �k : G → GL(Xk ,C), these being isomorphic to the direct sum of nk copies

of the irreducible representations �k: �k =
⊕

s �k
s and Xk =

⊕
s Vk

s with �k
s ∼ �k and Vk

s ∼= Vk (s =
1, nk) or else, more symbolically, �k ∼ nk�k and Xk

∼= V
⊕nk

k . As proved from Schur 2 the canonical

decomposition is unique, which implies that the isotypical components �k can be unambiguously

determined. �k for each k is nothing but the restriction of � to the representation space Xk and only

a little intuition is necessary to find out that each subspace Xk of the representation space V is fully

identified by the linear operator on V given by the formula

Pk =
dk

nG

∑

g

(�k(g))⋆�(g) (3.19)

It indeed is inferred from the equation (3.13) that the restriction of Pk on every subspace Vk
s of V that

is isomorphic to the representation space Vk of the irreducible representation �k is the identity operator

1Vk
s∼=Vk

and the zero operator on any other subspace of V. A linear operator the restriction of which on a

family of spaces is the identity (resp. zero) operator is the identity (resp. zero) operator on the direct sum

space of the family, symbolically
⊕

s 1Vk
s = 1⊕

s Vk
s (resp.

⊕
s 0Vk

s = 0⊕
s Vk

s ). It follows that Pk is the

identity operator on the representation space Xk =
⊕

s Vk
s of the isotypical component �k and the zero

operator everywhere else in the representation space V, that is to sayPkPkPk is the projector of V =⊕q XqV =⊕q XqV =⊕q Xq

onto Xkkk .

Consequently, to formulate a method for a standard reduction of any linear representation � of

a group G, it suffices to do so for each of its isotypical components �k . Choose, in that purpose, a

basis {ên}n=1,...,dk
in the representation space Vk of each irreducible representation �k of G and denote

�
k : G → GL(dk ,C) the matrix representation associated with �k with respect to the selected basis in

each Vk . We are free to define for each k the linear operators

Qk
mn =

dk

nG

∑

g

�
k
nm(g−1)�(g) (m, n) ∈ {1, 2, · · · , dk}2 (3.20)

on the representation space V of �. As from the orthogonality theorem for the matrix representations, to

be precise from the equation (2.34), it immediately is inferred that ∀(n, m)Qk
mn is null on every subspace

Vs
q �=k and therefore on every subspace Xq �=k =

⊕
s Vs

q �=k of V. One similarly establishes, focussing solely

at Xk , that if {ês
n}n=1,...,dk

in Vk
s stands for an isomorphic replica of {ên}n=1,...,dk

in Vk then

Qk
mn(ês

r ) =
{

ês
m if n = r

0 otherwise
(3.21)

It thus is found out that Qk
mmQk
mmQk
mm projects the representation space V onto im(Qk

mm) =
Span(ê1

m, . . . , ês
m, . . .) = Xm

k ⊂ XkXm
k ⊂ XkXm
k ⊂ Xk and that

∑
mQ

k
mm = Pk so that Xk =

⊕
m Xm

k
Xk =

⊕
m Xm

kXk =
⊕

m Xm
k . One also deduces

that Qk
mn defines an isomorphism of Xm

k to Xn
k and is null elsewhere in the space V, that is to sayQk

mnQk
mnQk
mn
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transforms Xm
k

Xm
kXm
k into Xn

k
Xn

kXn
k . It further is shown through the equation (3.21) that Qk

mn ◦Qk
rt = Qk

mt if n = r

and zero otherwise and that �(g) ◦Qk
mr =

∑
n �

k
nmQ

k
nr . It follows that if �x1

k ∈ X1
k is a non null vector

then the vectors �xm
k = Qk

m1(�x1
k ) ∈ Xm

k are linearly independent and makes up a basis of a G-invariant

subspace Vk(�x1
k ) of dimension dk , which is isomorphic to Vk . Choosing a basis {�x1

k , . . . �xs
k , . . .} in X1

k ,

one gets a collection of subspaces Vk(�x1
k ), . . . Vk(�xs

k), . . . the direct sum of which gives back Xk . It then is

clear that the restrictions of � to these G-invariant subspaces can be taken as the �k-copy components of

the searched standard decomposition of the isotypical component �k . One may proceed systematically

in the concrete cases, by selecting an arbitrary basis in the representation space V of � and projects each

vector of this basis onto the spaces Xm
k by using the projectors Qk

mm then applies the exchangers Qk
mn

to get the bases of all the standard G-invariant subspaces.

Generalization to the fieldsKwhose characteristic char(K) does not divide the order nG of the group

G is straightforward as well as to the compact groups G. In the latter case the projectors and exchangers

are built by replacing the summation 1
nG

∑
g by the Haar integration: Pk = dk

∫
G

(�k(g))⋆�(g) dg and

Qk
mn = dk

∫
G

�
k
nm(g−1)�(g) dg with (m, n) ∈ {1, 2, . . . , dk}2.

4. MISCELLANEA

A few additional topics are more succinctly discussed in this section, in order to only catch a

glimpse of the wealth of the topic. Constructions of new linear representations of groups from existing

representations through tensor products of the representation spaces or through groups products are

described. The concept of induced representation is approached with a qualitative discussion of a few

essential theorems. A method of systematic search of the irreducible representations of finite groups

is mentioned. The section ends with a very short description of group representations on more general

mathematical objects than vector spaces.

4.1 Tensor product

A vector space V over a field K is the tensor product V1 ⊗ V2 of two vector spaces V1 and V2 over

the field K iff it is endowed with an application (�v1 ∈ V1, �v2 ∈ V2) �→ �v = �v1 ⊗ �v2 ∈ V linear in each

of the two variables �v1 and �v2. It is shown that V is unique up to isomorphism. If {êi
ni
}ni=1,...,di

(i = 1, 2)

is a basis of Vi (i = 1, 2) then {ê1
n1
⊗ ê2

n2
}n1=1,...,d1,n2=1,...,d2

makes up a basis of V: the dimension of

V1 ⊗ V2 is the product d = d1d2d = d1d2d = d1d2 of the dimensions of V1 and V2. The tensor product of vector spaces is

associative and distributive with respect to the direct sum, to be precise U ⊗ (V ⊗ W) ∼= (U ⊗ V) ⊗ W

and (U ⊕ V) ⊗ W ∼= (U ⊗ W) ⊕ (V ⊗ W) are natural isomorphisms. Natural is to mean that no choice

of basis is requested to produce the property. Let �i (i = 1, 2) be a linear operator on the vector space

Vi (i = 1, 2). The tensor product �1 ⊗ �2 of the linear operators �1 and �2 is the linear operator

on the tensor product vector space V1 ⊗ V2 defined as (�1 ⊗ �2)(�v1 ⊗ �v2) = �1(�v1) ⊗ �2(�v2) ∀(�v1 ∈
V1, �v2 ∈ V2). If Ai (i = 1, 2) is the matrix representative of �i (i = 1, 2) with respect to the basis

{êi
ni
}ni=1,...,di

(i = 1, 2) in the vector space Vi (i = 1, 2) then the matrix representative of �1 ⊗ �2 with

respect to the basis {ê1
n1
⊗ ê2

n2
}n1=1,...,d1,n2=1,...,d2

in the vector space V1 ⊗ V2 is the matrix A1 ⊗ A2 whose

entries are given in terms of the entries of the matrices Ai (i = 1, 2) as

(A1 ⊗ A2)(i,k)(j ,l) = A1
ij A2

kl (4.1)

which is checked by observing that the application of (A1 ⊗ A2) to the basis vector ê1
j ⊗ ê2

l contains the

basis vector ê1
i ⊗ ê2

k with the awaited coefficient A1
ij A2

kl . An interesting property is

Tr(A1 ⊗ A2) =
∑

i,k

(A1 ⊗ A2)(i,k)(i,k) =
∑

i,k

A1
i,iA

2
k,k =

∑

i

A1
i,i

∑

k

A2
k,k = Tr(A1)Tr(A2) (4.2)
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If the operators �i (i = 1, 2) are diagonalizable then so is A1 ⊗ A2 and if {êi
ni
}ni=1,...,di

(i = 1, 2)

are the eigenbasis of �i (i = 1, 2) with eigenvalues �i
ni

(ni = 1, . . . , di) (i = 1, 2) then so is {ê1
n1
⊗

ê2
n2
}n1=1,...,d1,n2=1,...,d2

with eigenvalues �1
n1

�2
n2

(n1 = 1, . . . , d1, n2 = 1, . . . , d2). It then follows that

Det(A1 ⊗ A2) = {Det(A1)}d2{Det(A2)}d1 .

Now let �1 : G → GL(V1,C) and �2 : G → GL(V2,C) be two linear representations of the group

G. The tensor product � = �1 ⊗ �2 of the linear representations �1 and �2 is the linear representation

� : G → GL(V,C) that associates to each g in G the linear operator �(g) on the tensor product vector

space V = V1 ⊗ V2 such that �(g)(�v1 ⊗ �v2) = �1(g)(�v1) ⊗ �2(g)(�v2), ∀�v1 ∈ V1 ∀�v2 ∈ V2. � is uniquely

defined up to isomorphism. The matrix representative �(g) of the linear operator �(g) for each g

in G with respect to the basis {ê1
n1
⊗ ê2

n2
}n1=1,...,d1,n2=1,...,d2

is the tensor product �
1(g) ⊗ �

2(g) of the

matrix representatives �
i(g) (i = 1, 2) of the linear operators �i(g) (i = 1, 2) with respect to the bases

{êi
ni
}ni=1,...,di

(i = 1, 2) in the vector spaces Vi (i = 1, 2):

�(g) = �
1(g) ⊗ �

2(g) ≡




�
1
11(g)

(
�

2(g)
)
· · · �

1
1d1

(g)
(
�

2(g)
)

...
...

�
1
d11(g)

(
�

2(g)
)
· · · �

1
d1d1

(g)
(
�

2(g)
)


 ∀g ∈ G (4.3)

One says that the matrix representation � is the tensor product of the matrix representations �
1

and �
2, symbolically � = �

1 ⊗ �
2. Generalization to multiple tensor product is obvious. Consider

then a linear representation � : G → GL(V,C) of the group G. The ν-thν-thν-th tensor power of the vector

space V is the vector space V⊗ν = V ⊗ . . .⊗ V (ν times) and the ν-th tensor power of the linear

representation � is the linear representation �⊗ν : G → GL(V⊗ν ,C) that associates to each g in G

the linear operator �⊗ν(g) = �(g) ⊗ . . .⊗ �(g) (ν times) on V⊗ν . If {ên}n=1,...,d is a basis of V then

a basis in V⊗ν is obtained from the collection of vectors ên1 ⊗ . . .⊗ ênν where the indices n1, . . . , nν

range over {1, . . . , d}ν : the dimension of �⊗ν is dν . Applying �⊗ν(g) before or after any permutation 	 :

ên1 ⊗ . . . ⊗ ênν → ê	(n1) ⊗ . . .⊗ ê	(nν) of factors leads to the same result. This means that the action of

the group Sν of permutations 	 commutes with �⊗ν . Sν thus must preserves the canonical decomposition

of �⊗ν . So every Sν-isotypical component of �⊗ν makes up a sub-representation of G. Among these

it is customary to discern the ν-th symmetric power �Symν : G → GL(SymνV,C) associated with

the trivial representation of Sν and the ν-th alternate power �Altν : G → GL(AltνV,C) associated

with the sign representation of Sν , which is defined by declaring that every transposition produces

a multiplication by −1. Define the linear operators �± : �v1 ⊗ . . .⊗ �vν �→ 1
n!

∑
	∈Sν

(±)N (	)�v	(1) ⊗
. . .⊗ �v	(ν) on V⊗ν , where N (	) is the number of transposition under which 	 decomposes. One

easily shows that �+ is a projector of V⊗ν onto SymνV and �− a projector of V⊗ν onto AltνV.

The vectors �+(ên1 ⊗ . . . ⊗ ênν) (1 ≤ n1 ≤ . . . nν ≤ d) make up a basis of SymνV and the vectors

�−(ên1 ⊗ . . .⊗ ênν)(1 ≤ n1 < . . . nν < d) a basis of AltνV. If ν = 2 then one gets the symmetric

square �Sym2 and the alternate square �Alt2 . Note that �⊗ � = �Sym2 ⊕ �Alt2 . The dimension of

�Sym2 is dSym2 = d(d + 1)/2 and the dimension of �Alt2 is dAlt2 = d(d − 1)/2. The matrix representation

associated with �Sym2 with respect to the symmetrized basis {ên1 ⊗ ên2 + ên2 ⊗ ên1}1≤n1≤n2≤d defines the

symmetric square matrix representation [�⊗ �] and the matrix representation associated with �Alt2

with respect to the antisymmetrized basis {ên1 ⊗ ên2 − ên2 ⊗ ên1}1≤n1<n2≤d defines the antisymmetric

square matrix representation {�⊗ �}. Of course �⊗ � = [�⊗ �] ⊕ {�⊗ �}.
The characters of the tensor products of linear representations are elementarily determined:

• The character of � =⊗i �
i� =⊗i �
i

� =⊗i �
i is � =∏i �i� =∏i �i� =∏i �i , where �i stands for the character of �

i . Evident from the

property Tr [A⊗ B] = Tr [A] Tr [B] for any pair of matrices A and B.

• The character of the symmetric square [�⊗ �][�⊗ �][�⊗ �] of � with character � is determined as

∀g ∈ G, �2
S(g) = 1

2

(
�(g)2 + �(g2)

)∀g ∈ G, �2
S(g) = 1

2

(
�(g)2 + �(g2)

)
∀g ∈ G, �2

S(g) = 1
2

(
�(g)2 + �(g2)

)
. Denoting ǫ1, . . . , ǫd the eigenvalues of �(g), one indeed com-

putes �2
S(g) =∑i≤j ǫiǫj =

∑
i ǫ2

i +
∑

i<j ǫiǫj =
∑

i ǫ2
i + 1

2

(
(
∑

i ǫi)
2 −∑i ǫ2

i

)
= 1

2
((
∑

i ǫi)
2 +∑

i ǫ2
i ) = 1

2

(
�(g)2 + �(g2)

)
.
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• The character of the antisymmetric square {�⊗ �}{�⊗ �}{�⊗ �} of � with character � is determined as

∀g ∈ G, �2
A(g) = 1

2

(
�(g)2 − �(g2)

)∀g ∈ G, �2
A(g) = 1

2

(
�(g)2 − �(g2)

)
∀g ∈ G, �2

A(g) = 1
2

(
�(g)2 − �(g2)

)
. Denoting ǫ1, . . . , ǫd the eigenvalues of �(g), one indeed

computes �2
A(g) =∑i<j ǫiǫj = 1

2

(
(
∑

i ǫi)
2 −∑i ǫ2

i

)
= 1

2

(
�(g)2 − �(g2)

)
. Note the equality �2 =

�2
S + �2

A, which reflects the fact that �⊗ � = �Sym2 ⊕ �Alt2 .

...

A tensor product � = �k ⊗ �q of two irreducible representations �k and �q of a group G generally

is not irreducible. Its decomposition into irreducible components �t standardly writes

�k ⊗ �q ∼
⊕

t

nkq
t �t (4.4)

where the multiplicity coefficients nkq
t are generically called Clebsh-Gordan coefficients. Using the

equations 3.3 and 3.4, these easily are computed as

nkq
t =
〈
�t | �k �q

〉
= 1

nG

∑

g∈G

(�t (g))⋆�k(g)�q(g) (4.5)

It immediately is inferred by comparison with equation (3.3) that if �t (g) = 1 ∀g ∈ G then (�k)⋆ = �q .

In other words the trivial representation of a group G is contained once and only once in the reduction

of the tensor product �k ⊗ �q of any two irreducible representations �k and �q of G iff these are either

complex conjugate, �k ∼ �⋆
q , or adjoint of each other, �k ∼ �

†
q .

4.2 Group products

The direct product G1 × G2 of two groups G1 and G2 by definition is the group formed by endowing

the set {(g1, g2) | g1 ∈ G1, g2 ∈ G2} with the composition law

(g1, g2)(h1, h2) = (g1h1, g2h2) ∀g1, h1 ∈ G1 and ∀g2, h2 ∈ G2 (4.6)

If Gi (i = 1, 2) is of order nGi
(i = 1, 2) then the order of G1 × G2 is nG1×G2

= nG1
nG2

. The group G1

is isomorphic to the subgroup G1 × E2 of the group G1 × G2 consisting in the pairs (g1, e2) where e2 is

the unit element of G2. It thus can be identified with it. The group G2 similarly can be identified with the

subgroup E1 × G2 of the group G1 × G2 consisting in the pairs (e1, g2) where e1 is the unit element

of G1. Each element of G1 × E2 obviously commutes with each element of E1 × G2. Conversely,

let G be a group containing G1 and G2 as subgroups such that i- every g in G writes uniquely as

g = g1g2 with g1 in G1 and g2 in G2, ii- for g1 ∈ G1 and g2 ∈ G2 one has g1g2 = g2g1. The product of

two elements g = g1g2 and h = h1h2 can then be written as gh = g1g2h1h2 = (g1h1)(g2h2). If we let

(g1, g2) ∈ G1 × G2 correspond to the element g1g2 ∈ G we then obtain an isomorphism of G1 × G2 onto

G. In this case, G is identified with G1 × G2 and one says that G is the direct product of its subgroups

G1 and G2.

Now let �i : Gi → GL(Vi,C) (i = 1, 2) be linear representations of the group Gi (i = 1, 2). We may

define a linear representation � = �1 ⊗ �2 of the group product G1 × G2 on the tensor product vector

space V = V1 ⊗ V2 by setting

(�1 ⊗ �2)(g1, g2) = �1(g1) ⊗ �2(g2) ∀g1 ∈ G1 ∀g2 ∈ G2 (4.7)

�1 ⊗ �2 is unique up to isomorphism and is called the tensor product of the representations �1 and

�2. If �i is the character of �i (i = 1, 2) then the character � of � = �1 ⊗ �2 is given by �(g1, g2) =
�1(g1)�2(g2) ∀g1 ∈ G1 ∀g2 ∈ G2. If �k

1 : G1 → GL(V1,C) and �
q

2 : G2 → GL(V2,C) are irreducible

representations then
〈
�k

1 | �k
1

〉
= 1 and

〈
�

q

2 | �
q

2

〉
= 1 so that

〈
�k

1�
q

2 | �k
1�

q

2

〉
=
〈
�k

1 | �k
1

〉 〈
�

q

2 | �
q

2

〉
= 1, which

means that �k
1 ⊗ �

q

2 is an irreducible representation of G1 × G2. Assume now that � is a class

function on G1 × G2, which is orthogonal to all the characters of the form �k
1�

q

2 , namely
〈
� | �k

1�
q

2

〉
=∑

(g1,g2)(�(g1, g2))⋆�k
1(g1)�

q

2 (g2) = 0. Fixing �k
1 and putting �(g2) =∑g1

�(g1, g2)(�k
1(g2))⋆ we get
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∑
g2

(�(g2))⋆�
q

2 (g2) = 0 ∀�q

2 . � is a class function so it is null. Since the same is true of every �k
1

we conclude that � is identically null on G1 × G2. In order words, each irreducible representation of

G1 × G2 is isomorphic to a representation �k
1 ⊗ �

q

2 , where �k
1 is an irreducible representation of G1 and

�
q

2 an irreducible representation of G2. Obviously these properties allow completely reducing the study

of the representations of the group G1 × G2 to that of the representation of the groups Gi (i = 1, 2).

Given two groups G and H and a morphism � of the group H into the group Aut(G) of the

automorphisms of G. The semi-direct product G⋊� HG⋊� HG⋊� H of G and H with respect to the action � of

H on G designates the set {(g, h) | g ∈ G, h ∈ H} endowed with the composition law

(g, h)(g′, h′) = (g �(h)(g′), h h′) ∀g, g′ ∈ G and ∀h, h′ ∈ H (4.8)

It is almost obvious that G⋊� H shows a group structure. One has the so-called exact sequence

1 → G → G⋊� H → H → 1, with the injective homomorphism I : G → G⋊� H defined by I(g) =
(g, eH), the surjective homomorphism S : G⋊� H → H defined by S(g, h) = h and, as it is required

for an exact sequence, ker(S) = im(I). The subgroup I(G) = G × {eH} is normal. It is observed that

by identifying G with G × {eH} and H with {eG} × H every semi-direct product K can be conceived

as a semi-direct product of two subgroups G and H associated with the morphism � of K into

Aut(G) defined by �(h)(g) = hgh−1 with h ∈ H. Conversely if K is an extension of G by H, that is

if we have the sequence 1 → G → K → H → 1 with I : G → K injective, S : K → H surjective and

ker(S) = im(I) (exact sequence), and if K contains a subgroup L on which the restriction of S is an

isomorphism to H then K is isomorphic to the semi-direct product I(G)⋊� L with � the morphism of

K into Aut(G) defined by �(h)(g) = hgh−1 with h ∈ H. K can be conceived also as isomorphic to a

semi-direct product M⋊ L with each element k in K writing uniquely as gh with g in a subgroup M

isomorphic to G and h in a subgroup L isomorphic to H. It is clear that identifying a finite group as a

semi-direct product should be useful to the study of its (irreducible) representations.

Consider for purpose of illustration the Tetrahedron Group 23 discussed in Section 3.5. A simple

inspection of the composition of its elements suggests that it contains as subgroups the group M formed

by the set {e, gx , gy , gy} and the group L formed by the set {e, gt , g2
t }. M is normal but L is not.

M ∩ L = {e} and every element of 23 writes uniquely as gh with g ∈ M and h ∈ L. It follows that

23 = M⋊ L. Note that 23 is not a direct product because M and L do not commute. Another reason

is that L is not normal. Now, the group L is isomorphic to the cyclic group C3, which is abelian. The

characters �i (i = 1, 3) of its irreducible representations, which are 1-dimensional, extends immediately

to 23 as �i(gh) = �i(h) (i = 1, 3) for g ∈ M and h ∈ L. The last character �4 of the group 23 then may

be obtaind by using for instance the row-by-row orthogonality theorem for the characters, to be precise

the equation (3.17).

When, more generally, a group G is the semi-direct product G = A⋊ H of a group H with an abelian

group A then its irreducible representations are all obtained by the so-called method of “little groups”.

The characters of the irreducible representations of the abelian group A, which are 1-dimensional,

form a group X = Hom(A,C⋆). G acts on X by (g�)(a) = �(g−1ag) for g ∈ G, � ∈ X and a ∈ A (cf.

Section 4.5). Let (�i)i∈X/H be a system of representatives for the orbits of H in X. For each i ∈ X/H,

let Hi be the subgroup of H consisting of those elements h s.t. h�i = �i and let Gi = A⋊ Hi be the

corresponding subgroup of G. Extend the function �i to Gi by setting �i(ah) = �i(a) for a ∈ A and

h ∈ Hi . Using the fact h�i = �i ∀h ∈ Hi one finds that �i is a character of a 1-dimensional representation

of Gi . Let � be an irreducible representation of Hi . Composing � with the canonical projection Gi → Hi

gives an irreducible representation �̃ of Gi . By tensor product of �i and �̃ an irreducible representation

�i ⊗ �̃ of Gi is produced. Let �i,� be the corresponding induced representation of G (cf. Section 4.3).

It then is shown that i- �i,� is irreducible (by the Mackey criterion), ii- if �i,� ∼ �i ′,�′ then i = i ′ and

� ∼ �′, iii- every irreducible representation of G is isomorphic to one of the �i,�.

00005-p.30



Contribution of Symmetries in Condensed Matter

4.3 Induced representations

Let H be a subgroup of a group G and let g ∈ G. It is recalled that the set gH = {gh | h ∈ H}gH = {gh | h ∈ H}gH = {gh | h ∈ H} by

definition is the left coset modulo H containing the element g of G. Two elements h and f of G are

said congruent modulo H if they belong to the same left coset: ∀h ∈ G ∀f ∈ G {h ∈ gH ∧ f ∈ gH} ⇔
hf −1 ∈ H ⇔ h ≡ f (mod H ). Any two left cosets are either disjoint or identical. The set of left cosets

of H, denoted G/H, makes up a partition of G. If nG is the order of G and nH the order of H then the

number of elements of the set G/H defines the index [G : H] = nG/nH of H in G. If an element gL is

chosen in each distinct left coset then one gets a subset R = {g1, g2, . . . , g[G:H]}R = {g1, g2, . . . , g[G:H]}R = {g1, g2, . . . , g[G:H]} of G called a system of

representatives of G/H:

G = g1H + g2H + · · · + g[G:H]H (4.9)

Each g in G writes uniquely as g = gLh, where h ∈ H and gL ∈ R is a coset representative.

Now let � : G → GL(V,C)� : G → GL(V,C)� : G → GL(V,C) be a representation of the group G on the vector space V and

� : H → GL(W,C)� : H → GL(W,C)� : H → GL(W,C) a representation of the subgroup H of G on a subspace W of V. If � is a

subrepresentation of the restriction � : H → GL(V,C), h �→ �(h) = �(h)� : H → GL(V,C), h �→ �(h) = �(h)� : H → GL(V,C), h �→ �(h) = �(h) of � to the subgroup H then

the subspace �(g)W depends only on the left coset gH. Indeed, if g is replaced by gh with h ∈ H then

�(gh)W = �(g) ◦ �(h)W = �(g) ◦ �(h)W = �(g) ◦ �(h)W = �(g)W, because W is H-invariant through

�. We thus define a subspace W� for each left coset � in the set G/H, which is a replica of W in V.

By definition, the representation � of the group G is induced by the subrepresentation � of the

restriction � of � to the subgroup H of G iff

V =
⊕

�∈G/H

W� =
⊕

gL∈R

gLW (4.10)

It immediately is deduced that: i- If dW is the dimension of � then the dimension of the induced

representation � is dV = [G : H] dWdV = [G : H] dWdV = [G : H] dW. ii- If �1 is induced by �1 and if �2 is induced by �2, then

�1 ⊕ �2�1 ⊕ �2�1 ⊕ �2 is induced by �1 ⊕ �2�1 ⊕ �2�1 ⊕ �2. iii- The regular representation �G of G is induced by the regular

representation �H of H. V then has a basis {êg}g∈G indexed by G. So it suffices to take for W the

subspace of V spanned by the set of vectors indexed by the subgroup H of G that is {êh}h∈H. iv- If

� is induced by � and if W1 is an H-invariant subspace of W then the subspace V1 = ⊕gL∈RW1V1 = ⊕gL∈RW1V1 = ⊕gL∈RW1

is stable under G and the representation of G on V1 is induced by the representation of H in W1.

Using some of these properties one proves the existence of the induced representations. We indeed may

assume, from property (ii), that � is irreducible, in which case � is isomorphic to a subrepresentation

of the regular representation �H of H, which, according to property (iii), can be induced to the regular

representation �G of G. Applying property (iv), we conclude that � itself may be induced. Assume

that � induces another representation �′ : G → GL(V′,C). Whatever the linear operator � : W → V′

we are free to extend it to the linear operator � : V → V′ by putting � = �′(gL) ◦ � ◦ (�(gL))−1 on

each replica gLW of W. � does not depend on the choice of the left coset representative gL and

is well defined since V is the direct sum of the replicas gLW. � obviously is unique. Observe that

� ◦ �(g) = � ◦ �(g) ∀g ∈ G. If � is the injection of W into V′ then � is the identity on W and satisfies

� ◦ �(g) = �′(g) ◦ � ∀g ∈ G so that im(�) ⊃ �′(g)W ∀g ∈ G whence im(�) ⊃ V′. Since V′ and V

have the same dimension dV = [G : H] dW, we observe that � is an isomorphism. As a consequence,

for every representation � : H → GL(W,C)� : H → GL(W,C)� : H → GL(W,C) of a subgroup H of a group G on a subspace W of a

vector space V there exists a representation � : G → GL(V,C)� : G → GL(V,C)� : G → GL(V,C) induced by ���, which is unique up to

isomorphism.

Choose a basis {ên}n=1,...,dW
in W and let �H be the matrix representation associated with the

representation � : H → GL(W,C) with respect to this basis. With the vectors ênL = �(gL)(ên) (n =
1, . . . , dW) a basis is built up in each replica gLW of W, whence, since V =⊕gL∈R gLW, the set

{ênL}n=1,...,dW,L=1,...,[G:H] makes up a basis of V. ∀g ∈ G �(g)(ênL) = �(ggL)(ên) = �(gMh)(ên) since ggL,
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as any element of G, necessarily belongs to a unique left coset gMH, but �(gMh)(ên) = �(gM )�(h)(ên) =
�(gM )�(h)(ên) = �(gM )�(h)(ên) = �(gM )

∑
m �Hmn(êm) =∑m �Hmn�(gM )(êm) =∑m �Hmn(êmM ). It

follows that the matrix representation �H↑G associated with the induced representation � with respect to

the basis {ênL}n=1,...,dW,L=1,...,[G:H] is a matrix with the non zero-block component �H((gM )−1ggL) in the

(L, M) entry iff (gM )−1ggL ∈ H and zero-block components in the other entries:

�H↑G(g) =
∑

h∈H

�(g, h) ⊗ �H(h) with �(g, h)M ,L = �(ggL, gMh) (4.11)

where � stands for the Kronecker symbol: �(ggL, gMh) = 1 iff ggL = gMh and 0 otherwise.�H↑G�H↑G�H↑G is said

induced by �H�H�H. The notation with an arrow �H↑G is often evocative. We for instance have the transitivity

property: if H ⊂ G ⊂ M, W ⊂ V ⊂ U and � : M → GL(U,C) is induced by � : G → GL(V,C), itself

induced by � : H → GL(W,C) then � : M → GL(U,C) is induced by � : H → GL(W,C). With arrows

this reads more concisely: �(H↑G)↑M = �H↑M.

The character �H↑G of the representation � induced by � is straightforwardly obtained as

�H↑G(g) = Tr(�H↑G(g)) =
∑

gL∈R

(gL)−1ggL∈H

�H((gL)−1ggL) = 1

nH

∑

f∈G

f −1gf∈H

�H(f −1gf ) ∀g ∈ G (4.12)

where �H stands for the character of � : �H(h) = Tr(�H(h)) ∀h ∈ H. The square of the character �H↑G is

easily computed as:

〈
�H↑G | �H↑G

〉
G
= 1

nG

∑

g∈G

(�H↑G(g))⋆�H↑G(g)

= 1

nG

∑

g∈G

∑

gL

(�H((gL)−1ggL))⋆�H((gL)−1ggL)

+ 1

nG

∑

g∈G

∑

gM �=gL

(�H((gL)−1ggL))⋆�H((gM )−1ggM ) (4.13)

The first sum is simplified into 1
nG

[G : H] nH 〈�H | �H〉H = 〈�H | �H〉H. It follows that �H↑G is irreducible

iff �H is irreducible and the second sum is null. If H is a normal subgroup of G then, defining the

conjugate �
L
H of �H by gL as �

L
H(h) = �H((gL)−1hgL) ∀h ∈ H, one shows that the second sum is null

iff none of the conjugate �
L
H of �H by gL has common irreducible component with another distinct

conjugate �
M
H of �H by gM .

Let �H ∈ C [CH] be any class function on H. The complex valued function �H↑G ∈ C [G] on G

defined by the formula

�H↑G(g) = 1

nH

∑

f∈G

f −1gf∈H

�H(f −1gf ) ∀g ∈ G (4.14)

is said induced by �H. Since it is a linear combination of characters, �H↑G is a class function:

�H↑G ∈ C [CG]. Equation (4.14) merely extend the concept of induction to any class function. Consider

reciprocally �G ∈ C [CG] and denote �G↓H the restriction of �G to the subgroup H of G. This allows

formulating in a symmetric form the Frobenius Reciprocity Theorem:
〈
�H | �G↓H

〉
H
=
〈
�H↑G | �G

〉
G

∀�H ∈ C [CH] �G ∈ C [CG] (4.15)

Equation (4.15) is useful is establishing the Mackey’s criterion of irreducibility of the induced

representations. Also required is the notion of double cosets: HgK = {hgk | h ∈ H, k ∈ K} for a

pair (H,K) of subgroups of G. These partition the group G into equivalence classes. Let S be a set

of representatives obtained with H = K, on choosing a single element in each distinct double coset.
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A matrix representation �
s
H of the subgroup Hs = gsHg−1

s ∩ H of H is defined for each gs in S by

putting �
s
H(h) = �H(g−1

s hgs) for h ∈ H. One then shows that �H↑G is irreducible iff �H is irreducible

and �
s
H and �H↓Hs are disjoints ∀gs /∈ H, that is have no common irreducible component. If H is a

normal subgroup of G then Hs = H and �H↑G is irreducible iff �H is irreducible and not equivalent to

any of its conjugate �
s
H by gs /∈ H.

The concept of induced representations provide powerful tools to demonstrate a variety of important

theorems. We only mention among them the Artins’Theorem, which allows stating that each character

of a group G is a linear combination with rational coefficients of characters of representations

induced from cyclic subgroups of G. Induction is also extremely efficient in the determination of the

irreducible representations from representations of its subgroups. Note finally that the notion of induced

representations extends with the same definition to the compact groups G so long as H is a closed

subgroup of finite index. With infinite index the notion may be defined through the Hilbert space of

square integrable functions on the group.

4.4 Searching irreducibles

An essential problem of representation analysis is whether algorithmic procedures might be forged

that would allow finding out the invariant subspaces of any linear representation and the invariant

complements. A general method to determine the Character Table of any finite group can be given.

In that purpose let us consider back the conjugacy classes of a group.

We may define the “product” of two conjugacy classes Ci and Cj formally as the set CiCj =
{gigj | gi ∈ Ci , gj ∈ Cj }. If g ∈ CiCj then any conjugate to g is also the product of an element of

Ci by an element of Cj , merely because hgigj h−1 = hgih
−1hgj h−1. In other words, if an element of the

conjugacy class Cl appears a given number C(CiCjCl) of times in the set CiCj then every other element

of the same conjugacy class Cl will appear the same number C(CiCjCl) of times in the set CiCj . This

means that the conjugacy class product CiCj expands onto conjugacy classes Cl as

CiCj =
∑

l

C(CiCjCl) Cl (4.16)

where the class multiplication coefficients are strictly positive integers: C(CiCjCl) ∈ N− {0}. CiCj =
CjCi , since gigj = gj (g−1

j gigj ), so that C(CiCjCl) = C(CjCiCl). The expansion in the equation 4.16

contains the conjugacy class Cl = {e}, where e is the unit of the group G, iff the two conjugacy classes Ci

and Cj are inverse of each, merely because gigj = e ⇔ gi = g−1
j , and whenever this is so the conjugacy

class e will appear nCi
times in the conjugacy class product of Ci with itself if it is ambivalent and with

its inverse if this is distinct from it. In other words,

C(CiCj {e}) =
{

nCi
if Cj = C−1

i

0 otherwise
(4.17)

Summing the linear operators �k(g) over a class Ci the linear operator �k
i =
∑

gi∈Ci
�k(gi) is

defined on the representation space V. �k
i belongs to EndG(V )21 so, by Schur 1, ∃�i ∈ C : �k

i = �i1Vk

(cf. Section 2.8), which in terms of characters is transcribed into nCi
�k

i = �i�
k(e). As from the

21

�(h) ◦ �k
i ◦ �(h)−1 =

∑

g∈Ci

�(h) ◦ �k(g) ◦ �(h)−1 =
∑

g∈Ci

�k(hgh−1) =
∑

u=hgh−1∈Ci

�k(u) = �k
i .
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equation 4.16 it is inferred that �k
i ◦ �k

j =
∑

gi∈Ci
�k(gi) ◦

∑
gj∈Cj

�k(gj ) =∑gi∈Ci

∑
gj∈Cj

�k(gigj ) =∑
l C(CiCjCl)

∑
gl∈Cl

�k(gl) =
∑

l C(CiCjCl) �k
l , so �i1Vk

�j 1Vk
=∑l C(CiCjCl) �l1Vk

whence

(nCi
�k

i ) (nCj
�k

j ) = �k(e)
∑

l

C(CiCjCl) (nCl
�k

l ) (4.18)

IfNC is the number of the conjugacy classes of the group G then this makes up a system ofN 2
C

equations

over the NC variables �k
i (i = 1,NC). This is the starting point of a variety of algorithms to determine

the Character Tables of the finite groups. Consult [6] for further details. The computations of irreducible

representations are harder, as emphasized in [7].

Arithmetic properties of the characters are also extremely useful. Note that since every element of

a finite group has finite order, the character values always are sums of eigenvalues that are roots of the

multiplicative unit, that is to say roots of a polynomial with coefficients in the set of integers Z. This

defines algebraic integers. It then follows, for instance, from the equation (3.13) that the dimensions

dk of the irreducible representations �k : G → GL(Vk ,C) are all divisors of the order nG of the group

G, since the set of algebraic integers is closed under addition and multiplication and since algebraic

integers given as rationals are in fact integers.

4.5 Group actions

Let � : G → Aut(X) be a representation of a group G on a mathematical object X. One always

may define a function � : G × X → X that canonically maps each couple (g, x) ∈ G × X into

�(g, x) = �(g)(x) ∈ X. It is straightforward to show that � preserves the law of G, namely �(gh, x) =
�(g, �(h, x)) ∀g, h ∈ G ∀x ∈ X, since � is an homomorphism, and that the unit e of G is neutral for

�, namely �(e, x) = x ∀x ∈ X, because �(e) necessarily is the identity of Aut(X). In other words, � is

nothing but an action of the group G on the mathematical object X. Conversely, given an action

� : G × X → X one always may define a function � : G → Aut(X) that canonically maps each g ∈ G

into the isomorphism �(g) : x �→ �(g, x) of X. It is not more difficult to demonstrate that the properties

of an action imply that � is a group homorphism. Accordingly, it is equivalent to define a representation

� of a group G on a mathematical object X or an action � of this group G on that object X. It then is

tempting to state that a representation is identical to an action, but that would make up a mathematical

abuse.

Using either of the two concepts of action or of representation, symmetry can be defined in a very

wide context. A subset Y of X is said invariant under a subgroup S of G if {�(g, x) | (g, x) ∈ S × Y}⊆Y.

The elements of S then are called the symmetries of Y.

A group action � : G × X → X is said isomorphic to a group action � : G × Y → Y, symbolically

� ∼ �� ∼ �� ∼ �, if they are intertwined with an isomorphism, namely if there exists an isomorphism � : X → Y

which is equivariant: �(�(g, x)) = �(g, �(x)) ∀(g, x) ∈ G × X. Of course, if � : G → Aut(X) and � :

G → Aut(Y) are the representations canonically associated with � and � then � ◦ �(g) = �(g) ◦ � ∀g ∈
G that is � ∼ �� ∼ �� ∼ �.

The set Orb�(x) = {�(g, x) | g ∈ G} by definition is the orbit of x ∈ X. Writing xR�y for y ∈
Orb�(x) one gets an equivalence relation, which partition the set X into orbits. The quotient set defines

the orbit space X | G. If � : G × X → X is an action of a finite group G on a manifold then X | G is

an orbifold with the singularities on the fixed points of � in X. Interest in the orbifolds strongly raised

in the context of the geometrization conjecture, formulated by Thurston then proved by Perelman, as

essential pieces of manifold decompositions. An action ��� is transitive if Orb�(x) = X.

The set Stab�(x) = {g ∈ G | �(g, x) = x} by definition is the stabilizer of x ∈ X. It forms

a subgroup of G, whatever x in X. It is also called a little group. One easily establishes that
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Stab�(�(g, x)) = g Stab�(x)g−1.22 It follows that the collection {Stab�(�(g, x)) | g ∈ G} of the stabilizers

of the elements of an orbit Orb�(x) forms a conjugacy class of subgroups of G. If Stab�(x) = G then

Orb�(x) = x and x is termed a fixed point. If Stab�(x) = {e} then Orb�(x) is termed a principal orbit.

An action ��� is effective if all its orbits are principal: Stab�(x) = {e} ∀x ∈ X, which means that every

element of G other than the unit e of G acts by changing every element of X.

The function �x : G/Stab�(x) → Orb�(x), from the set of the left cosets of the stabilizer Stab�(x) in

G to the orbit Orb�(x) is well defined and bijective. It then is inferred that: i- if G is finite then the number

of elements of any orbit with the same conjugacy class of stabilizers as Orb�(x) is nOrb�(x) = nG/nStab�(x),

denoting nE the number of elements in a set E. ii- if � is an infinitely differentiable action of a Lie

group then any orbit with the same conjugacy class of stabilizers as the orbit Orb�(x) is a manifold of

dimension dOrb�(x) = dG − dStab�(x). If dOrb�(x) = dG − dStab�(x) = 0 then the orbit is finite and its cardinal

is the quotient of the number of connected components of G over the number of connected components

of S.

A stratum by definition is the union of the orbits with the same conjugacy class of stabilizers.

An example is the set of the fixed points of the action. Another is the union of the principal orbits,

which consists in the points that are changed under any element of G other than the unit e of G. If � is an

infinitely differentiable action of a compact group G on a real manifold X then every real valued function

invariant with respect to G possesses extrema on each stratum corresponding to maximal little groups,

namely proper little group not contained in any other proper little group, and all real valued function

invariant with respect to G have in common orbits of extrema, which precisely are those critical in their

stratum (consult [8]).

5. CONCLUSION

It is hoped that this little trip to the mathematical lands of linear representations of groups was not boring

in spite of the many digression made with respect to the initial scope of the lecture and that, instead,

was rather pleasant and enjoyable by providing an abstract glimpse of the basics on which the theory is

founded. The reported literature provides more details. Clearly, it by no way is exhaustive and emanates

only from the author’s own arbitrary taste.
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