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Abstract 1

Veronese rings, Segre embeddings or more generally Segre-Veronese
embeddings are very important rings in Algebraic Geometry. In
this paper we present an original, elementary way to compute the
Hilbert-Poincare series of these rings, as a consequence we compute
their Castelnuovo-Mumford regularity, and also the leading term of
the h−vector. Moreover, we can compute the Castelnuovo-Mumford
regularity of the n-Veronese Module of any finitely generated Cohen-
Macaulay graded module.

1 Introduction

Veronese rings, Segre embeddings or more generally Segre-Veronese
embeddings are very important rings in Algebraic Geometry. It
is well known that these rings are arithmetically Cohen-Macaulay,

hence their Hilbert-Poincaré series can be written PR(t) =
QR(t)

(1−t)dimR ,

where QR(t) is a polynomial on t with QR(1) 6= 0 having positive
integer coefficients, the sequence of the coefficients of QR(t) is also
called the h−vector of R. The degree of QR(t) is the Castelnuovo-
Mumford regularity (c.f.[7][Chapter 4]), and the leading term of
QR(t) is the highest graded Betti number of R. By using very origi-
nal and elementary methods we are able to compute the leading term
of QR(t). Our results allows to compute the Castelnuovo-Mumford
regularity of the n Veronese Module of any finitely generated Cohen-
Macaulay graded module, and the rings called of Veronese type.

1 Partially supported by VIASM, Hanoi, Vietnam.
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Note that this result can be proved easily by using local cohomol-
ogy, but our purpose is to give a very elementary proof.

Our main results improves partially [1] and [5].

Theorem. Let consider the Segre-Veronese ring Rb,n, dimRb,n =

b1 + ... + bm + 1. Let PRb,n
(t) =

QRb,n

(1−t)
dimRb,n

be the Hilbert-Poincaré

series of Rb,n, with QRb,n
= h0+h1t+ ...+hrb,nt

rb,n , where rb,n is the
Castelnuovo-Mumford regularity of Rb,n. We set αb,n = dimRb,n −
rb,n. After a permutation of b1, ..., bm, we can assume that, for all

i = 1, ...,m, ⌈ b1+1
n1

⌉ > bi
ni
. Then

αb,n = ⌈
b1 + 1

n1

⌉ ,

and the highest Betti number of Rb,n is

βrb,n = hrb,n =

(

n1αb,n − 1

b1

)

...

(

nmαb,n − 1

bm

)

Theorem. Fix integers d, n ∈ N
∗, τ ∈ Z. Let (al)l∈Z be a sequence

of complex numbers, such that al = 0 for l << 0, set :

f(t) =
∑

l∈Z

alt
l, f<n,τ>(t) =

∑

l∈Z

anl+τ t
l.

If f(t) = h(t)
(1−t)d

with h(t) ∈ C[t, t−1] then f<n,τ>(t) = h<n>(t)
(1−t)d

with

h<n>(t) ∈ C[t, t−1] such that:

• deg h<n,τ>(t) ≤ d− ⌈d−deg h(t)+τ

n
⌉,

• If all the coefficients of h(t) are positive real numbers then

deg h<n,τ>(t) = d− ⌈d−deg h(t)+τ

n
⌉,

• If deg h(t) = d then deg h<n>(t) = d.

2 Preliminaries on toric rings and Hilbert-Poincaré
series

Let S = K[x0, ..., xs, x
−1
0 , ..., x−1

s ] be a Laurent polynomial ring over
a field K on a finite set of variables. For any finite set M of mono-
mials in S, let K[M] ⊂ S be the subring of S generated by the set
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M. It is the toric ring defined by the semigroup generated by M.
In what follows we consider the special case where S = K[x0, ..., xs]
is a polynomial ring over the field K and all the monomials in M
are of the same degree.

Example 2.1. Let S = K[x0, ..., xb] ⊕l∈N Sl, and M = {xα0
0 ...xαb

b |
α0 + ...+ αb = n}. So that

Rb,n = K[M] = ⊕l∈NSnl.

This toric ring is known as the n−Veronese embedding of S.

Example 2.2. More generally, let X1, ..., Xm, m sets of independent
disjoint variables, with Card(Xi) = bi + 1. Let Si = K[Xi] for
i = 1, ...,m, S = K[X1∪X2∪Xm], and M = {x1x2...xm | xi ∈ Xi}.
So that

Rb1,...,bm = K[M] = ⊕l∈N(S1)l ⊗ ...⊗ (Sm)l.

This toric ring is known as the Segre embedding of the m polynomial
rings S1, ..., Sm.

Example 2.3. Let X1, ..., Xm, sets of independent disjoint variables
such that Xi = {xi,0, ..., xi,bi}, Si = K[Xi] for i = 1, ...,m, and
n1, ..., nm ∈ N, Let S = K[X1 ∪X2 ∪Xm], and

M = {xα1
1 ...xαm

m || αi |= ni},

where αi = (αi,0, ..., αi,bi), x
αi

i = x
αi,0

i,0 ...x
αi,bi

i,bi
, and | αi |= αi,0 + ... +

αi,bi The Segre-Veronese embedding:

Rb,n = K[M] = ⊕l∈N(S1)n1l ⊗ ...⊗ (Sm)nml,

where b = (b1, ..., bm), n = (n1, ..., nm).

Let S = K[x0, ..., xs] be a polynomial ring over the field K,
graded by the standard graduation, that is deg xi = 1, for all i.
Let R := S/I, where I ⊂ S is a graded ideal, let M = ⊕l∈ZMl be a
finitely generated graded R-module, hence M is also a S−module.
the Hilbert-function of M is defined by HM(l) = dimK Ml, for all
l ∈ Z, and the Hilbert-Poincaré series of M :

PM(t) =
∑

l∈Z

HM(l)tl.
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It is well known that

PM(t) =
QM(t)

(1− t)dimM
,

where QM(t) is a Laurent polynomial on t, t−1 with QM(1) 6= 0.
Moreover ifM is a Cohen-Macaulay S−module, all the coefficients of
QM(t) are natural integers,and the Castelnuovo-Mumford regularity
of M is the degree of QM(t). For more details on Hilbert-Poincare
series see [10], [4][Chapter 4], [7][Chapter 4].

Theorem 2.4. (Hilbert’s Theorem) let M = ⊕l∈ZMl be a finitely
generated graded S-module. There exists a polynomial with integer
coefficients ΦHM

(l) such that HM(l) = ΦHM
(l), for l large enough.

Moreover the leading term of ΦHM
(l) can be written as : deg(M)

d!
ld,

where d + 1 is the dimension of M and deg(M) the degree or mul-
tiplicity of M .

Remark 2.5. The postulation number of the Hilbert function is the
biggest integer l such that HM(l) 6= ΦHM

(l). It is well known , ([10],
[4][Chapter 4]), that the postulation number equals the degree of the
rational fraction defining the Poincaré series.

Remark 2.6. We recall that binomial coefficients can be defined in
a more general setting than natural numbers, indeed for k ∈ N, bi-
nomial coefficients are polynomial functions in the variable n. More
precisely:

(1) If k = 0 then let
(

n

0

)

= 1, for all n ∈ C.

(2) If k > 0 then let
(

n

k

)

=n(n−1)...(n−k+1)
k!

, for all n ∈ C.

Note that for all n ∈ C,
(

n

k

)

= (−1)k
(

k−n−1
k

)

and if n ∈ N, n < k,

then
(

n

k

)

= 0.

Example 2.7. Let S = K[x0, ..., xb], be a polynomial ring. Then

HS(l) =

{

(

l+b

b

)

if l ≥ 0

0 if l < 0
, PS(t) =

1

(1− t)b+1
.

Note that in fact ∀l ≥ −b, HS(l) =
(

l+b

b

)

and 0 = HS(−b − 1) 6=
(

−b−1+b

b

)

= (−1)b, so the postulation number of S is −(b+ 1).

4



Example 2.8. Let S = K[x0, ..., xb], M = {xα0
0 ...xαb

b | α0+...+αb =
n}, and Rb,n = K[M] the n−Veronese embedding. Then

HRb,n
(l) = HS(nl) =

{

(

nl+b

b

)

if l ≥ 0

0 if l < 0
.

Note that
(

nl+b

b

)

= (nl+1)(nl+2)...(nl+b)
b!

is a polynomial on l with lead-

ing term nblb

b!
, so that deg(Rb,n) = nb, dimRb,n = b + 1. Note also

that ∀l > −⌈ b+1
n
⌉, HRb,n

(l) =
(

nl+b

b

)

and 0 = HRb,n
(−⌈ b+1

n
⌉) 6=

(−⌈ b+1
n

⌉n+b

b

)

= (−1)b
(⌈ b+1

n
⌉n−1

b

)

, so the postulation number of Rb,n is

−⌈ b+1
n
⌉. More generally the postulation number of Rb,n[τ ] is ⌈

b+1+τ
n

⌉.

3 Veronese of generating series

In a recent paper [2], Brenti and Walker prove that taking the n−
Veronese transform of the h polynomial is a linear function, in this
section we improve this result giving a elementary proof of the fact
that taking the shifted n− Veronese transform of the h polynomial
is a linear function on h.

Let recall the following fact:

Theorem 3.1. Let (al)l∈Z be a sequence of complex numbers, such
that al = 0 for l << 0, set : f(t) =

∑

l∈Z alt
l, TFAE:

• There exists h(t) ∈ C[t, t−1] and a natural integer d such that

f(t) = h(t)
(1−t)d

.

• There exists Φ(t) ∈ C[t, t−1] of degree d− 1 with leading coeffi-
cient e0/(d− 1)!, such that Φ(l) = al for l large enough.

Moreover h(1) = e0.

Definition 3.2. Fix integers d, n ∈ N
∗, τ ∈ Z. Let (al)l∈Z be a

sequence of complex numbers, such that al = 0 for l << 0, set :

f(t) =
∑

l∈Z

alt
l, f<n,τ>(t) =

∑

l∈Z

anl+τ t
l.

By the Theorem 3.1 if f(t) = h(t)
(1−t)d

with h(t) ∈ C[t, t−1] then

f<n,τ>(t) = h<n,τ>(t)
(1−t)d

with h<n,τ>(t) ∈ C[t, t−1].
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Let us introduce some notations. To any non zero polynomial
h(t) = hσt

σ+ ....+h0+h1t+ ...+hst
s ∈ C[t, t−1] we associate the h-

vector ~h = (..., 0, hσ, ..., hs, 0, ...), and we set deg
−→
h = deg h(t). For

j ∈ Z, let −→εj be the h-vector of the polynomial tj. Let denote by
[tk]h(t) the coefficient of tk in the polynomial h(t). For any i, j ∈ Z

define Di,j by

Di,j = [tin−j](
(1− tn)d

(1− t)d
) = [tin−j]((1 + t+ ...tn−1)d).

Note that

Di,j = Card{(x1, ..., xd) ∈ N
d | ∀l, xl ≤ n− 1; x1 + ...+ xd = in− j}.

Finally let D[σ, τ ] be the infinite square matrix D[σ, τ ] = (Di+σ,j+τ ).
For σ = τ = 0 we write D instead D[0, 0]. We can give some
properties of the numbers Di,j.

Lemma 3.3. Let i, j, k ∈ Z, we have:

• Di,j = 0 if either in− j < 0 or in− j > d(n− 1).

• For any i, j, Di,j = Dd−i,d−j. That is D is symmetrical around
the point (d/2, d/2).

• For 0 ≤ k ≤ n− 1, Dd,d+k =
(

k+d−1
d−1

)

.

• D1,0 =
(

n+d−1
d−1

)

− d, and for 1 ≤ k ≤ n, D1,k =
(

n−k+d−1
d−1

)

.

• For any integers q, k, Dd+q,nq+k = Dd,k.

• For any i, let d− i = nq − k with q = ⌈d−i
n
⌉, 0 ≤ k < n, then

Dd−⌈ d−i
n

⌉,i =

(

k + d− 1

d− 1

)

=

(

n⌈d−i
n
⌉+ i− 1

d− 1

)

.

Proof. The first claim is trivial. In order to prove the other claims,
let remark that the map (x1, ..., xd) 7→ (y1, ..., yd), where yl = (n −
1)− xl for l = 1, ..., d, establishes a bijection between

{(x1, ..., xd) ∈ N
d | xl ≤ n− 1 for l = 1, ..., d; x1+ ...+xd = in− j}

and

{(y1, ..., yd) ∈ N
d | yl ≤ n−1 for l = 1, ..., d; y1+...+yd = (d−i)n−(d−j)}.
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The third claim follows from the second claim, because if 0 ≤
k ≤ n− 1, then the sets

{(x1, ..., xd) ∈ N
d | xl ≤ n−1 for l = 1, ..., d; x1+...+xd = dn−d−k}

and
{(y1, ..., yd) ∈ N

d | y1 + ...+ yd = k}

are in bijection.
The fourth claim follows trivially from the previous items.
The fifth claim follows from the equality: (d+ q)n− (nq + k) =

dn− k.
Finally the sixth claim follows from the third claim, since, if

d − i = nq − k with 0 ≤ k < n, then (d − q)n − i = dn − (d + k),
hence Dd−q,i = Dd,d+k, and n⌈d−i

n
⌉+ i− 1 = k + d− 1.

Remark 3.4. With the notations introduced in 3.2, it is clear that
f<n,kn+τ>(t) = t−kf<n,τ>(t), which implies h<n,kn+τ>(t) = t−kh<n,τ>(t)
for any integer numbers k, τ .

The following Theorem improves and gives a simpler proof of [2,
Theorem 1.1]:

Theorem 3.5. Fix integers d, n ∈ N
∗, τ ∈ Z. Let (al)l∈Z be a

sequence of complex numbers, such that al = 0 for l << 0, set :

f(t) =
∑

l∈Z

alt
l =

h(t)

(1− t)d
,

f<n,τ>(t) =
∑

l∈Z

anl+τ t
l =

h<n,τ>(t)

(1− t)d
,

where h(t), h<n,τ>(t) ∈ C[t, t−1]. Then

for any τ ∈ Z,
−−−−−−→
h<n,kn+τ> = D[−k,−τ ]~h.

Proof. Because the Remark 3.4 we have to compute h<n,τ>(t) only
for 0 ≤ τ ≤ n− 1. The following formula is clear:

f<n,0>(tn) + tf<n,1>(tn) + ...+ tn−1f<n,n−1>(tn) = f(t),

hence

h<n,0>(tn) + th<n,1>(tn) + ...+ tn−1h<n,n−1>(tn)

(1− tn)d
=

h(t)

(1− t)d
,
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and

h<n,0>(tn) + th<n,1>(tn) + ...+ tn−1h<n,n−1>(tn) = h(t)
(1− tn)d

(1− t)d
,

tτh<n,τ>(tn) equals the sum of all the terms Aβt
β of h(t) (1−tn)d

(1−t)d
with

β ≡ τ mod n. In particular h<n,τ>(t) is a linear function of h(t).
So it is enough to compute h<n,τ>(t) for the canonical basis {εj :=
tj , j ∈ Z} of C[t, t−1]. We have

[ti](h<n,τ>(t)) = [tni+τ ](h(t)
(1− tn)d

(1− t)d
),

hence

∀j ∈ Z; [ti](ε<n,τ>
j (t)) = [tni+τ ](tj)

(1− tn)d

(1− t)d
= [tni+τ−j](

(1− tn)d

(1− t)d
)

which proves our statement.

Corollary 3.6. Fix an integer d ∈ N
∗. For j ∈ Z, let −→εj be the

h-vector of the polynomial tj. Then for any n ∈ N
∗, we have

deg
−−→
ε<n>
j = d − ⌈

d− j

n
⌉. Moreover the leading coefficient of

−−→
ε<n>
j

is
(

n⌈ d−j

n
⌉+j−1

d−1

)

.

Proof. Let remark that the set of tj, j ∈ Z is the canonical basis of

C[t, t−1]. We have by Theorem 3.5 that D−→εj =
−−→
ε<n>
j , hence

−−→
ε<n>
j

is the j column vector of D. By the Example 2.8, we have that

deg
−−→
ε<n>
j = d− ⌈

d− j

n
⌉.

The last claim follows from the Lemma 3.3. Indeed for any j ∈

Z, we have D
d−⌈ d−j

n
⌉,j =

(

n⌈ d−j

n
⌉+j−1

d−1

)

. This proves that the leading

coefficient of
−−→
ε<n>
j is

(

n⌈ d−j

n
⌉+j−1

d−1

)

.

Example 3.7. Let d = 2 and n ∈ N
∗, we can describe the matrix D

ij -(n+1) ... -1 0 1 2 3 ... n n+1 n+2 ... 2n
-1 2 ... 0 0 0 0 0 ... 0 0 0 .... 0
0 n-2 ... 2 1 0 0 0 ... 0 0 0 ... 0
1 0 ... n-2 n-1 n n-1 n-2 ... 1 0 0 ... 0
2 0 ... 0 0 0 1 2 ... n-1 n n-1 ... 1
3 0 ... 0 0 0 0 0 ... 0 0 1 ... n-1
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Theorem 3.8. Fix integers d, n ∈ N
∗, τ ∈ Z. Let (al)l∈Z be a

sequence of complex numbers, such that al = 0 for l << 0, set :

f(t) =
∑

l∈Z

alt
l, f<n,τ>(t) =

∑

l∈Z

anl+τ t
l.

If f(t) = h(t)
(1−t)d

with h(t) ∈ C[t, t−1] then f<n,τ>(t) = h<n>(t)
(1−t)d

with

h<n>(t) ∈ C[t, t−1] such that:

• deg h<n,τ>(t) ≤ d− ⌈d−deg h(t)+τ

n
⌉,

• If all the coefficients of h(t) are positive real numbers then

deg h<n,τ>(t) = d− ⌈d−deg h(t)+τ

n
⌉,

• If deg h(t) = d then deg h<n>(t) = d.

Proof. Let f(t) =
∑

l∈Z alt
l = h(t)

(1−t)d
, where h(t) ∈ C[t, t−1] h(t) =

γσt
σ + ... + γst

s with deg h(t) = s, γs 6= 0. It follows that
−→
h =

∑s

l=σ γl
−→εl . We multiply this relation on the left by D[−τ ], so

Theorem 3.5 implies
−−−−→
h<n,τ> =

∑s

l=σ γl
−−→
ε<n>
l−τ . Since deg

−−→
ε<n>
σ−τ ≤

deg
−−−−→
ε<n>
σ−τ+1 ≤ ... ≤ deg

−−→
ε<n>
s−τ , we have, deg

−−−−→
h<n,τ> ≤ deg

−−→
ε<n>
s−τ . It

is clear that if all the coefficients of h(t) are positive real numbers

then deg
−−−−→
h<n,τ> = deg

−−→
ε<n>
s−τ .

In the special case s = d, we have seen that for 0 ≤ l ≤ d−1 and

any n ∈ N
∗, deg

−−→
ε<n>
l = d− ⌈d−l

n
⌉ ≤ d− 1, and deg

−−→
ε<n>
d = d, which

implies deg
−−−→
h<n> = d.

Theorem 3.9. Let n ∈ N
∗, S be a standard graded polynomial

ring, M = ⊕l∈ZMl be a finitely generated Cohen-Macaulay graded

S-module of dimension d ≥ 1, and M<n> = ⊕l∈ZMnl. Let
Q(t)

(1− t)d

be the Hilbert-Poincaré series of M , where Q(t) = γσt
σ+ ...+γst

s ∈
C[t, t−1] is the h−polynomial of M , with reg(M) = degQ(t) = s.
Then

• regM<n> = d − ⌈d−regM
n

⌉. Moreover by taking the sum over

all index l such that ⌈d−l
n
⌉ = ⌈d−regM

n
⌉, we will get the leading

coefficient of Q<n>(t):

∑

l | ⌈ d−l
n

⌉=⌈ d−regM

n
⌉

γl

(

n⌈d−l
n
⌉+ l − 1

d− 1

)

.
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• If regM ≤ d − 1 and n ≥ d then regM<n> = d − 1, and the
leading coefficient of Q<n>(t) is

d−1
∑

l=0

γl

(

n⌈d−l
n
⌉+ l − 1

d− 1

)

.

• If n > regM ≥ d then regM<n> = d, and the leading coeffi-
cient of Q<n>(t) is

regM
∑

l=d

γl

(

l − 1

d− 1

)

.

Proof. We have
−→
Q =

∑s

l=σ γl
−→εl . We multiply this relation on the

left by D, so Theorem 3.5 implies that for any n ∈ N
∗,

−−−→
Q<n> =

∑s

l=σ γl
−−→
ε<n>
l . Since γl ≥ 0 for all l, γs > 0, and deg

−−→
ε<n>
σ ≤

deg
−−→
ε<n>
σ+1 ≤ ... ≤ deg

−−→
ε<n>
s , we have, deg

−−−→
Q<n> = deg

−−→
ε<n>
s = d −

⌈d−regM
n

⌉, this number is reg(M<n>) sinceM<n> is a Cohen-Macaulay
S−module. The computation of the leading coefficient of Q<n>(t)
is immediate from Lemma 3.6.

4 h-vector of the Segre-Veronese embedding.

The next Theorem improves partially [1] and [5].

Theorem 4.1. Let consider the Segre-Veronese ring Rb,n, dimRb,n =

b1+ ...+bm+1. Let PRb,n
(t) =

QRb,n
(t)

(1− t)dimRb,n
be the Hilbert-Poincaré

series of Rb,n, with QRb,n
(t) = h0 + h1t+ ...+ hrb,nt

rb,n , where rb,n =
degQRb,n

(t) is the Castelnuovo-Mumford regularity of Rb,n. We set
αb,n = dimRb,n − rb,n. After a permutation of b1, ..., bm, we can

assume that ⌈ b1+1
n1

⌉ > bi
ni

∀i, then

αb,n = ⌈
b1 + 1

n1

⌉ rb,n = (b1 + ...+ bm + 1)− ⌈
b1 + 1

n1

⌉,

and the highest Betti number of Rb,n is

βrb,n = hrb,n =

(

n1αb,n − 1

b1

)

...

(

nmαb,n − 1

bm

)
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Proof. The proof is by double induction on m and bm. The case
m = 1 is given by the Example 2.8 and Corollary 3.6, so we can
assume m ≥ 2. We have that ⌈ b1+1

n1
⌉ > bm

nm
> bm−1

nm
, so by induc-

tion hypothesis the theorem is true for Rb−ǫm,n, where b − ǫm =
(b1, ..., bm−1, bm− 1). On the other hand the Hilbert function of Rb,n

is HRb,n
(l) =

(

n1l+b1
b1

)

...
(

nml+bm
bm

)

, so

HRb,n
(l) = (1 +

nm

bm
l)HRb−ǫm,n

(l). (1)

Let PRb−ǫm,n
(t) =

QRb−ǫm,n
(t)

(1− t)b1+...+bm
be the Hilbert-Poincaré series of

Rb−ǫm,n, where QRb−ǫm,n
(t) = h0 + h1t + ... + hrb−ǫm,n

trb−ǫm,n , with
hrb−ǫm,n

6= 0. In order to avoid any confusion we also set : PRb,n
(t) =

QRb,n
(t)

(1− t)b1+...+bm+1
be the Hilbert-Poincaré series of Rb,n, where

QRb,n
(t) = ĥ0 + ...+ ĥrb,nt

rb,n ,

with ĥrb,n 6= 0.
Let β = nm

bm
, by simple calculations from (1) we get:

PRb,n
(t) = PRb−ǫm,n

(t) + βtP ′
Rb−ǫm,n

(t). (2)

Hence dimRb,n = dimRb−ǫm,n + 1, and

QRb,n
(t) = QRb−ǫm,n

(t)+t[QRb−ǫm,n
(t)(βRb−ǫm,n−1)+βQ′

Rb−ǫm,n
(t)−βtQ′

Rb−ǫm,n
(t)],

note that QRb,n
(1) = β dimRb−ǫm,nQRb−ǫm,n

(1) 6= 0.
In particular we have rb,n ≤ rb−ǫm,n+1 and for all k = 0, ..., rb−ǫm,n+

1 we have

ĥk = hk−1(
nm

bm
dimRb−ǫm,n − (k − 1)

nm

bm
− 1) + hk(k

nm

bm
+ 1). (3)

By induction hypothesis we have αb−ǫm,n = ⌈ b1+1
n1

⌉ 6= bm
nm

, so we

put k = rb−ǫm,n + 1 in equality (3), and we get:

ĥrb−ǫm,n+1 = hrb−ǫm,n
(
nmαb−ǫm,n − bm

bm
) 6= 0.

Hence ĥrb−ǫm,n+1 is the leading coefficient ofQRb,n
and rb,n = rb−ǫm,n+

1 and αb,n = αb−ǫm,n = ⌈ b1+1
n1

⌉. By induction hypothesis

hrb−ǫm,n
=

(

n1αb,n − 1

b1

)

...

(

nm−1αb,n − 1

bm−1

)(

nmαb,n − 1

bm

)
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so that

ĥrb,n =

(

n1αb,n − 1

b1

)

...

(

nm−1αb,n − 1

bm−1

)(

nmαb,n − 1

bm − 1

)

(
nmαb,n − bm

bm
)

=

(

n1αb,n − 1

b1

)

...

(

nm−1αb,n − 1

bm−1

)(

nmαb,n − 1

bm

)

.

5 Rings of Veronese type

Let b, n ∈ N
∗, a = (a0, ..., ab) ∈ N

b+1 such that 1 ≤ ai ≤ n, a0 + ...+
ab > n, and Mb,n,a be the set of monomials of the polynomial ring
K[x0, ..., xb]:

Mb,n,a = {xα0
0 ...xαb

b | α0 + ...+ αb = n, αi ≤ ai, ∀i = 0, ..., b}.

Let denote by Rb,n,a the toric subring of K[x0, ..., xb] generated by
Mb,n,a. It is well known that Rb,n,a is a Cohen-Macaulay ring. Let
S be the collection of subsets of {0, ..., b} such that : S ∈ S if and
only if S ⊂ {0, ..., b}, and ΣS :=

∑

i∈S ai < n.

Theorem 5.1. ([9]) With the above notations the Hilbert-function
of Rb,n,a is

∀l ≥ 0; Hb,n,a(l) =
∑

S∈S

(−1)|S|
(

l(n− ΣS)− | S | +b

b

)

We have dim(Rb,n,a) = b+ 1, and its degree or multiplicity is

deg(Rb,n,a) =
∑

S∈S

(−1)|S|(n− ΣS)b.

Our aim is to study the Hilbert-Poincaré series of Rb,n,a:

PRb,n,a
=

∑

S∈S

(−1)|S|
∑

l≥0

(

l(n− ΣS)− | S | +b

b

)

tl.

The following Corollary follows immediately from 3.6.

Corollary 5.2. For any S ∈ S and k ∈ N
∗, we have:

∑

l≥0

(

kl− | S | +b

b

)

tl =
QS,k(t)

(1− t)b+1
,
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where QS,k(t) is a polynomial with QS,k(1) 6= 0, with leading term
(

kαS,k+ | S | −1

b

)

tb+1−αS,k ,

with αS,k = ⌈ b+1−|S|
k

⌉.

The following theorem is immediate from 5.1 and Corollary 5.2.
It improves the description of the Hilbert Poincaré series given in
[9].

Theorem 5.3. With the above notations, let S be the collection of
subsets of {0, ..., b} such that : S ∈ S if and only if S ⊂ {0, ..., b},
and ΣS :=

∑

i∈S ai < n. Then we can write the Hilbert-Poincaré
series of Rb,n,a:

PRb,n,a
=

Qb,n,a(t)

(1− t)b+1
,

with Qb,n,a(t) =
∑

S∈S(−1)|S|QS,n(t), where QS,n(t) is a polynomial
with QS,n(1) 6= 0, with leading term

(

(n− ΣS)αS,n−ΣS+ | S | −1

b

)

tb+1−αS,n−ΣS ,

where αS,n−ΣS = ⌈ b+1−|S|
n−ΣS

⌉.

Part one of the following corollary improves [9][Cor. 2.12].

Corollary 5.4. With the above notations:

1. reg(Rb,n,a) ≤ b+ 1− ⌈ b+1
n
⌉, and the equality is true if and only

if

∑

S∈S,αS,n−ΣS=⌈ b+1
n

⌉

(−1)|S|
(

(n− ΣS)αS,n−ΣS+ | S | −1

b

)

6= 0

2. If b + 1 > n2 then reg(Rb,n,a) = b + 1 − ⌈ b+1
n
⌉. Moreover the

leading term of Qb,n,a(t) is
(

(n⌈ b+1
n

⌉−1

b

)

tb+1−⌈ b+1
n

⌉,

Proof. 1. It is enough to prove that minS∈S⌈
b+1−|S|
n−ΣS

⌉ = ⌈ b+1
n
⌉.

We consider two cases,

• if b+ 1 < n then ⌈ b+1
n
⌉ = 1 ≤ ⌈ b+1−|S|

n−ΣS
⌉, ∀S ∈ S.
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• If b+ 1 ≥ n, then

b+ 1

n
≤

b+ 1− | S |

n− ΣS
⇔ (b+1)(n−ΣS) ≤ n(b+1− | S |) ⇔ (b+1)ΣS ≥ n | S |,

this is true since by hypothesis b+1
n

≥ 1 ≥ |S|
ΣS

.

2. Let b + 1 > n2 and S 6= ∅. By definition ⌈ b+1
n
⌉ is the integer q

such that b + 1 = qn − r, with 0 ≤ r < n and q ≥ n + 1. We
have

b+ 1− | S |= qn− r− | S |= q(n− ΣS)− r− | S | +qΣS,

and qΣS− | S |≥ (n + 1)ΣS− | S |≥ nΣS > r, so that

qΣS− | S | −r > 0, hence ⌈ b+1−|S|
n−ΣS

⌉ > q = ⌈ b+1
n
⌉.

In general leading terms of the alternating sum can cancel, as we
can see in the next example.

Example 5.5. Let consider the ring R4,3,(1,1,1,1,1), the sets S can
have 0,1 or 2 elements, and we have: If S = ∅ then α∅,3 = ⌈5

3
⌉ = 2,

if | S |= 1 then αS,3 = ⌈4
2
⌉ = 2, and finally if | S |= 2 then

αS,2 = ⌈3
1
⌉ = 3. By using Theorem 5.3 we can write

PR4,3,(1,1,1,1,1)
=

Q0(t)− 5Q1(t) + 10Q2(t)

(1− t)5
,

, with Q0(t) = 5t3 + ...;Q1(t) = t3 + ...;Q2(t) = t2 + ... Note that
in this case Q0(t) − 5Q1(t) + 10Q2(t) = h0 + h1t + h2t

2, where
h0 = 1, h1 = 5 and since h0 + h1 + h2 = deg(R4,3,(1,1,1,1,1)) = 11, we
get h2 = 5, so that

PR4,3,(1,1,1,1,1)
=

1 + 5t+ 5t2

(1− t)5
.
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