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Magnetic dipolar ordering and quantum phase transition in Fe 8 molecular magnet
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We show that a crystal of mesoscopic Fe8 single molecule magnets is an experimental realization of the quantum Ising model in a transverse field, with dipolar interactions. Quantum annealing has enabled us to explore the quantum and classical phase transitions between the paramagnetic and ferromagnetic phases, at thermodynamical equilibrium. The phase diagram and critical exponents we obtain agree with expectations for the mean-field universality class.

Quantum Phase Transitions (QPT) [1,[START_REF] Sachdev | Quantum Phase Transitions[END_REF] have been extensively studied in recent years. Physical realizations include the superconductor insulator transition in cuprates [START_REF] Sachdev | [END_REF][4][5], the onset of antiferromagnetism in heavy fermions [6], the pressure driven insulator-metal transition in V 2 O 3 [7], and the magnetic transitions driven by field (LiHoYF 4 [8]) or concentration (Cr x V 1-x alloys [9]). In addition to their intrinsic interest, a plethora of new properties arise at nonzero temperature.

In magnetism, the archetypal QPT is realized by a lattice of N coupled Ising spins in a transverse magnetic field H ⊥ [10], the Hamiltonian of which reads as follows

H = -2S 2 N ∑ i<j J ij σ z i σ z j -∆ S N ∑ i σ x i (1) 
Here, σ ′ s are the Pauli spin operators, J ij the longitudinal couplings (here of dipolar origin) and ∆ S the ground-state tunnel splitting which depends on and vanishes with H ⊥ . The classical long-range order that exists for H ⊥ = ∆ S = 0 (ferromagnetic or antiferromagnetic) competes with the field-induced quantum fluctuations ([H, σ] ̸ = 0). It is completely destroyed at the critical point when ∆ S (H ⊥ ) ∆ Sc , where ∆ Sc = 2JS 2 ∼ k B T c , J = (1/N ) ∑ i<j J ij , and T c is the Curie temperature. The ground-state becomes then a superposition of "up" and "down" spin states.

Crystals of lanthanide-based insulators seem to be natural candidates to observe a QPT [8,11]. Because of the weak interactions, quantum fluctuations can become noticeable at moderate transverse fields. However, the strong hyperfine interactions seriously limit the observation of the intrinsic quantum criticality in these materials [12,13]. Single-molecule magnets (SMMs) based on 3d transition metals show some properties that make them better suited for such QPT studies: dipolar interactions are weak because of the very large inter-molecular distances [14] and hyperfine interactions are also generally weak enough not to block the QPT. Finally, SMMs show phenomena, like tunneling [15], interference [16] and superpositions of spin states [17], which reveal the existence of important quantum spin fluctuations. Yet, the search of a QPT faces some experimental challenges, mainly associated with structural disorder. In Mn 12 acetate, where indications of a possible QPT were inferred from magnetic neutron diffraction experiments [18], the local anisotropy axes are slightly tilted due to the presence of several isomers giving rise, in the presence of a perpendicular field, to random fields [19]. It has been argued [20] ) has a spin S = 10 and a strong uniaxial magnetic anisotropy. In the presence of a magnetic field -→ H , the magnetism of Fe 8 can be described by the following spin hamiltonian

H 0 = -DS 2 z + E ( S 2 x -S 2 y ) -gµ B -→ H -→ S (2) 
where D/k B = 0.294 K, E/k B = 0.046 K, and g = 2 [21]. Equation (2) defines x, y and z as the hard, medium and easy magnetization axes. In the triclinic structure of Fe 8 , these axes are common to all molecules [24]. Susceptibility experiments were performed on a 1.6 mg single crystal [24] of approximate dimensions 1 × 2 × 1 mm 3 . The complex magnetic susceptibility χ = χ ′ (T, ω) -iχ ′′ (T, ω) was measured down to 90 mK and in the frequency range 3 Hz ≤ ω/2π ≤ 20 kHz using a homemade ac susceptometer thermally anchored to the mixing chamber of a 3 He-4 He dilution refrigerator. The magnetic field -→ H was applied with a 9 T×1 T×1 T superconducting vector magnet.

The magnetic anisotropy axes were first approximately located by X-ray diffraction, using the information reported in [24]. The magnetic easy axis z was oriented parallel to the ac excitation magnetic field of amplitude h ac = 0.01 Oe. The precise alignment of -→ H perpendicular (±0.05 • ) to z and close (±20 • ) to the medium y axis was done at low temperatures (T = 2.6 K), using the strong dependence of χ ′ (T, ω) on the magnetic field orientation [25]. The sample was completely covered by a non-magnetic epoxy to prevent it from moving under the action of -→ H . Neutron diffraction experiments were performed on the thermal neutron two-axis diffractometer D23 at the Institute Laue Langevin. A single crystal, thermally anchored to the mixing chamber of a 3 He-4 He dilution refrigerator (T ≥ 50 mK), was mounted so as to have z orthogonal to -→ H . In this experiment, -→ H was close to the hard axis x. Longitudinal field components arising from the nonperfect orientation of the crystal were compensated by means of a superconducting mini-coil inserted in the space between the dilution refrigerator and the superconducting magnet. The intensities of different Bragg peaks, in particular (010), (-100), and (-212), were measured as a function of T (under a constant H ⊥ ) and H ⊥ (for a constant T ). The nonmagnetic contributions were measured at high T (5 K) and H ⊥ = 0. The fit of the magnetic intensities enabled us to estimate the magnetization components along the external magnetic field M ⊥ and along the anisotropy axis M z .

The ac-susceptibility (Figure 1) deviates from equilibrium for low H ⊥ and low T , as shown by the vanishing of χ ′ and by the relatively large values of χ ′′ . The superparamagnetic blocking temperature T b (associated with the χ ′′ maximum) strongly depends on frequency (not shown). In these dipolar Ising-like systems, out of equilibrium conditions arise from the presence of energy barriers larger than the typical interaction energies (i.e. T b > T c ), a situation which can be inverted by quantum annealing via the application of H ⊥ [26,27]. When H ⊥ increases, the height of the energy barrier decreases and spins are able to tunnel via lower energy states, which leads to enhanced spin-lattice relaxation rates. This explains the decrease of T b , as shown in the inset of Fig. 1(a). Besides enhancing the spin dynamics, the magnetic field also lowers the paramagnetic susceptibility. This decrease can be associated with the reduction of the effective S z by quantum fluctuations as well as with the decrease in the paramagnetic Weiss temperature (see below and Ref. [25]). Both effects become more noticeable for H ⊥ 1 T, as seen in Fig. 1(a). At moderate H ⊥ , e.g. at µ 0 H ⊥ = 1.7 T, χ ′ is not fully out of equilibrium. The relaxation time τ = χ ′′ /χ ′ ω at the same field is already very short and, more importantly, it remains constant below approximately 0.25 K (inset of Fig. 1(b)). χ ′ becomes independent of frequency, thus it reaches full equilibrium, for µ 0 H ⊥ 2 T as seen in Fig. 2(a).

We next show the existence of a magnetic phase transition and discuss its critical behavior. As shown in Fig. 2(a), 1/χ ′ follows the Curie-Weiss law at sufficiently high T , becoming independent of T below 0.34 K (which we take as the critical temperature T c at this field µ 0 H ⊥ = 2.25 T). The saturation value 1/χ max = 9.5(5) cm 3 Oe/emu agrees well with the demagnetizing factor of our sample N = 10(1) cm 3 Oe/emu, as expected for an equilibrium ferromagnetic phase transition. A very similar behavior is observed as H ⊥ is varied at constant T (Fig. 2(b)). Again, 1/χ ′ depends linearly on H ⊥ until it saturates (to the same value ≃ N ) below µ 0 H c = 2.65(5) T, which we take as the critical magnetic field. The intrinsic susceptibility χ ′ i , corrected from demagnetizing effects, is plotted vs the reduced temperature (at 2.33 T) and field (at 0.11 K) in Fig. 2(c). Under these conditions, χ ′ i should follow, as it approximately does, the power laws

χ ′ i = ( T -T c T c ) -γ cl , χ ′ i = ( H ⊥ -H ⊥,c H ⊥,c ) -γqu (3) 
The slopes give critical exponents γ cl = 1.1(1) and γ qu = 1.0(1), in good agreement with γ = 1 of the mean-field universality class. This result agrees with the prediction that the marginal dimensionality for mean-field behavior is d * = 3 in an Ising dipolar ferromagnet [29] and with the fact that the critical exponents for the field-induced transition at T → 0 become equivalent to those of the classical transition in (d + 1) dimensions [30].

The H c -T c phase diagram shown in Fig 3 was obtained by repeating the different procedures described in Fig. 2. The equilibrium reciprocal susceptibility, measured above T b , was fitted with a Curie-Weiss law. The extrapolations of these fits to 1/χ ′ → 1/χ max were used to determine either T c , at fixed H ⊥ (Fig. 2a), or H c , at fixed T (Fig. 2b). A third method consisted in using the scaling plots of Fig. 2c to determine T c independently.

The three methods give a very consistent H c (T c ) curve. As expected, T c decreases when quantum fluctuations in- 5) T (quantum). The ferromagnetic nature of the ordered phase agrees with theoretical predictions [22,23]. The solid line is obtained by solving numerically the mean-field Hamiltonian for the S = 10 spin

H = -DS 2 z + E ( S 2 x -S 2 y ) -gµ B H ⊥ (S x cos φ + S y sin φ) -2J⟨S z ⟩ T S z (4)
where φ is the angle between the magnetic field and the hard axis, 2J is the molecular field coefficient and ⟨S z ⟩ T is the thermal average of S z . We set φ = 68 • that, as shown by the inset of Fig. 3, accounts for µ 0 H c (T = 0) ≃ 2.65 T. A very good fit is obtained for J/k B = 2.85 × 10 -3 K, which gives T c = 0.6 K. This value agrees, within 10 %, with the Curie temperature T c = 0.54 K determined by classical MC simulations [22]. An extension [31] of these simulations to the case of nonzero H ⊥ gives the classical phase boundary (dashed line in Fig. 3), which is well approximated by

H c (T c ) = H c (0) [1 -T c /T c (H ⊥ = 0)] 1/2 . In this model H c (0) equals the anisotropy field H K = 2 [ D -E ( sin 2 φ -cos 2 φ )]
/gµ B S ≃ 3.8 T, which clearly overestimates the experimental critical field due to the absence of quantum fluctuations.

Additional evidence supporting the existence of a transition to a ferromagnetic phase is found in the results of neutron diffraction experiments. Figure 4 shows M 2 z de-termined from magnetic diffraction intensities measured at µ 0 H ⊥ = 1.5 T. The inset shows field-dependent data measured at T = 0.14 K. Despite the high noise level, typical of these experiments, the results show the onset of a net spontaneous M z in, respectively, the low-T (≤ 0.6(1) K) and low-H ⊥ (≤ 3(1) T) regions. Summarizing, we have shown that the SMM Fe 8 undergoes a dipolar ferromagnetic to paramagnetic phase transition of (i) classical nature (µ 0 H c = 0 T and T c = 0.6 K) and (ii) quantum nature (T c = 0.11 K and µ 0 H c = 2.65 T). Long range magnetic order was enabled by the use of quantum annealing allowing the spin-bath to attain equilibrium despite high energy barriers preventing spinreversal. The H c -T c phase diagram and critical exponents are in excellent agreement with results obtained from exact diagonalisation of the mean-field Hamiltonian Eq. ( 4). As expected, the critical behavior belongs to the mean-field universality class of the Ising model in a transverse magnetic field. The classical portion of the phase diagram (near zero field), agrees very well with classical MC calculations, giving in particular nearly the same T c . Deviations of the classical model become important above ∼ 2 T, when quantum fluctuations dominate largely over thermal fluctuations

We are grateful to Julio Fernández for useful suggestions and for sharing with us the results of his classical MC simulations. We acknowledge D10 and the CRG D23 lines of ILL for allocating measuring time for the neutron diffraction experiments. We acknowledge Eric Bourgeat-Lami, Xavier Tonon, Pascal Fouilloux, and Bruno Vettard for their help in designing, fabricating, and installing the superconducting mini-coil used in these ex-periments, and Tomoaki Yamasaki and Miki Ueda for the synthesis of the samples. The present work was partly funded by Spanish MICINN grants MAT2009-13977-C03 (MOLCHIP) and Consolider-Ingenio on Molecular Nanoscience.

FIG. 1 :

 1 FIG.1:(Color online) χ ′ (a) and χ ′′ (b) measured at ω/2π = 333 Hz and different H ⊥ . The inset in (a) shows the shift of χ ′′ maxima with increasing H ⊥ . The solid line shows theoretical predictions for quantum spin-phonon relaxation that follow from Pauli's master equation as described in[28]. The inset in (b) shows the magnetic relaxation time at µ0H ⊥ = 1.7 T.

FIG. 2 :

 2 FIG.2:(Color online). (a) and (b): 1/χ ′ measured at µ0H ⊥ = 2.25 T as a function of T and at T = 0.110 K as a function of H ⊥ , respectively. The crossovers between the "Curie-Weiss" law, observed at either high T or high H ⊥ (dotted blue lines), and the ferromagnetic limit 1/χ ′ = N (solid red lines) give Tc (= 0.34(1)K) and µ0Hc (= 2.65(5) T), respectively. (c) Log-log plot of demagnetization-corrected χ ′ i vs the reduced temperature (for µ0H ⊥ = 2.33 T with Tc = 0.31 K, •) and field (at T = 0.110 K with µ0Hc = 2.65 T, •). The linear fits give critical exponents γ cl ≃ 1.1(1) and γqu ≃ 1.0(1).
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 3 FIG. 3: (Color online) Hc-Tc phase diagram determined from the linear extrapolation of 1/χ ′ to 1/χmax, as shown in Figs. 2a and b. • and • correspond to Tc > T b and Tc < T b , respectively; ⋆, data determined from susceptibility scaling plots, as those shown in Fig. 2(c). Solid line, quantum mean-field calculation of the phase boundary using Eq. (4); dashed line, classical phase diagram, derived from MC simulations. Inset: zero-temperature critical field vs angle ϕ. The horizontal line represents the experimental Hc(Tc = 0).
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 4 FIG.4:(Color online) Squared longitudinal magnetization of a Fe8 crystal determined from neutron diffraction intensities measured at µ0H ⊥ = 1.5 T. The inset shows data measured at T = 0.14 K as a function of H ⊥ . The lines are mean-field calculations using Eq. (4) with ϕ = 0.
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  that such fields turn Mn 12 acetate into a realization of the classical random-field Ising model.

				The existence
	of a pure QPT in a crystal of molecular nanomagnets is,
	therefore, not yet established. Our aim here is to explore
	the experimental realization of the Ising QPT model in a
	crystal of Fe 8 SMMs [21] where (i) classical Monte Carlo
	(MC) simulations suggest a ferromagnetic ground state
	with T c = 0.54 K [22, 23] (ii) hyperfine frequencies, much
	smaller than Larmor frequencies, cannot perturb quan-
	tum dynamics of SMMs and (iii) disorder is weak enough
	to avoid sizable random fields.		
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