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Introduction

Veronese rings, Segre embeddings or more generally Segre-Veronese embeddings are very important rings in Algebraic Geometry. It is well known that these rings are arithmetically Cohen-Macaulay, hence their Hilbert-Poincaré series can be written P R (t) = Q R (t) (1-t) dim R , where Q R (t) is a polynomial on t with Q R (1) = 0 having positive integer coefficients, the sequence of the coefficients of Q R (t) is also called the h-vector of R. The degree of Q R (t) is the Castelnuovo-Mumford regularity (c.f. [START_REF] Eisenbud | The geometry of syzygies. A second course in commutative algebra and algebraic geometry[END_REF][Chapter 4]), and the leading term of Q R (t) is the highest graded Betti number of R. By using very original and elementary methods we are able to compute the leading term of Q R (t). Our results allows to compute the Castelnuovo-Mumford regularity of the n Veronese Module of any finitely generated Cohen-Macaulay graded module, and the rings called of Veronese type.

Note that this result can be proved easily by using local cohomology, but our purpose is to give a very elementary proof.

Our main results improves partially [START_REF] Barcanescu | Betti numbers of Segre-Veronese singularities[END_REF] and [START_REF] Cox | Regularity and Segre-Veronese embeddings[END_REF].

Theorem. Let consider the Segre-Veronese ring R b,n , dim R b,n = b 1 + ...

+ b m + 1. Let P R b,n (t) = Q R b,n (1-t) 
dim R b,n be the Hilbert-Poincaré series of R b,n , with Q R b,n = h 0 + h 1 t + ... + h r b,n t r b,n , where r b,n is the Castelnuovo-Mumford regularity of R b,n . We set α b,n = dim R b,nr b,n . After a permutation of b 1 , ..., b m , we can assume that, for all i = 1, ..., m,

⌈ b 1 +1 n 1 ⌉ > b i n i . Then α b,n = ⌈ b 1 + 1 n 1 ⌉ ,
and the highest Betti number of R b,n is

β r b,n = h r b,n = n 1 α b,n -1 b 1 ... n m α b,n -1 b m
Theorem. Fix integers d, n ∈ N * , τ ∈ Z. Let (a l ) l∈Z be a sequence of complex numbers, such that a l = 0 for l << 0, set :

f (t) = l∈Z a l t l , f <n,τ > (t) = l∈Z a nl+τ t l . If f (t) = h(t) (1-t) d with h(t) ∈ C[t, t -1 ] then f <n,τ > (t) = h <n> (t) (1-t) d with h <n> (t) ∈ C[t, t -1 ] such that: • deg h <n,τ > (t) ≤ d -⌈ d-deg h(t)+τ n ⌉,
• If all the coefficients of h(t) are positive real numbers then

deg h <n,τ > (t) = d -⌈ d-deg h(t)+τ n ⌉, • If deg h(t) = d then deg h <n> (t) = d.

Preliminaries on toric rings and Hilbert-Poincaré series

Let S = K[x 0 , ..., x s , x -1 0 , ..., x -1 s ] be a Laurent polynomial ring over a field K on a finite set of variables. For any finite set M of monomials in S, let K[M] ⊂ S be the subring of S generated by the set M. It is the toric ring defined by the semigroup generated by M.

In what follows we consider the special case where S = K[x 0 , ..., x s ] is a polynomial ring over the field K and all the monomials in M are of the same degree.

Example 2.1. Let S = K[x 0 , ..., x b ] ⊕ l∈N S l , and M = {x α 0 0 ...x α b b | α 0 + ... + α b = n}. So that R b,n = K[M] = ⊕ l∈N S nl .
This toric ring is known as the n-Veronese embedding of S.

Example 2.2. More generally, let X 1 , ..., X m , m sets of independent disjoint variables, with Card(

X i ) = b i + 1. Let S i = K[X i ] for i = 1, ..., m, S = K[X 1 ∪ X 2 ∪ X m ], and M = {x 1 x 2 ...x m | x i ∈ X i }. So that R b 1 ,...,bm = K[M] = ⊕ l∈N (S 1 ) l ⊗ ... ⊗ (S m ) l .
This toric ring is known as the Segre embedding of the m polynomial rings S 1 , ..., S m .

Example 2.3. Let X 1 , ..., X m , sets of independent disjoint variables such that X i = {x i,0 , ..., x i,b i }, S i = K[X i ] for i = 1, ..., m, and

n 1 , ..., n m ∈ N, Let S = K[X 1 ∪ X 2 ∪ X m ],
and

M = {x α 1 1 ...x αm m || α i |= n i }, where α i = (α i,0 , ..., α i,b i ), x α i i = x α i,0 i,0 ...x α i,b i i,b i , and | α i |= α i,0 + ... + α i,b i The Segre-Veronese embedding: R b,n = K[M] = ⊕ l∈N (S 1 ) n 1 l ⊗ ... ⊗ (S m ) nml , where b = (b 1 , ..., b m ), n = (n 1 , ..., n m ).
Let S = K[x 0 , ..., x s ] be a polynomial ring over the field K, graded by the standard graduation, that is deg x i = 1, for all i. Let R := S/I, where I ⊂ S is a graded ideal, let M = ⊕ l∈Z M l be a finitely generated graded R-module, hence M is also a S-module. the Hilbert-function of M is defined by H M (l) = dim K M l , for all l ∈ Z, and the Hilbert-Poincaré series of M :

P M (t) = l∈Z H M (l)t l .
It is well known that

P M (t) = Q M (t) (1 -t) dim M ,
where Q M (t) is a Laurent polynomial on t, t -1 with Q M (1) = 0. Moreover if M is a Cohen-Macaulay S-module, all the coefficients of Q M (t) are natural integers,and the Castelnuovo-Mumford regularity of M is the degree of Q M (t). For more details on Hilbert-Poincare series see [START_REF] Morales | Fonctions de Hilbert, genre géométrique d'une singularité quasi-homogène Cohen-Macaulay[END_REF], [4] Remark 2.6. We recall that binomial coefficients can be defined in a more general setting than natural numbers, indeed for k ∈ N, binomial coefficients are polynomial functions in the variable n. More precisely:

(1)

If k = 0 then let n 0 = 1, for all n ∈ C. (2) If k > 0 then let n k = n(n-1)...(n-k+1) k! , for all n ∈ C. Note that for all n ∈ C, n k = (-1) k k-n-1 k and if n ∈ N, n < k, then n k = 0. Example 2.7. Let S = K[x 0 , ..., x b ], be a polynomial ring. Then H S (l) = l+b b if l ≥ 0 0 if l < 0 , P S (t) = 1 (1 -t) b+1 . Note that in fact ∀l ≥ -b, H S (l) = l+b b and 0 = H S (-b -1) = -b-1+b b = (-1) b , so the postulation number of S is -(b + 1). Example 2.8. Let S = K[x 0 , ..., x b ], M = {x α 0 0 ...x α b b | α 0 +...+α b = n}, and R b,n = K[M] the n-Veronese embedding. Then H R b,n (l) = H S (nl) = nl+b b if l ≥ 0 0 if l < 0 . Note that nl+b b = (nl+1)(nl+2)...(nl+b) b! is a polynomial on l with lead- ing term n b l b b! , so that deg(R b,n ) = n b , dim R b,n = b + 1. Note also that ∀l > -⌈ b+1 n ⌉, H R b,n (l) = nl+b b and 0 = H R b,n (-⌈ b+1 n ⌉) = -⌈ b+1 n ⌉n+b b = (-1) b ⌈ b+1 n ⌉n-1 b , so the postulation number of R b,n is -⌈ b+1 n ⌉. More generally the postulation number of R b,n [τ ] is ⌈ b+1+τ n ⌉.

Veronese of generating series

In a recent paper [START_REF] Brenti | The Veronese construction for formal power series and graded algebras[END_REF], Brenti and Walker prove that taking the n-Veronese transform of the h polynomial is a linear function, in this section we improve this result giving a elementary proof of the fact that taking the shifted n-Veronese transform of the h polynomial is a linear function on h. Let recall the following fact:

Theorem 3.1. Let (a l ) l∈Z be a sequence of complex numbers, such that a l = 0 for l << 0, set : f (t) = l∈Z a l t l , TFAE:

• There exists h(t) ∈ C[t, t -1 ] and a natural integer d such that f (t) = h(t) (1-t) d . • There exists Φ(t) ∈ C[t, t -1 ] of degree d -1 with leading coeffi- cient e 0 /(d -1)!, such that Φ(l) = a l for l large enough. Moreover h(1) = e 0 . Definition 3.2. Fix integers d, n ∈ N * , τ ∈ Z.
Let (a l ) l∈Z be a sequence of complex numbers, such that a l = 0 for l << 0, set :

f (t) = l∈Z a l t l , f <n,τ > (t) = l∈Z a nl+τ t l .
By the Theorem 3.

1 if f (t) = h(t) (1-t) d with h(t) ∈ C[t, t -1 ] then f <n,τ > (t) = h <n,τ > (t) (1-t) d with h <n,τ > (t) ∈ C[t, t -1 ].
Let us introduce some notations. To any non zero polynomial

h(t) = h σ t σ + .... + h 0 + h 1 t + ... + h s t s ∈ C[t, t -1 ]
we associate the hvector h = (..., 0, h σ , ..., h s , 0, ...), and we set deg

- → h = deg h(t)
. For j ∈ Z, let -→ ε j be the h-vector of the polynomial t j . Let denote by [t k ]h(t) the coefficient of t k in the polynomial h(t). For any i, j ∈ Z define D i,j by

D i,j = [t in-j ]( (1 -t n ) d (1 -t) d ) = [t in-j ]((1 + t + ...t n-1 ) d ).
Note that

D i,j = Card{(x 1 , ..., x d ) ∈ N d | ∀l, x l ≤ n -1; x 1 + ... + x d = in -j}.
Finally let D[σ, τ ] be the infinite square matrix D[σ, τ ] = (D i+σ,j+τ ). For σ = τ = 0 we write D instead D[0, 0]. We can give some properties of the numbers D i,j .

Lemma 3.3. Let i, j, k ∈ Z, we have:

• D i,j = 0 if either in -j < 0 or in -j > d(n -1).
• For any i, j, D i,j = D d-i,d-j . That is D is symmetrical around the point (d/2, d/2).

• For 0 ≤ k ≤ n -1, D d,d+k = k+d-1 d-1 . • D 1,0 = n+d-1 d-1 -d, and for 1 ≤ k ≤ n, D 1,k = n-k+d-1 d-1 . • For any integers q, k, D d+q,nq+k = D d,k . • For any i, let d -i = nq -k with q = ⌈ d-i n ⌉, 0 ≤ k < n, then D d-⌈ d-i n ⌉,i = k + d -1 d -1 = n⌈ d-i n ⌉ + i -1 d -1 .
Proof. The first claim is trivial. In order to prove the other claims, let remark that the map (x 1 , ..., x d ) → (y 1 , ..., y d ), where y l = (n -1)x l for l = 1, ..., d, establishes a bijection between The fifth claim follows from the equality:

{(x 1 , ..., x d ) ∈ N d | x l ≤ n -1 for l =
(d + q)n -(nq + k) = dn -k.
Finally the sixth claim follows from the third claim, since, if

d -i = nq -k with 0 ≤ k < n, then (d -q)n -i = dn -(d + k), hence D d-q,i = D d,d+k , and n⌈ d-i n ⌉ + i -1 = k + d -1. Remark 3.4. With the notations introduced in 3.2, it is clear that f <n,kn+τ > (t) = t -k f <n,τ > (t), which implies h <n,kn+τ > (t) = t -k h <n,τ > (t)
for any integer numbers k, τ .

The following Theorem improves and gives a simpler proof of [2, Theorem 1.1]: Theorem 3.5. Fix integers d, n ∈ N * , τ ∈ Z. Let (a l ) l∈Z be a sequence of complex numbers, such that a l = 0 for l << 0, set :

f (t) = l∈Z a l t l = h(t) (1 -t) d , f <n,τ > (t) = l∈Z a nl+τ t l = h <n,τ > (t) (1 -t) d ,
where

h(t), h <n,τ > (t) ∈ C[t, t -1 ]. Then for any τ ∈ Z, ------→ h <n,kn+τ > = D[-k, -τ ] h.
Proof. Because the Remark 3.4 we have to compute h <n,τ > (t) only for 0 ≤ τ ≤ n -1. The following formula is clear:

f <n,0> (t n ) + tf <n,1> (t n ) + ... + t n-1 f <n,n-1> (t n ) = f (t), hence h <n,0> (t n ) + th <n,1> (t n ) + ... + t n-1 h <n,n-1> (t n ) (1 -t n ) d = h(t) (1 -t) d , and 
h <n,0> (t n ) + th <n,1> (t n ) + ... + t n-1 h <n,n-1> (t n ) = h(t) (1 -t n ) d (1 -t) d , t τ h <n,τ > (t n ) equals the sum of all the terms A β t β of h(t) (1-t n ) d (1-t) d with β ≡ τ mod n. In particular h <n,τ > (t)

is a linear function of h(t).

So it is enough to compute h <n,τ > (t) for the canonical basis {ε j := t j , j ∈ Z} of C[t, t -1 ]. We have

[t i ](h <n,τ > (t)) = [t ni+τ ](h(t) (1 -t n ) d (1 -t) d ), hence ∀j ∈ Z; [t i ](ε <n,τ > j (t)) = [t ni+τ ](t j ) (1 -t n ) d (1 -t) d = [t ni+τ -j ]( (1 -t n ) d (1 -t) d )
which proves our statement.

Corollary 3.6. Fix an integer d ∈ N * . For j ∈ Z, let -→ ε j be the h-vector of the polynomial t j . Then for any n ∈ N * , we have

deg --→ ε <n> j = d -⌈ d -j n ⌉. Moreover the leading coefficient of --→ ε <n> j is n⌈ d-j n ⌉+j-1 d-1
.

Proof. Let remark that the set of t j , j ∈ Z is the canonical basis of C[t, t Let (a l ) l∈Z be a sequence of complex numbers, such that a l = 0 for l << 0, set :

f (t) = l∈Z a l t l , f <n,τ > (t) = l∈Z a nl+τ t l . If f (t) = h(t) (1-t) d with h(t) ∈ C[t, t -1 ] then f <n,τ > (t) = h <n> (t) (1-t) d with h <n> (t) ∈ C[t, t -1 ] such that: • deg h <n,τ > (t) ≤ d -⌈ d-deg h(t)+τ n ⌉,
• If all the coefficients of h(t) are positive real numbers then

deg h <n,τ > (t) = d -⌈ d-deg h(t)+τ n ⌉, • If deg h(t) = d then deg h <n> (t) = d. Proof. Let f (t) = l∈Z a l t l = h(t) (1-t) d , where h(t) ∈ C[t, t -1 ] h(t) = γ σ t σ + ... + γ s t s with deg h(t) = s, γ s = 0. It follows that - → h = s l=σ γ l - → ε l .
We multiply this relation on the left by D[-τ ], so 

Theorem 3.5 implies ----→ h <n,τ > = s l=σ γ l --→ ε <n> l-τ . Since deg --→ ε <n> σ-τ ≤ deg ----→ ε <n> σ-τ +1 ≤ ... ≤ deg --→ ε <n> s-τ , we have, deg ----→ h <n,τ > ≤ deg --→ ε <n> s-τ . It is clear that if all the coefficients of h(t)
M <n> = ⊕ l∈Z M nl . Let Q(t) (1 -t) d be the Hilbert-Poincaré series of M , where Q(t) = γ σ t σ + ... + γ s t s ∈ C[t, t -1 ] is the h-polynomial of M , with reg(M ) = deg Q(t) = s. Then • reg M <n> = d -⌈ d-reg M n ⌉.
Moreover by taking the sum over all index l such that ⌈ d-l n ⌉ = ⌈ d-reg M n ⌉, we will get the leading coefficient of Q <n> (t):

l | ⌈ d-l n ⌉=⌈ d-reg M n ⌉ γ l n⌈ d-l n ⌉ + l -1 d -1 . • If reg M ≤ d -1 and n ≥ d then reg M <n> = d -1, and the leading coefficient of Q <n> (t) is d-1 l=0 γ l n⌈ d-l n ⌉ + l -1 d -1 . • If n > reg M ≥ d then reg M <n> = d, and the leading coeffi- cient of Q <n> (t) is reg M l=d γ l l -1 d -1 .
Proof. We have

- → Q = s l=σ γ l - → ε l .
We multiply this relation on the left by D, so Theorem 3.5 implies that for any

n ∈ N * , ---→ Q <n> = s l=σ γ l --→ ε <n> l
. Since γ l ≥ 0 for all l, γ s > 0, and deg

--→ ε <n> σ ≤ deg --→ ε <n> σ+1 ≤ ... ≤ deg --→ ε <n> s , we have, deg ---→ Q <n> = deg --→ ε <n> s = d - ⌈ d-reg M n ⌉, this number is reg(M <n> ) since M <n> is a Cohen-Macaulay S-module. The computation of the leading coefficient of Q <n> (t) is immediate from Lemma 3.6.
4 h-vector of the Segre-Veronese embedding.

The next Theorem improves partially [START_REF] Barcanescu | Betti numbers of Segre-Veronese singularities[END_REF] and [START_REF] Cox | Regularity and Segre-Veronese embeddings[END_REF].

Theorem 4.1. Let consider the Segre-Veronese ring R b,n , dim R b,n = b 1 + ... + b m + 1. Let P R b,n (t) = Q R b,n (t) (1 -t) dim R b,n be the Hilbert-Poincaré series of R b,n , with Q R b,n (t) = h 0 + h 1 t + ... + h r b,n t r b,n , where r b,n = deg Q R b,n (t) is the Castelnuovo-Mumford regularity of R b,n . We set α b,n = dim R b,n -r b,n . After a permutation of b 1 , ..., b m , we can assume that ⌈ b 1 +1 n 1 ⌉ > b i n i ∀i, then α b,n = ⌈ b 1 + 1 n 1 ⌉ r b,n = (b 1 + ... + b m + 1) -⌈ b 1 + 1 n 1 ⌉,
and the highest Betti number of R b,n is

β r b,n = h r b,n = n 1 α b,n -1 b 1 ... n m α b,n -1 b m
Proof. The proof is by double induction on m and b m . The case m = 1 is given by the Example 2.8 and Corollary 3.6, so we can assume m ≥ 2. We have that 

⌈ b 1 +1 n 1 ⌉ > bm nm > bm-
of R b,n is H R b,n (l) = n 1 l+b 1 b 1 ... nml+bm bm , so H R b,n (l) = (1 + n m b m l)H R b-ǫm,n (l). ( 1 
)
Let P R b-ǫm,n (t) = Q R b-ǫm,n (t) (1 -t) b 1 +...+bm be the Hilbert-Poincaré series of R b-ǫm,n , where Q R b-ǫm,n (t) = h 0 + h 1 t + ... + h r b-ǫm,n t r b-ǫm,n
, with h r b-ǫm,n = 0. In order to avoid any confusion we also set :

P R b,n (t) = Q R b,n (t) (1 -t) b 1 +...+bm+1 be the Hilbert-Poincaré series of R b,n , where Q R b,n (t) = ĥ0 + ... + ĥr b,n t r b,n ,
with ĥr b,n = 0.

Let β = nm bm , by simple calculations from (1) we get:

P R b,n (t) = P R b-ǫm,n (t) + βtP ′ R b-ǫm,n (t). (2) 
Hence dim R b,n = dim R b-ǫm,n + 1, and

Q R b,n (t) = Q R b-ǫm,n (t)+t[Q R b-ǫm,n (t)(βR b-ǫm,n -1)+βQ ′ R b-ǫm,n (t)-βtQ ′ R b-ǫm,n (t)], note that Q R b,n (1) = β dim R b-ǫm,n Q R b-ǫm,n (1) = 0.
In particular we have r b,n ≤ r b-ǫm,n +1 and for all k = 0, ..., r b-ǫm,n + 1 we have ĥk

= h k-1 ( n m b m dim R b-ǫm,n -(k -1) n m b m -1) + h k (k n m b m + 1). ( 3 
)
By induction hypothesis we have α b-ǫm,n = ⌈ b 1 +1 n 1 ⌉ = bm nm , so we put k = r b-ǫm,n + 1 in equality (3), and we get:

ĥr b-ǫm,n +1 = h r b-ǫm,n ( n m α b-ǫm,n -b m b m ) = 0.
Hence ĥr b-ǫm,n +1 is the leading coefficient of Q R b,n and r b,n = r b-ǫm,n + 1 and

α b,n = α b-ǫm,n = ⌈ b 1 +1 n 1 ⌉. By induction hypothesis h r b-ǫm,n = n 1 α b,n -1 b 1 ... n m-1 α b,n -1 b m-1 n m α b,n -1 b m so that ĥr b,n = n 1 α b,n -1 b 1 ... n m-1 α b,n -1 b m-1 n m α b,n -1 b m -1 ( n m α b,n -b m b m ) = n 1 α b,n -1 b 1 ... n m-1 α b,n -1 b m-1 n m α b,n -1 b m .

Rings of Veronese type

Let b, n ∈ N * , a = (a 0 , ..., a b ) ∈ N b+1 such that 1 ≤ a i ≤ n, a 0 + ... + a b > n, and M b,n,a be the set of monomials of the polynomial ring K[x 0 , ..., x b ]:

M b,n,a = {x α 0 0 ...x α b b | α 0 + ... + α b = n, α i ≤ a i , ∀i = 0, ..., b}.
Let denote by R b,n,a the toric subring of K[x 0 , ..., x b ] generated by M b,n,a . It is well known that R b,n,a is a Cohen-Macaulay ring. Let S be the collection of subsets of {0, ..., b} such that : S ∈ S if and only if S ⊂ {0, ..., b}, and ΣS := i∈S a i < n. Our aim is to study the Hilbert-Poincaré series of R b,n,a :

P R b,n,a = S∈S (-1) |S| l≥0 l(n -ΣS)-| S | +b b t l .
The following Corollary follows immediately from 3.6.

Corollary 5.2. For any S ∈ S and k ∈ N * , we have:

l≥0 kl-| S | +b b t l = Q S,k (t) (1 -t) b+1 , where Q S,k (t) is a polynomial with Q S,k (1) = 0, with leading term kα S,k + | S | -1 b t b+1-α S,k , with α S,k = ⌈ b+1-|S| k ⌉.
The following theorem is immediate from 5.1 and Corollary 5.2. It improves the description of the Hilbert Poincaré series given in [START_REF] Katzman | The Hilbert series of algebras of the Veronese type[END_REF]. Theorem 5.3. With the above notations, let S be the collection of subsets of {0, ..., b} such that : S ∈ S if and only if S ⊂ {0, ..., b}, and ΣS := i∈S a i < n. Then we can write the Hilbert-Poincaré series of R b,n,a : In general leading terms of the alternating sum can cancel, as we can see in the next example. 

P R b,n,a = Q b,n,a (t) (1 -t) b+1 , with Q b,n,a (t) = S∈S (-1) |S| Q S,n (t), where Q S,n (t) is a polynomial with Q S,n (1) 

Remark 2 . 5 .

 25 [Chapter 4], [7][Chapter 4]. Theorem 2.4. (Hilbert's Theorem) let M = ⊕ l∈Z M l be a finitely generated graded S-module. There exists a polynomial with integer coefficients Φ H M (l) such that H M (l) = Φ H M (l), for l large enough. Moreover the leading term of Φ H M (l) can be written as : deg(M ) d! l d , where d + 1 is the dimension of M and deg(M ) the degree or multiplicity of M . The postulation number of the Hilbert function is the biggest integer l such that H M (l) = Φ H M (l). It is well known , ([10], [4][Chapter 4]), that the postulation number equals the degree of the rational fraction defining the Poincaré series.

1 ,

 1 ..., d; x 1 + ... + x d = in -j} and {(y 1 , ..., y d ) ∈ N d | y l ≤ n-1 for l = 1, ..., d; y 1 +...+y d = (d-i)n-(d-j)}. The third claim follows from the second claim, because if 0 ≤ k ≤ n -1, then the sets {(x 1 , ..., x d ) ∈ N d | x l ≤ n-1 for l = 1, ..., d; x 1 +...+x d = dn-d-k} and {(y 1 , ..., y d ) ∈ N d | y 1 + ... + y d = k} are in bijection. The fourth claim follows trivially from the previous items.

1 . 1 . 3 . 7 . 1 Theorem 3 . 8 .

 1137138 -1 ]. We have byTheorem 3.5 that D -→ ε j = j column vector of D. By the Example 2.8, we have that deg The last claim follows from the Lemma 3.3. Indeed for any j ∈ Z, we have D d-⌈ d-j n ⌉,j = n⌈ d-j n ⌉+j-1 d-This Example Let d = 2 and n ∈ N * , we can describe the matrix D ij -(n+1) ... Fix integers d, n ∈ N * , τ ∈ Z.

Theorem 3 . 9 .

 39 are positive real numbers then deg ----→ h <n,τ > = deg --→ ε <n> s-τ . In the special case s = d, we have seen that for 0 ≤ l ≤ d -1 and any n ∈ N * , deg --→ ε <n> l = d -⌈ d-l n ⌉ ≤ d -1, and deg Let n ∈ N * , S be a standard graded polynomial ring, M = ⊕ l∈Z M l be a finitely generated Cohen-Macaulay graded S-module of dimension d ≥ 1, and

  1 nm , so by induction hypothesis the theorem is true for R b-ǫm,n , where bǫ m = (b 1 , ..., b m-1 , b m -1). On the other hand the Hilbert function

Theorem 5 . 1 .

 51 ([9]) With the above notations the Hilbert-function of R b,n,a is ∀l ≥ 0; H b,n,a (l) = S∈S (-1) |S| l(n -ΣS)-| S | +b b We have dim(R b,n,a ) = b + 1, and its degree or multiplicity is deg(R b,n,a ) = S∈S (-1) |S| (n -ΣS) b .

(- 1 )= 0 2 . 2 .

 122 = 0, with leading term (n -ΣS)α S,n-ΣS + | S | -1 b t b+1-α S,n-ΣS , where α S,n-ΣS = ⌈ b+1-|S| n-ΣS ⌉. Part one of the following corollary improves [9][Cor. 2.12]. Corollary 5.4. With the above notations: 1. reg(R b,n,a ) ≤ b + 1 -⌈ b+1 n ⌉, and the equality is true if and only ifS∈S,α S,n-ΣS =⌈ b+1 n ⌉ |S| (n -ΣS)α S,n-ΣS + | S | -1 b If b + 1 > n 2 then reg(R b,n,a ) = b + 1 -⌈ b+1 n ⌉. Moreover the leading term of Q b,n,a (t) is (n⌈ b+1 n ⌉-1 b t b+1-⌈ b+1 n ⌉ , Proof. 1. It is enough to prove that min S∈S ⌈ b+1-|S| n-ΣS ⌉ = ⌈ b+1 n ⌉. We consider two cases, • if b + 1 < n then ⌈ b+1 n ⌉ = 1 ≤ ⌈ b+1-|S| n-ΣS ⌉, ∀S ∈ S. • If b + 1 ≥ n, then b + 1 n ≤ b + 1-| S | n -ΣS ⇔ (b+1)(n-ΣS) ≤ n(b+1-| S |) ⇔ (b+1)ΣS ≥ n | S |,this is true since by hypothesis b+1 n ≥ 1 ≥ |S| ΣS . Let b + 1 > n 2 and S = ∅. By definition ⌈ b+1 n ⌉ is the integer q such that b + 1 = qnr, with 0 ≤ r < n and q ≥ n + 1. We have b + 1-| S |= qnr-| S |= q(n -ΣS)r-| S | +qΣS, and qΣS-| S |≥ (n + 1)ΣS-| S |≥ nΣS > r, so that qΣS-| S | -r > 0, hence ⌈ b+1-|S| n-ΣS ⌉ > q = ⌈ b+1 n ⌉.

Example 5 . 5 . 1 ⌉ = 3 .

 5513 Let consider the ring R 4,3,(1,1,1,1,1) , the sets S can have 0,1 or 2 elements, and we have:If S = ∅ then α ∅,3 = ⌈ 5 3 ⌉ = 2, if | S |= 1 then α S,3 = ⌈ 4 2 ⌉ = 2,and finally if | S |= 2 then α S,2 = ⌈ 3 By using Theorem 5.3 we can write P R 4,3,(1,1,1,1,1) = Q 0 (t) -5Q 1 (t) + 10Q

  , with Q 0 (t) = 5t3 + ...; Q 1 (t) = t 3 + ...; Q 2 (t) = t 2 + ... Note that in this case Q 0 (t) -5Q 1 (t) + 10Q 2 (t) = h 0 + h 1 t + h 2 t 2 , where h 0 = 1, h 1 = 5 and since h 0 + h 1 + h 2 = deg(R 4,3,(1,1,1,1,1) ) = 11, we get h 2 = 5, so that P R 4,3,(1,1,1,1,1) = 1 + 5t + 5t 2 (1t) 5 .

2 (t) (1t)

5 

,