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Abstract1 In a recent preprint, Ilse Fischer and Martina Kubitzke, proved the bilinearity
of the Segre transform under some restricted hypothesis, motivated by their results we show
in this paper the bilinearity of the Segre transform in general. We apply these results to
compute the postulation number of a series. Our second application is motivated by the
paper of David A. Cox, and Evgeny Materov (2009), where is computed the Castelnuovo-
Mumford regularity of the Segre Veronese embedding, we can extend partially their result
and compute the Castelnuovo-Mumford regularity of the Segre product of Cohen-Macaulay
modules.
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1 Introduction

In this paper, we deal only with formal Laurent series

a =
∑

l>σa

alt
l, σa ∈ Z, al ∈ C

such that

(∗) a =
h(a)(t)

(1− t)da
, for some da > 0, h(a)(t) ∈ C[t, t−1].

Given two formal Laurent series a, b satisfying (*), the Segre transform a⊗b is defined by

a⊗b =
∑

l>σ

alblt
l,

1 Partially supported by VIASM, Hanoi, Vietnam.
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where σ = max{σa, σb}. In a recent preprint [F-K], the authors proved the bilinearity of the
Segre transform under some restricted hypothesis, motivated by this results we show in this
paper the bilinearity of the Segre transform in general. We apply these results to compute
the postulation number of a Segre product of series satisfying (*). Property (*) is equivalent
to the existence of a polynomial Φa(t) ∈ C[t], such that an = Φa(n) for n large enough. The
postulation number is the smallest integer βa such that an = Φ(n) for n > βa. It is well
known that βa = deg h(a)(t)− da.

Our second application is motivated by the paper [C-M], where is computed the Castelnuovo-
Mumford regularity of the Segre Veronese embedding, we can extend partially their result.
Our main result is:

Theorem. Let S1, . . . , Ss be graded polynomial rings on disjoints of set of variables. For all
i = 1, . . . , s, let Mi be a graded finitely generated Si-Cohen-Macaulay module. We assume
that Mi = ⊕l>0Mi,l as Si-module. Let di = dimMi, bi = di − 1 ≥ 0, αi = di − reg(Mi), where
reg(Mi) is the Castelnuovo-Mumford regularity of Mi. If reg(Mi) < di, for all i = 1, . . . , s
then

(1) M1⊗ . . .⊗Ms is a Cohen-Macaulay S1⊗ . . .⊗Ss-module.

(2) reg(M1⊗ . . .⊗Ms) = (b1 + . . .+ bs + 1)−max{α1, . . . αs}.

(3) For ni ∈ N, let M<ni>
i be the ni-Veronese transform of Mi, then

reg(M<n1>
1 ⊗ . . .⊗M<ns>

s ) = (b1 + . . .+ bs + 1)−max{⌈
α1

n1
⌉, . . . , ⌈

αs

ns

⌉}.

Note that this result can be proved easily by using local cohomology, but our purpose is
to give a very elementary proof.

Segre transform of Laurent series

In this paper, we deal only with formal Laurent series

a =
∑

l>σa

alt
l, σa ∈ Z, al ∈ C

such that

(∗) a =
h(a)(t)

(1− t)da
, for some da > 0, h(a)(t) ∈ C[t, t−1].

We will set h(a)(t) =
∑

n>σa
hn(a)t

n.

Definition 1.1. Let a, b be two formal Laurent series satisfying (*). the Segre transform
a⊗b is defined by

a⊗b =
∑

l>σ

alblt
l,

where σ = max{σa, σb}.

In all this paper we assume that a⊗b 6= 0.
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Lemma 1.2. a⊗b satisfies (∗).

Proof. By [M1], property (*) is equivalent to the existence of a polynomial Φa(l) such that
Φa(l) = al for l large enough. Moreover,

{

da = deg Φa + 1 if Φa is a non zero polynomial

da = 0 if Φa = 0.

We have also a polynomial Φb(l) such that Φb(l) = bl for l large enough. Hence albl =
Φa(l)Φb(l) is a polynomial for l large enough, and again by [M1], there exist a Laurent
polynomial h(a⊗b)(t) such that

a⊗b =
h(a⊗b)(t)

(1− t)da⊗b

,

where

da⊗b =

{

0 if either da = 0 or db = 0

da + db − 1 if da, db > 1.

Remark 1.3. We recall that binomial coefficients can be defined in a more general setting
than natural numbers, indeed for k ∈ N, binomial coefficients are polynomial functions in
the variable n. More precisely:

(1) If k = 0 then let
(

n

0

)

= 1, for all n ∈ C.

(2) If k > 0 then let
(

n

k

)

=n(n−1)...(n−k+1)
k!

, for all n ∈ C.

Note that for all n ∈ C,
(

n

k

)

= (−1)k
(

k−n−1
k

)

and if n ∈ N, n < k, then
(

n

k

)

= 0.

2 Segre transform is bilinear

Let recall the following Lemma 1 from [M1].

Lemma 2.1. Let

a =
∑

l>σa

alt
l =

h(a)(t)

(1− t)da
,

with h(a)(t) = hσa
tσa + . . . + hrat

ra, da > 0 and σa ≤ ra ∈ Z. We will set ba = da − 1. Then
for all n = σa, . . . , ra we have

hn(a) =
n−σa
∑

k=0

(−1)k
(

da

k

)

an−k =
n

∑

k=σa

(−1)n−k

(

da

n− k

)

ak. (1)
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On the other hand we have for all k > σa

ak =
k−σa
∑

i=0

hk−i(a)

(

ba + i

i

)

=
k

∑

i=σa

hi(a)

(

ba + k − i

k − i

)

(2)

The first claim follows from the equality:

(
∑

l>σa

alt
l)((1− t)da) = h(a)(t).

The second claim since:

∑

l>σa

alt
l =

h(a)(t)

(1− t)da
= (h(a)(t))(

∑

i>0

(

ba + i

i

)

ti)

The following two theorems extend [F-K, Theorem 1].

Theorem 2.2. Let a, b be two formal power series satisfying property (*). If da = 0 , then
for all n ∈ Z

hn(a⊗b) = anbn = hn(a)
n

∑

j=σb

hj(b)

(

bb + n− j

n− j

)

.

Moreover, deg h(a⊗b)(t) 6 deg a. If db > 0 and hj(b) > 0, for all j then deg h(a⊗b)(t) =
deg(a).

Proof. Since da = 0, a is a Laurent polynomial, we have that hn(a) = an, for all n ∈ Z and
an = 0 for n > deg(a), which implies that

a⊗b =
∑

n6deg(a)

anbnt
n.

hence deg h(a⊗b)(t) ≤ deg(a). Now suppose that db > 0 and hj(b) > 0 for all j, by using
equation (2) we have,

hn(a⊗b) = hn(a)

n
∑

j=σb

hj(b)

(

bb + n− j

n− j

)

.

Note that hσb
> 0,

(

bb+n−σb

n−σb

)

> 0, for n ≥ σb. The assumption (a⊗b) 6= 0 implies σb 6 deg a,

so
∑deg a

j=σb
hj(b)

(

bb+deg a−j

deg a−j

)

> 0. Hence hdeg a(a⊗b) > 0 and the claim is over.

Remark 2.3. Let a, b be two formal power Laurent series satisfying property (*), the product
hi(a)hj(b) is null for any i < σ, j < σ, where σ is any of the numbers σa, σb, σ(a⊗b) =
max(σa, σb),min(σa, σb).
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Theorem 2.4. Let a, b be any formal power Laurent series satisfying property (*). Let ba =
da−1 > 0, bb = db−1 > 0 and σ be any of the numbers σa, σb, σ(a⊗b) = max(σa, σb),min(σa, σb).
Then for any n ∈ Z

hn(a⊗b) =
∞
∑

i=σ

∞
∑

j=σ

hi(a)hj(b)

(

ba + j − i

n− i

)(

bb + i− j

n− j

)

.

The proof will follow immediately from the Lemma 2.1 and the proof of [F-K, Theorem
1]:

3 Postulation number, Castelnuovo-Mummford regularity

Lemma 3.1. Let i, j ∈ Z, b1 := d1 − 1 > 0, b2 := d2 − 1 > 0 and

T i
d1

:=
ti

(1− t)d1
;T j

d2
:=

tj

(1− t)d2

Then

T i
d1
⊗T

j
d2

=

∑ri,j
n=max(i,j)

(

b1+j−i

n−i

)(

b2+i−j

n−j

)

tn

(1− t)b1+b2+1
, (3)

where :

ri,j =

{

min(b1 + j, b2 + i) if b2 + i− j > 0 and b1 + j − i > 0

max(b1 + j, b2 + i) if b2 + i− j < 0 or b1 + j − i < 0.

Proof. The equality (3) follows from theorem 2.4. We need to check that for n > ri,j , we

have
(

b1+j−i

n−i

)(

b2+i−j

n−j

)

= 0, and that for n = ri,j, we have
(

b1+j−i

n−i

)(

b2+i−j

n−j

)

6= 0. We have two
cases:

1. If b1 + j − i ≥ 0 and b2 + i− j ≥ 0, then
(

b1+j−i

n−i

)

= 0 if and only if b1 + j < n. Hence
ri,j = min(b1 + j, b2 + i).

2. Either b1 + j − i < 0 or b2 + i − j < 0. Suppose for example that b1 + j − i < 0 then
(

b1+j−i

n−i

)

6= 0, and
(

b2+i−j

n−j

)

= 0 if and only if b2 + i < n, but b1 + j < i ≤ b2 + i < n.

Hence ri,j = max(b1 + j, b2 + i).

Example 3.2. Let α, β ∈ Z, we study T α
d ⊗T

β
1 . We consider two cases:

(1) If max(α, β) = α then

T α
d ⊗T

β
1 =

tα

(1− t)d
.
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(2) If max(α, β) = β > α then

T α
d ⊗T

β
1 =

tα − tα(
∑β−α−1

l=0

(

d−1+l

l

)

tl)(1− t)d

(1− t)d
.

Note that deg(tα − tα(
∑β−α−1

l=0

(

d−1+l

l

)

tl)(1− t)d) = d− 1 + β.

Proposition 3.3. Let

a =
h(a)(t)

(1− t)da
; b =

h(b)(t)

(1− t)db
, where h(a)(t), h(b)(t) ∈ C[t, t−1].

For any non null Laurent series satisfying property (*), we denote σa = minn hn(a) 6= 0, ra =
deg h(a)(t). Then

(1) ra⊗b 6 max(ba + rb, bb + ra).

(2) If for all σa 6 i 6 ra, σb 6 j 6 rb such that hi(a) 6= 0, hj(b) 6= 0 we have bb + i− j >

0 and ba + j − i > 0 then
ra⊗b 6 min(ba + rb, bb + ra).

Moreover, if for all i, j, hi(a) > 0, hj(b) > 0 then ra⊗b = min(ba + rb, bb + ra).

(3) If 0 6 σa 6 ra 6 ba and 0 6 σb 6 rb 6 bb, then

ra⊗b 6 min(ba + rb, bb + ra).

Moreover, if for all i, j, hi(a) > 0, hj(b) > 0 then ra⊗b = min(ba + rb, bb + ra).

Proof. (1) Let n > max(ba + rb, bb + ra), for all i 6 ra, j 6 rb. By the Lemma 3.1, this
implies that Ai,j,n = 0, for all i 6 ra, j 6 rb. Hence hn(a⊗b) = 0, which implies that
σ(a⊗b) 6 max(ba + j, bb + i).

(2) Since for all σa 6 i 6 ra, σb 6 j 6 rb, we have that bb + i− j > 0 and ba + j − i > 0,
by the Lemma 3.1, we have that ri,j = min(ba + j, bb + i). This implies for all i, j that

Ai,j,ri,j 6= 0 and Ai,j,n = 0 for n > ri,j.

On the other hand

min(ba + rb, bb + ra) > min(ba + rb, bb + i) > min(ba + j, bb + i),

for all σa 6 i 6 ra, σb 6 j 6 rb. Hence Ai,j,n = 0 for n > min(ba + rb, bb + ra). Note that
the conditions ba + j − i > 0, bb + i− j > 0 implies that Ai,j,n > 0 for all n. Hence if for all
i, j, hi(a) > 0, hj(b) > 0 then hn(a⊗b) > 0 for all n, and for m := min(ba + rb, bb + ra) we
have:

hm(a⊗b) =
∑

i,j|Ai,j,m 6=0

hi(a)hj(b)Ai,j,m > 0.

(3) If 0 6 σa 6 ra 6 ba and 0 6 σb 6 rb 6 bb then ba + j > ba > i and bb + i > bb > j.
Therefore ba + j − i > 0 and bb + i− j > 0. Hence, the claim follows from the claim 2.
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Remark 3.4. The bounds obtained are sharp.

Lemma 3.5. The following statements are equivalent:

(1) For all σa 6 i 6 ra and σb 6 j 6 rb, we have

bb + i− j > 0 and ba + j − i > 0.

(2) bb + σa − rb > 0 and ba + σb − ra > 0. (∗∗)

Proof. (2) ⇒ (1). Take i = σa, j = rb in the first inequality and j = σb, i = ra in the second.

(1) ⇒ (2). Let σa 6 i 6 ra, σb 6 j 6 rb, then

i+ bb − j > i+ bb − rb > σa + bb − rb > 0 and j + ba − i > i+ ba − ra > σb + ba − ra > 0.

Remark 3.6. Suppose that Ma,Mb are Cohen-Macaulay modules of dimensions da = ba+1 ≥
2, db = bb + 1 ≥ 2, with Hilbert-Poincaré series a, b. Then the conditions bb + σa − rb > 0
and ba + σb − ra > 0 are equivalent to say that Ma⊗Mb is a Cohen-Macaulay module by
[G-W][Proposition (4.2.5)].

Proposition 3.7. Let consider a1, . . . , as Laurent formal series satisfying (*)

ai =
h(ai)(t)

(1− t)di
, h(ai)(t) ∈ C[t, t−1].

We set ri = deg h(ai)(t), αi = di − ri, bi = di − 1 > 0 and

a1⊗ . . .⊗as =
h(a1⊗ . . .⊗as)(t)

(1− t)b1+...+bs+1
.

Then

(1) deg(h(a1⊗ . . .⊗as)) 6 (b1 + . . .+ bs + 1)−min(α1, . . . , αs).

(2) If the condition (**) of Lemma 3.5 is fulfilled for

{a1, a2}, {a1⊗a2, a3}, . . . , {a1⊗ . . .⊗as−1, as}

and hk(ai) > 0 for all i and k, then

deg(h(a1⊗ . . .⊗as)) = (b1 + . . .+ bs + 1)−max(α1, . . . , αs).

(3) If for all i = 1, ..., s, 0 ≤ σiri < di, then the condition (**) of Lemma 3.5 is fulfilled
for

{a1, a2}, {a1⊗a2, a3}, . . . , {a1⊗ . . .⊗as−1, as}.
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Proof. (1) Note that

max(b1 + r2, b2 + r1) = max(b1 + b2 + 1− α2, b1 + b2 + 1− α1) = b1 + b2 + 1−min(α1, α2).

Now suppose s > 3, we prove the claim by induction. Assume that (1) is true for the case
s− 1 :

deg(h(a1⊗ . . .⊗as−1)) 6 (b1 + . . .+ bs−1 + 1)−min(α1, . . . , αs−1).

Then, by the Proposition 3.3

deg(h(a1⊗ . . .⊗as−1)⊗as)) 6 max(b1 + . . .+ bs−1 + rs, bs + deg(a1⊗ . . .⊗as−1)

6 max(b1 + . . .+ bs−1 + bs + 1− αs, b1 + . . .+ bs + 1−min(α1, . . . , αs−1)

= b1 + . . .+ bs + 1 +max(−αs,−min(α1, . . . , αs−1))

= b1 + . . .+ bs + 1−min(αs,min(α1, . . . , αs−1))

= b1 + . . .+ bs + 1−min(αs,min(α1, . . . , αs))

(2) Since condition (**) is fulfilled, we can apply Proposition 3.3 and we get:

deg(a1⊗a2) 6 min(b1 + r2, b2 + r1) = min(b1 + b2 + 1− α2, b2 + b1 + 1− α1)

= b1 + b2 + 1 +min(−α1,−α2) = b1 + b2 + 1−max(α1, α2)

and we have equality if hk(ai) > 0, for all i, k. By induction hypothesis we assume that

deg(a1⊗ . . .⊗as−1) 6 (b1 + . . .+ bs−1 + 1−max(α1, . . . , αs−1) (4)

and we have equality if hk(ai) > 0, for all i, k. Moreover by Proposition 3.3,the coefficients
hk(a1⊗ . . .⊗as−1) are > 0. On the other hand, condition (**) is fulfilled, so we can apply
Proposition 3.3, we have:

deg(a1⊗ . . .⊗as−1)⊗as)) 6 min(b1 + . . .+ bs−1 + rs, bs + deg(a1⊗ . . .⊗as−1) (5),

where we have the equality if hk(as) > 0 and hk(a1⊗ . . .⊗as−1) > 0, which is true since by
hypothesis hk(ai) > 0 for all i, k.

Using (4) in (5) we get

deg(h(a1⊗ . . .⊗as)) 6

min(b1 + . . .+ bs−1 + 1− αs, bs + b1 + . . .+ bs−1 + 1−max(α1, αs−1))

= b1 + . . .+ bs + 1 +min(−αs,−max(α1, . . . , αs−1))

= b1 + . . .+ bs + 1−max(αs,max(α1, . . . , αs−1))

= b1 + . . .+ bs + 1−max(αs,min(α1, . . . , αs))

and we have the equality if hk(ai) > 0 for all i, k.

(3) The proof is immediate from Proposition 3.3.
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4 h− vector of the Segre product of s power series

The proof of the following theorem is direct from 2.4 by using induction.

Theorem 4.1. With the notations of Proposition 3.7.

For σs ≤ is ≤ b1 + ... + bs −min{α1, ..., αs} we have

his(a1⊗...⊗as) =
∑

(i1,i2,...,is−1,l2,...,ls)∈∆

hi1(a1)hl2(a2)...hls(as)Ai1,l2,i2...Ais−1,ls,is

where

∀k = 2, ..., s; Aik−1,lk,ik =

(

b1 + ...+ bk−1 + lk − ik−1

ik − ik−1

)(

bk + ik−1 − lk

ik − lk

)

,

and ∆ is defined by : for any τ = 2, ..., s,

στ ≤ lτ ≤ bτ + 1− ατ , στ−1 ≤ iτ−1 ≤ min{b1 + ...+ bτ−1 −min{α1, ..., ατ−1}, iτ}.

There is an important corollary that will be used in [M1] to prove the conjecture by
Simon Newcomb:

Theorem 4.2. For j = 1, ..., n, let Sj be a polynomial ring over a field K in bj+1 variables,

aj the Hilbert-Poincare series of Sj, that is aj =
1

(1− t)bj+1
then:

For k = 0, ..., b1 + ...+ bn −max{b1, ..., bn}, we have

A([b], k) =
∑

(i2,...,in−1)∈∆

Ai2Ai2,i3Ai3,i4...Ain−1,in,

where

in := k;Ai2 =

(

b1

i2

)(

b2

i2

)

; ∀s = 2, ..., n− 1, Ais,is+1
=

(

b1 + ... + bs − is

is+1 − is

)(

bs+1 + is

is+1

)

≥ 0

and ∆ is defined by : for any τ = 2, ..., n− 1

0 ≤ iτ ≤ min{b1 + ... + bτ −max{b1, ..., bτ}, iτ+1}

Applying Proposition 3.7 to modules we get the following Theorem (note that this the-
orem can be proved easily by using [G-W], but our purpose is to prove it by using only
elementary tools):

Theorem 4.3. Let S1, . . . , Ss be graded polynomial rings on disjoints sets of variables. For
all i = 1, . . . , s, let Mi be a graded finitely generated Si-Cohen-Macaulay module. We assume
that Mi = ⊕l>0Mi,l as Si-module. Let di = dimMi, bi = di − 1 ≥ 0, αi = di − reg(Mi), where
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reg(Mi) is the Castelnuovo-Mumford regularity of Mi. If reg(Mi) < di, for all i = 1, . . . , s
then

(1) M1⊗ . . .⊗Ms is a Cohen-Macaulay S1⊗ . . .⊗Ss-module.

(2) reg(M1⊗ . . .⊗Ms) = (b1 + . . .+ bs + 1)−max{α1, . . . αs}.

(3) For ni ∈ N, let M<ni>
i be the ni-Veronese transform of Mi, then

reg(M<n1>
1 ⊗ . . .⊗M<ns>

s ) = (b1 + . . .+ bs + 1)−max{⌈
α1

n1

⌉, . . . , ⌈
αs

ns

⌉}.

Proof. We have that for all i = 1, ..., s, 0 ≤ σ(Mi), reg(Mi) < di, then statement (3) of Propo-
sition 3.7 implies that is a Cohen-Macaulay module by the Remark 3.6 and [G-W][Proposition
(4.2.5)]. The second claim follows immediately from Proposition 3.7.

The third claim follows from the second and the fact that for all i = 1, ..., s, reg(M<ni>
i ) =

di − ⌈αi

ni
⌉, proved in[MD][Theorem 4.7].

If one of the modules has dimension 0, then we get the following Corollary of Theorem
2.2.

Theorem 4.4. Let S1, . . . , Ss be graded polynomial rings on disjoints of set of variables.
For all i = 1, . . . , s, let Mi be a graded finitely generated Si-Cohen-Macaulay module of
dimension di = dimMi. We assume that Mi = ⊕l∈ZMi,l as Si-module, and there is an index
k such that dk = dimMk = 0. Then M1⊗ . . .⊗Ms is a 0-dimensional Cohen-Macaulay
S1⊗ . . .⊗Ss-module and reg(M1⊗ . . .⊗Ms) = min

k|dimMk=0
reg(Mk).

To end this section we exhibit two large classes of ideals that satisfy the hypothesis of
Theorem 4.3.

(I) Let NA be a finite generated normal semigroup homogeneous, then by [St][13.14], we
have that reg(K[NA]) < dim(K[NA]). Hence the toric ring K[NA] satisfy the hypoth-
esis of Theorem 4.3.

(II) Let ∆ be a simplicial complex, and K[∆] be the Stanley-Reisner ring associated to ∆.
If K[∆] is a Cohen-Macaulay ring, then by the main theorem of Reisner reg(K[∆]) <
dim(K[∆]) if and only if ∆ is acyclic.
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