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Abstract! In a recent preprint, Ilse Fischer and Martina Kubitzke, proved the bilinearity
of the Segre transform under some restricted hypothesis, motivated by their results we show
in this paper the bilinearity of the Segre transform in general. We apply these results to
compute the postulation number of a series. Our second application is motivated by the
paper of David A. Cox, and Evgeny Materov (2009), where is computed the Castelnuovo-
Mumford regularity of the Segre Veronese embedding, we can extend partially their result
and compute the Castelnuovo-Mumford regularity of the Segre product of Cohen-Macaulay
modules.

Key words and phrases: Segre-Veronese, Castelnuovo- Mumford regularity, Cohen-Macaulay,
postulation number.
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1 Introduction

In this paper, we deal only with formal Laurent series

a:Zaltl,aaEZ,al eC

>0,

such that
h(a)(t)

(x) a= T for some d, > 0, h(a)(t) € C[t,t7].

Given two formal Laurent series a, b satisfying (*), the Segre transform a®b is defined by

a@b = Z Cleltl,

>0
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where o = max{o,, 0y }. In a recent preprint [F-K], the authors proved the bilinearity of the
Segre transform under some restricted hypothesis, motivated by this results we show in this
paper the bilinearity of the Segre transform in general. We apply these results to compute
the postulation number of a Segre product of series satisfying (*). Property (*) is equivalent
to the existence of a polynomial ®,(t) € CJt], such that a,, = ®,(n) for n large enough. The
postulation number is the smallest integer f, such that a, = ®(n) for n > F,. It is well
known that 8, = degh(a)(t) — d,.

Our second application is motivated by the paper [C-M], where is computed the Castelnuovo-
Mumford regularity of the Segre Veronese embedding, we can extend partially their result.
Our main result is:

Theorem. Let Sy, ..., S be graded polynomial rings on disjoints of set of variables. For all
1 =1,...,8, let M; be a graded finitely generated S;-Cohen-Macaulay module. We assume
that M; = ©;=0M;; as S;-module. Let d; = dim M;,b; = d; —1 > 0, a; = d; —reg(M;), where
reg(M;) is the Castelnuovo-Mumford regularity of M;. If reg(M;) < d;, for alli =1,... s
then

(1) Mi®...®M; is a Cohen-Macaulay S1® . ..R®Ss-module.
(2) reg(M1®...®QMs) = (by + ...+ bs + 1) — max{ay, ... as}.
(3) Forn; € N, let M= be the n;-Veronese transform of M;, then

I

ni ng

651 Qg

reg(My™"® ... QM:™7) = (by + ...+ bs + 1) — max{| 1}

Note that this result can be proved easily by using local cohomology, but our purpose is
to give a very elementary proof.

Segre transform of Laurent series
In this paper, we deal only with formal Laurent series
a= Zaltl,aa € Z,aq; € C
>0,
such that
h(a)(t)

(x) a= m7
We will set h(a)(t) =>_ - h,(a)t".

for some d, > 0, h(a)(t) € C[t,t].

nzoq

Definition 1.1. Let a,b be two formal Laurent series satisfying (*). the Segre transform

a®b is defined by
a@b = Z Cleltl,

>0

where 0 = max{o,, oy }.
In all this paper we assume that a®b # 0.
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Lemma 1.2. a®b satisfies (x).

Proof. By [M1], property (*) is equivalent to the existence of a polynomial ®,(l) such that
®,4(l) = a; for [ large enough. Moreover,

d, = deg @, + 1 if &, is a non zero polynomial
d, =0 if &, =0.

We have also a polynomial ®,(1) such that ®y(l) = b; for [ large enough. Hence a;b; =
D, (1)Py(1) is a polynomial for [ large enough, and again by [M1], there exist a Laurent
polynomial h(a®b)(t) such that

h(a®b)(t
G110}
(1 — t)%aze
where
0 if either d, =0 or dy, =0
dc@b = .
do +dy — 1if dy, dy > 1.
]
Remark 1.3. We recall that binomial coefficients can be defined in a more general setting

than natural numbers, indeed for k € N, binomial coefficients are polynomial functions in
the variable n. More precisely:

(1) If k =0 then let (})=1, for alln € C.

(2) If k > 0 then let (}}) :w, for alln € C.

Note that for alln € C, (Z) = (—l)k(kfzfl) and if n € N,n < k, then (Z) =0.

2 Segre transform is bilinear

Let recall the following Lemma 1 from [M1].
Lemma 2.1. Let

h(a)(t
(- S - M)

>0

with h(a)(t) = het7 + ...+ hpt™,dy > 0 and oy < 1y € Z. We will set by = dy — 1. Then
for alln = oy, ...,rq we have

h(a) = §a<_1)k<‘f§) i =3 (-1 <nd_k) . (1)

k=0 k=04



On the other hand we have for all k > o,
e be+i1\ o by + k — i
a, = ;hma)( Z, ) = th(a)( L ) (2)

The first claim follows from the equality:

O at')(1—1)*) = h(a)(t).
The second claim since:
S ot = % — (@) (”) )

The following two theorems extend [F-K, Theorem 1].

Theorem 2.2. Let a,b be two formal power series satisfying property (*). If dy =0 , then
for alln € Z

ha(a@b) = anb, = hy(a) Y hj(b)<
J=0y
Moreover, deg h(a®b)(t) < dega. If dy > 0 and h;(b) > 0, for all j then degh(a®b)(t) =
deg(a).

n—17

Proof. Since d, = 0, a is a Laurent polynomial, we have that h,(a) = a,, for all n € Z and
a, = 0 for n > deg(a), which implies that

a®kb = Z anb,t™.

n<deg(a)

hence degh(a®b)(t) < deg(a). Now suppose that d, > 0 and h;(b) > 0 for all j, by using
equation (2) we have,

ha(a28) = ho(a) 3 hj<b)<

J=00

by +n —J
n—j )

Note that h,, >0, (b"+"_"") > 0, for n > 0. The assumption (a®b) # 0 implies 0, < deg a,

n—op
SO Z?ig;; h;(b) (b";'ezeffj_j) > 0. Hence hgega(a®b) > 0 and the claim is over. a

Remark 2.3. Let a, b be two formal power Laurent series satisfying property (*), the product
hi(a)h;(b) is null for any i < 0,j < o, where o is any of the numbers o4, 0y, O(age) =
max (o, 0p), min(og, oy ).



Theorem 2.4. Let a,b be any formal power Laurent series satisfying property (*). Let by =
de—1 2> 0,0y = dy—1 > 0 and o be any of the numbers o4, 0y, O(agp) = Max(0q, 0y), Min(cq, o).
Then for anyn € Z

wioen =5~ Siamo (7Y (41 157)

i=0 j=0

The proof will follow immediately from the Lemma 2.1 and the proof of [F-K, Theorem
1]:

3 Postulation number, Castelnuovo-Mummford regularity

Lemma 3.1. Leti,j € Z,by :=dy — 1> 0,by :=dy — 1 >0 and

T — t! .Tj ._ t/
dT g T T (1 )

%

Then Ti b+j—i\ (bati—j
animax(i,j) ( lnzi )( anj ])tn 3
(1 _ t)b1+52+1 ’ ( )

T;,®Ty, =
where :

m1n(b1+j,62+z) Zfb2+l—j>o Cbndbl—'—j—l20
Tij = . N . . .
! max(by + j,bo +1i) ifbo+i—5<0 orb +j—i<O0.

Proof. The equality (3) follows from theorem 2.4. We need to check that for n > r;;, we

have (blj_];l) (bf_i;j ) = 0, and that for n = r; ;, we have (bl:lr_]f) (bij_i;j ) # 0. We have two
cases:

1. Ifby+j5—i>0and by +¢— 7 > 0, then (blzj;l) = 0 if and only if b; + j < n. Hence
ri,j = min(b1 + j, bg + Z)

2. Either by +j —i < 0 or by + 7 — j < 0. Suppose for example that b; + j —4 < 0 then
(") # 0, and (2F7) = 0if and only if by +i < n, but by +j < i <by+i < n.
Hence 7; ; = max(by + j, by + 7).

O

Example 3.2. Let o, 8 € Z, we study Tj@Tf. We consider two cases:
(1) If max(c, ) = o then

T(?@Tlﬁ = (1 _ t)d



(2) If max(a, B) = B > « then

1o pa ( f Oa 1 (d 1+l)tl)(1 t)d

(1—1) '
Note that deg(t® — t*(3) o (1 -t =d—1+ 8.
Proposition 3.3. Let

TeRT! =

:ggﬁﬁbzg@ﬂwuMmM@@m@@ecmtq

For any non null Laurent series satisfying property (*), we denote o, = min,, h,(a) # 0,7, =
deg h(a)(t). Then
(1) Tage < max(bg + 74, by + 7).

(2) If for all o4 < i < rq,0p < J <15 such that hi(a) # 0,h;(b) # 0 we have by +i — j >
0 and by +j—1 >0 then

Tage < Min(bg + 74, by + 74).
Moreover, if for all i,j, hi(a) > 0,h;(b) > 0 then rogy = min(bg + 74, by + 74)-
(3) If 0 < 0q < 1q < by and 0 < o < 1 < by, then
Tage < Min(bg + 74, by + 74).
Moreover, if for all i, j, hi(a) = 0,h;(b) > 0 then rog = min(bg + 74, by + 74).
Proof. (1) Let n > max(b, + 14, bp + 14), for all i < rq,7 < 7. By the Lemma 3.1, this

implies that A4;;, = 0, for all i < r,,j < rp. Hence h,(a®b) = 0, which implies that
o@a®b) < max(bs + 7, b + 7).

(2) Since for all o, < i < 7rq,05 < J < 7y, we have that by +7—j >0 and by, + 7 — i > 0,
by the Lemma 3.1, we have that r; ; = min(b, + j, by + ¢). This implies for all 7, j that

Aijri; 70 and Ay, =0 for n > r; ;.
On the other hand
min(by + 74, bp + 74) = min(by + 74, by + 1) = min(b, + 7, by + 7),

for all o4 < @ < 14,05 < j < 1. Hence A, ,, = 0 for n > min(by + 74, by + 7r4). Note that
the conditions by +j — @ = 0,by + ¢ — j > 0 implies that A, ;, > 0 for all n. Hence if for all
i,j,hi(a) = 0,h;(b) > 0 then h,(a®b) > 0 for all n, and for m := min(b, + 7, by + r4) We
have:

hm(a®b) = Z hi(a)hj(b)ALj,m > 0.

1,5 Ai,j,m7#0

B)I0< o, <1y <bygand 0 < gy < 15 < by then by +j > b, =i and by +1 > by > j
Therefore b, + 7 —i > 0 and by, + i — j > 0. Hence, the claim follows from the claim 2. O
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Remark 3.4. The bounds obtained are sharp.

Lemma 3.5. The following statements are equivalent:

(1) For all o, < i < 1q and oy < j < Ty, we have
bp+1—35=>0and b, +75—1=0.
(2) by + 04 —15 20 and by + 05 — 14 = 0. (k%)
Proof. (2) = (1). Take i = 0,4, j = rp in the first inequality and j = 0y,7 = 7, in the second.
(1) = (2). Let 04 <7 < 7q,05 < J < 7, then
t+by—j2i+by—rp=20a+by—ry=>0and j+b,—t>1+by—714a=>0p+ by —1q = 0.

O

Remark 3.6. Suppose that M,, My are Cohen-Macaulay modules of dimensions d, = by+1 >
2, dy = by + 1 > 2, with Hilbert-Poincaré series a,b. Then the conditions by + o4 — 1 = 0
and by + oy — 14 = 0 are equivalent to say that MMy is a Cohen-Macaulay module by
[G-W][Proposition (4.2.5)].

Proposition 3.7. Let consider ay, ..., a5 Laurent formal series satisfying (*)

a; = %, h(a;)(t) € C[t,t7].

We set r; = deg h(a;)(t),0; = d; — ri, b =d; — 1 > 0 and

ha® ... ®a)(t)
al@. . .@as = (1 . t>b1+...+bs+1 '

Then
(1) deg(h(m®...Ra5)) < (by + ...+ bs+ 1) —min(ay, ..., as).
(2) If the condition (**) of Lemma 3.5 is fulfilled for
{a17 02}, {a1@a2, Clg}, SR {a1@' . '@asfh Cls}
and hi(a;) = 0 for all i and k, then

deg(h(1®...®a;)) = (by + ...+ bs + 1) —max(aq, ..., as).

(3) If for alli =1, ...,s, 0 < o;r; < d;, then the condition (**) of Lemma 3.5 is fulfilled
for
{a17 a2}7 {Cll@ﬂg, Clg}, SERE) {al@ - .@0371, Cls}-



Proof. (1) Note that
max(bl —+ T, b2 —+ Tl) = max(bl -+ b2 +1-— Qg bl -+ b2 +1-— Oél) = b1 -+ b2 +1— min(al, 042).

Now suppose s > 3, we prove the claim by induction. Assume that (1) is true for the case
s—1:
deg(h(CLl@. . .@asfl)) < (bl + ..+ bsfl -+ 1) — min(ozl, cey Oésfl).

Then, by the Proposition 3.3
deg(h(11®...®a,.1)®a,)) < max(by + ...+ bs_1 + 15, bs + deg(® ... ®a,_q)
<max(by+...4+bs 1 +bs+1—asb+...+bs+1—min(ay, ..., a5 1)
=b+...+bs+ 1+ max(—a,, —min(ay, ..., as 1))
=b +...+bs+1—min(a,, min(ayq, ..., a5 1))
=b+...+bs+1—min(as, min(ay, ..., q))

(2) Since condition (**) is fulfilled, we can apply Proposition 3.3 and we get:

deg(cq@ag) < min(b1 + 7o, b2 -+ 7’1) = min(b1 -+ b2 +1-— Qo, b2 -+ bl +1-— Oél)
=b; +by+ 1+ min(—ay, —ag) = by + by + 1 — max(ay, as)

and we have equality if hg(a;) > 0, for all 4, k. By induction hypothesis we assume that

deg(a® ... ®as_1) < (b + ... +bs_1 + 1 —max(ay,...,as1) (4)

and we have equality if hi(a;) > 0, for all i, k. Moreover by Proposition 3.3,the coefficients
hi(a1®...®as_1) are = 0. On the other hand, condition (**) is fulfilled, so we can apply
Proposition 3.3, we have:

deg(1® ... ®as_1)®ay)) < min(by + ...+ bs_1 + 75,05 + deg(a;® ... ®as_1) (5),

where we have the equality if hy(as) > 0 and hi(01®...®a,_1) = 0, which is true since by
hypothesis hy(a;) > 0 for all i, k.
Using (4) in (5) we get
deg(h(m® ... ®a,)) <
min(by +...+bs 1 +1— g bs+b+ ...+ b1 +1—max(ay,a,_1))
=b+...4+bs+ 1+ min(—as, —max(ay, ..., 0 1))
=b+...+bs+1—max(a,, max(aq,...,a5 1))
=b+...+bs+ 1 —max(as, min(ay, ..., ay))
and we have the equality if hg(a;) > 0 for all i, k.
(3) The proof is immediate from Proposition 3.3. O



4 h— vector of the Segre product of s power series

The proof of the following theorem is direct from 2.4 by using induction.

Theorem 4.1. With the notations of Proposition 3.7.

Foros <is <b;+ ...+ by — min{ay, ..., a5} we have
hi,(1®...Qas) = > hiy (a1) Py (a2) . hu, (05) Aiy gy i Aiy 1
(il7i27...,i571712,...,l5)6A
where

U — Th—1 i — U

by + ... +bp_1 + 1l — g b 1 — 1
Vk =2,...,8; Aikl,lk,z‘k=<1+ + Op—1 + b — % 1)(k+zk1 k)’

and A is defined by : for any T =2, ..., s,
0, <l <b,+1—a, 0,1 <i,1 <min{b; + ...+ b,y —min{ay, ..., ar_1},i,}.
There is an important corollary that will be used in [M1] to prove the conjecture by
Simon Newcomb:

Theorem 4.2. Forj =1,...,n, let S; be a polynomial ring over a field K in b; +1 variables,

a; the Hilbert-Poincare series of S;, that is a; = m then:

Fork=0,...,by + ...+ b, — max{by, ..., b, }, we have
A([bl, k) = Z Ay Aigig Aig g Ai i
(’ig ..... infl)EA

where

b b by + ...+ by —is\ [ bs s
Iy =k A;, = (2 i Vs=2,...,n—1, A; ;. ., = 1+, + , ! +,1+Z >0
: () 12 e ls41 — s ls+1

and A is defined by : for any Tt =2,....,n—1
0 <i, <min{b; + ... + b, — max{by,..., 0, },ir41}
Applying Proposition 3.7 to modules we get the following Theorem (note that this the-

orem can be proved easily by using [G-W], but our purpose is to prove it by using only
elementary tools):

Theorem 4.3. Let Sy,...,Ss be graded polynomial rings on disjoints sets of variables. For
alli=1,...,s, let M; be a graded finitely generated S;-Cohen-Macaulay module. We assume
that M; = ®;>0M;; as S;-module. Let d; = dim M;,b; = d; —1 > 0, a; = d; —reg(M;), where
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reg(M;) is the Castelnuovo-Mumford regularity of M;. If reg(M;) < d;, for alli =1,... s
then

(1) Mi®...®M; is a Cohen-Macaulay S1® . ..RSs-module.
(2) reg(M1®...®@Ms) = (by + ...+ bs + 1) — max{ay, ... as}.
(3) Forn; € N, let M= be the n;-Veronese transform of M;, then

aq Qg

1, [—1}

reg(M;™”® ... QM) = (by + ...+ bs + 1) — max{|
T Ng
Proof. We have that foralli =1, ..., 5,0 < o(M;),reg(M;) < d;, then statement (3) of Propo-
sition 3.7 implies that is a Cohen-Macaulay module by the Remark 3.6 and [G-W][Proposition
(4.2.5)]. The second claim follows immediately from Proposition 3.7.

The third claim follows from the second and the fact that for alli = 1, ..., s, reg(M;~")
d; — [%], proved in[MD][Theorem 4.7].

ng

Il

If one of the modules has dimension 0, then we get the following Corollary of Theorem
2.2.

Theorem 4.4. Let Si,...,5, be graded polynomial rings on disjoints of set of variables.
For all i = 1,...,s, let M; be a graded finitely generated S;-Cohen-Macaulay module of
dimension d; = dim M;. We assume that M; = @iz M;; as S;-module, and there is an index
k such that d = dim My = 0. Then Mi®...QM; is a 0-dimensional Cohen-Macaulay
S1® ... RSs-module and reg(M;® ... M) = min Oreg(Mk).

k|dim M=

To end this section we exhibit two large classes of ideals that satisfy the hypothesis of
Theorem 4.3.

(I) Let NA be a finite generated normal semigroup homogeneous, then by [St][13.14], we
have that reg(K[NA]) < dim(K[N.A]). Hence the toric ring K[N.A] satisfy the hypoth-
esis of Theorem 4.3.

(ITI) Let A be a simplicial complex, and K[A] be the Stanley-Reisner ring associated to A.
If K[A] is a Cohen-Macaulay ring, then by the main theorem of Reisner reg(K[A]) <
dim(K[A]) if and only if A is acyclic.
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