
HAL Id: hal-00963898
https://hal.science/hal-00963898

Submitted on 25 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Magnetic Dipolar Ordering and Quantum Phase
Transition in an Fe8 Molecular Magnet

Enrique Burzuri, Fernando Luìs, Bernard Barbara, Rafik Ballou, Eric
Ressouche, Oscar Montero, Javier Campo, Satoru Maegawa

To cite this version:
Enrique Burzuri, Fernando Luìs, Bernard Barbara, Rafik Ballou, Eric Ressouche, et al.. Magnetic
Dipolar Ordering and Quantum Phase Transition in an Fe8 Molecular Magnet. Physical Review
Letters, 2011, 107, pp.097203. �10.1103/PhysRevLett.107.097203�. �hal-00963898�

https://hal.science/hal-00963898
https://hal.archives-ouvertes.fr


Magnetic dipolar ordering and quantum phase transition in Fe8 molecular magnet.
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We show that a crystal of mesoscopic Fe8 single molecule magnets is an experimental realization
of the quantum Ising model in a transverse field, with dipolar interactions. Quantum annealing has
enabled us to explore the quantum and classical phase transitions between the paramagnetic and
ferromagnetic phases, at thermodynamical equilibrium. The phase diagram and critical exponents
we obtain agree with expectations for the mean-field universality class.
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Quantum Phase Transitions (QPT) [1, 2] have been
extensively studied in recent years. Physical realiza-
tions include the superconductor insulator transition in
cuprates [3–5], the onset of antiferromagnetism in heavy
fermions [6], the pressure driven insulator-metal transi-
tion in V2O3 [7], and the magnetic transitions driven by
field (LiHoYF4 [8]) or concentration (CrxV1−x alloys [9]).
In addition to their intrinsic interest, a plethora of new
properties arise at nonzero temperature.
In magnetism, the archetypal QPT is realized by a

lattice of N coupled Ising spins in a transverse magnetic
field H⊥ [10], the Hamiltonian of which reads as follows

H = −2S2

N
∑

i<j

Jijσ
z
i σ

z
j −∆S

N
∑

i

σx
i (1)

Here, σ′s are the Pauli spin operators, Jij the longi-
tudinal couplings (here of dipolar origin) and ∆S the
ground-state tunnel splitting which depends on and van-
ishes with H⊥. The classical long-range order that exists
for H⊥ = ∆S = 0 (ferromagnetic or antiferromagnetic)
competes with the field-induced quantum fluctuations
([H, σ] ̸= 0). It is completely destroyed at the critical
point when ∆S(H⊥) & ∆Sc, where ∆Sc = 2JS2 ∼ kBTc,
J = (1/N)

∑

i<j Jij , and Tc is the Curie temperature.
The ground-state becomes then a superposition of ”up”
and ”down” spin states.
Crystals of lanthanide-based insulators seem to be nat-

ural candidates to observe a QPT [8, 11]. Because of
the weak interactions, quantum fluctuations can become
noticeable at moderate transverse fields. However, the
strong hyperfine interactions seriously limit the observa-
tion of the intrinsic quantum criticality in these materials
[12, 13]. Single-molecule magnets (SMMs) based on 3d
transition metals show some properties that make them
better suited for such QPT studies: dipolar interactions
are weak because of the very large inter-molecular dis-
tances [14] and hyperfine interactions are also generally

weak enough not to block the QPT. Finally, SMMs show
phenomena, like tunneling [15], interference[16] and su-
perpositions of spin states [17], which reveal the existence
of important quantum spin fluctuations. Yet, the search
of a QPT faces some experimental challenges, mainly
associated with structural disorder. In Mn12 acetate,
where indications of a possible QPT were inferred from
magnetic neutron diffraction experiments [18], the local
anisotropy axes are slightly tilted due to the presence of
several isomers giving rise, in the presence of a perpen-
dicular field, to random fields [19]. It has been argued
[20] that such fields turn Mn12 acetate into a realization
of the classical random-field Ising model. The existence
of a pure QPT in a crystal of molecular nanomagnets is,
therefore, not yet established. Our aim here is to explore
the experimental realization of the Ising QPT model in a
crystal of Fe8 SMMs [21] where (i) classical Monte Carlo
(MC) simulations suggest a ferromagnetic ground state
with Tc = 0.54 K [22, 23] (ii) hyperfine frequencies, much
smaller than Larmor frequencies, cannot perturb quan-
tum dynamics of SMMs and (iii) disorder is weak enough
to avoid sizable random fields.

Each Fe8 molecule (brief for
[(C6H15N3)6Fe8O2(OH)12]) has a spin S = 10 and
a strong uniaxial magnetic anisotropy. In the presence

of a magnetic field
−→
H , the magnetism of Fe8 can be

described by the following spin hamiltonian

H0 = −DS2
z + E

(

S2
x − S2

y

)

− gµB

−→
H
−→
S (2)

where D/kB = 0.294 K, E/kB = 0.046 K, and g = 2 [21].
Equation (2) defines x, y and z as the hard, medium and
easy magnetization axes. In the triclinic structure of Fe8,
these axes are common to all molecules [24].

Susceptibility experiments were performed on a 1.6
mg single crystal [24] of approximate dimensions 1 ×
2 × 1 mm3. The complex magnetic susceptibility χ =
χ′(T, ω) − iχ′′(T, ω) was measured down to 90 mK and
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in the frequency range 3 Hz ≤ ω/2π ≤ 20 kHz using a
homemade ac susceptometer thermally anchored to the
mixing chamber of a 3He-4He dilution refrigerator. The

magnetic field
−→
H was applied with a 9 T×1 T×1 T su-

perconducting vector magnet.

The magnetic anisotropy axes were first approximately
located by X-ray diffraction, using the information re-
ported in [24]. The magnetic easy axis z was oriented
parallel to the ac excitation magnetic field of amplitude

hac = 0.01 Oe. The precise alignment of
−→
H perpendicu-

lar (±0.05◦) to z and close (±20◦) to the medium y axis
was done at low temperatures (T = 2.6 K), using the
strong dependence of χ′(T, ω) on the magnetic field ori-
entation [25]. The sample was completely covered by a
non-magnetic epoxy to prevent it from moving under the

action of
−→
H .

Neutron diffraction experiments were performed on the
thermal neutron two-axis diffractometer D23 at the Insti-
tute Laue Langevin. A single crystal, thermally anchored
to the mixing chamber of a 3He-4He dilution refrigerator
(T ≥ 50 mK), was mounted so as to have z orthogo-

nal to
−→
H . In this experiment,

−→
H was close to the hard

axis x. Longitudinal field components arising from the
nonperfect orientation of the crystal were compensated
by means of a superconducting mini-coil inserted in the
space between the dilution refrigerator and the supercon-
ducting magnet. The intensities of different Bragg peaks,
in particular (010), (−100), and (−212), were measured
as a function of T (under a constant H⊥) and H⊥ (for a
constant T ). The nonmagnetic contributions were mea-
sured at high T (5 K) and H⊥ = 0. The fit of the mag-
netic intensities enabled us to estimate the magnetiza-
tion components along the external magnetic field M⊥

and along the anisotropy axis Mz.

The ac-susceptibility (Figure 1) deviates from equilib-
rium for low H⊥ and low T , as shown by the vanish-
ing of χ′ and by the relatively large values of χ′′. The
superparamagnetic blocking temperature Tb (associated
with the χ′′ maximum) strongly depends on frequency
(not shown). In these dipolar Ising-like systems, out of
equilibrium conditions arise from the presence of energy
barriers larger than the typical interaction energies (i.e.
Tb > Tc), a situation which can be inverted by quantum
annealing via the application of H⊥ [26, 27]. When H⊥

increases, the height of the energy barrier decreases and
spins are able to tunnel via lower energy states, which
leads to enhanced spin-lattice relaxation rates. This ex-
plains the decrease of Tb, as shown in the inset of Fig.
1(a). Besides enhancing the spin dynamics, the magnetic
field also lowers the paramagnetic susceptibility. This
decrease can be associated with the reduction of the ef-
fective Sz by quantum fluctuations as well as with the
decrease in the paramagnetic Weiss temperature (see be-
low and Ref. [25]). Both effects become more noticeable
for H⊥ & 1 T, as seen in Fig. 1(a).
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FIG. 1: (Color online) χ′ (a) and χ′′ (b) measured at ω/2π =
333 Hz and differentH⊥. The inset in (a) shows the shift of χ′′

maxima with increasing H⊥. The solid line shows theoretical
predictions for quantum spin-phonon relaxation that follow
from Pauli’s master equation as described in [28]. The inset
in (b) shows the magnetic relaxation time at µ0H⊥ = 1.7 T.

At moderate H⊥, e.g. at µ0H⊥ = 1.7 T, χ′ is not fully
out of equilibrium. The relaxation time τ = χ′′/χ′ω
at the same field is already very short and, more im-
portantly, it remains constant below approximately 0.25
K (inset of Fig. 1(b)). χ′ becomes independent of fre-
quency, thus it reaches full equilibrium, for µ0H⊥ & 2 T
as seen in Fig. 2(a).

We next show the existence of a magnetic phase tran-
sition and discuss its critical behavior. As shown in
Fig. 2(a), 1/χ′ follows the Curie-Weiss law at suffi-
ciently high T , becoming independent of T below 0.34 K
(which we take as the critical temperature Tc at this field
µ0H⊥ = 2.25 T). The saturation value 1/χmax = 9.5(5)
cm3Oe/emu agrees well with the demagnetizing factor of
our sample N = 10(1) cm3Oe/emu, as expected for an
equilibrium ferromagnetic phase transition. A very sim-
ilar behavior is observed as H⊥ is varied at constant T
(Fig. 2(b)). Again, 1/χ′ depends linearly on H⊥ until it
saturates (to the same value ≃ N) below µ0Hc = 2.65(5)
T, which we take as the critical magnetic field. The in-
trinsic susceptibility χ′

i, corrected from demagnetizing ef-
fects, is plotted vs the reduced temperature (at 2.33 T)
and field (at 0.11 K) in Fig. 2(c). Under these con-
ditions, χ′

i should follow, as it approximately does, the
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FIG. 2: (Color online). (a) and (b): 1/χ′ measured at
µ0H⊥ = 2.25 T as a function of T and at T = 0.110 K
as a function of H⊥, respectively. The crossovers between
the ”Curie-Weiss” law, observed at either high T or high H⊥

(dotted blue lines), and the ferromagnetic limit 1/χ′ = N
(solid red lines) give Tc (= 0.34(1)K) and µ0Hc (= 2.65(5) T),
respectively. (c) Log-log plot of demagnetization-corrected
χ′

i vs the reduced temperature (for µ0H⊥ = 2.33 T with
Tc = 0.31 K, ◦) and field (at T = 0.110 K with µ0Hc = 2.65
T, •). The linear fits give critical exponents γcl ≃ 1.1(1) and
γqu ≃ 1.0(1).

power laws

χ′

i =

(

T − Tc

Tc

)−γcl

, χ′

i =

(

H⊥ −H⊥,c

H⊥,c

)−γqu

(3)

The slopes give critical exponents γcl = 1.1(1) and γqu =
1.0(1), in good agreement with γ = 1 of the mean-field
universality class. This result agrees with the prediction
that the marginal dimensionality for mean-field behavior
is d∗ = 3 in an Ising dipolar ferromagnet [29] and with
the fact that the critical exponents for the field-induced
transition at T → 0 become equivalent to those of the
classical transition in (d+ 1) dimensions [30].
The Hc-Tc phase diagram shown in Fig 3 was obtained

by repeating the different procedures described in Fig.
2. The equilibrium reciprocal susceptibility, measured
above Tb, was fitted with a Curie-Weiss law. The ex-
trapolations of these fits to 1/χ′ → 1/χmax were used
to determine either Tc, at fixed H⊥ (Fig. 2a), or Hc, at
fixed T (Fig. 2b). A third method consisted in using the
scaling plots of Fig. 2c to determine Tc independently.
The three methods give a very consistentHc(Tc) curve.

As expected, Tc decreases when quantum fluctuations in-
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FIG. 3: (Color online) Hc-Tc phase diagram determined from
the linear extrapolation of 1/χ′ to 1/χmax, as shown in Figs.
2a and b. • and ◦ correspond to Tc > Tb and Tc < Tb, respec-
tively; ⋆, data determined from susceptibility scaling plots, as
those shown in Fig. 2(c). Solid line, quantum mean-field cal-
culation of the phase boundary using Eq. (4); dashed line,
classical phase diagram, derived from MC simulations. Inset:
zero-temperature critical field vs angle ϕ. The horizontal line
represents the experimental Hc(Tc = 0).

crease (with H⊥). The phase diagram shows a transition
induced by thermal fluctuations at Tc(H⊥ = 0) = 0.60(5)
K (classical) and a transition induced by quantum fluc-
tuations at µ0Hc(T = 0) = 2.65(5) T (quantum). The
ferromagnetic nature of the ordered phase agrees with
theoretical predictions [22, 23]. The solid line is obtained
by solving numerically the mean-field Hamiltonian for the
S = 10 spin

H = − DS2
z + E

(

S2
x − S2

y

)

− gµBH⊥(Sx cosφ+ Sy sinφ)− 2J⟨Sz⟩TSz (4)

where φ is the angle between the magnetic field and the
hard axis, 2J is the molecular field coefficient and ⟨Sz⟩T is
the thermal average of Sz. We set φ = 68◦ that, as shown
by the inset of Fig. 3, accounts for µ0Hc(T = 0) ≃ 2.65
T. A very good fit is obtained for J/kB = 2.85× 10−3 K,
which gives Tc = 0.6 K. This value agrees, within 10 %,
with the Curie temperature Tc = 0.54 K determined by
classical MC simulations [22]. An extension [31] of these
simulations to the case of nonzero H⊥ gives the classical
phase boundary (dashed line in Fig. 3), which is well ap-

proximated by Hc(Tc) = Hc(0) [1− Tc/Tc(H⊥ = 0)]
1/2

.
In this model Hc(0) equals the anisotropy field HK =
2
[

D − E
(

sin2 φ− cos2 φ
)]

/gµBS ≃ 3.8 T, which clearly
overestimates the experimental critical field due to the
absence of quantum fluctuations.

Additional evidence supporting the existence of a tran-
sition to a ferromagnetic phase is found in the results of
neutron diffraction experiments. Figure 4 shows M2

z de-
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termined from magnetic diffraction intensities measured
at µ0H⊥ = 1.5 T. The inset shows field-dependent data
measured at T = 0.14 K. Despite the high noise level,
typical of these experiments, the results show the on-
set of a net spontaneous Mz in, respectively, the low-T
(≤ 0.6(1) K) and low-H⊥ (≤ 3(1) T) regions.
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FIG. 4: (Color online) Squared longitudinal magnetization of
a Fe8 crystal determined from neutron diffraction intensities
measured at µ0H⊥ = 1.5 T. The inset shows data measured
at T = 0.14 K as a function of H⊥. The lines are mean-field
calculations using Eq. (4) with ϕ = 0.

Summarizing, we have shown that the SMM Fe8 under-
goes a dipolar ferromagnetic to paramagnetic phase tran-
sition of (i) classical nature (µ0Hc = 0 T and Tc = 0.6 K)
and (ii) quantum nature (Tc = 0.11 K and µ0Hc = 2.65
T). Long range magnetic order was enabled by the use
of quantum annealing allowing the spin-bath to attain
equilibrium despite high energy barriers preventing spin-
reversal. The Hc − Tc phase diagram and critical ex-
ponents are in excellent agreement with results obtained
from exact diagonalisation of the mean-field Hamiltonian
Eq. (4). As expected, the critical behavior belongs to
the mean-field universality class of the Ising model in a
transverse magnetic field. The classical portion of the
phase diagram (near zero field), agrees very well with
classical MC calculations, giving in particular nearly the
same Tc. Deviations of the classical model become impor-
tant above ∼ 2 T, when quantum fluctuations dominate
largely over thermal fluctuations
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tolomé, Phys. Rev. Lett. 80, 5659 (1998).

[29] A. Aharony, Phys. Rev. B 8, 3363 (1973).
[30] R. J. Elliot, P. Pfeuty, and C. Wood, Phys. Rev. Lett.

25, 443 (1970).
[31] J. F. Fernández, private communication.


