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Introduction

In this paper, we deal only with formal Laurent series a = l σa

a l t l , σ a ∈ Z, a l ∈ C such that ( * ) a = h(a)(t) (1 -t) da , for some d a 0, h(a)(t) ∈ C[t, t -1 ].
Given two formal Laurent series a, b satisfying (*), the Segre transform a⊗b is defined by

a⊗b = l σ a l b l t l ,
1 Partially supported by VIASM, Hanoi, Vietnam.

where σ = max{σ a , σ b }. In a recent preprint [F-K], the authors proved the bilinearity of the Segre transform under some restricted hypothesis, motivated by this results we show in this paper the bilinearity of the Segre transform in general. We apply these results to compute the postulation number of a Segre product of series satisfying (*). Property (*) is equivalent to the existence of a polynomial Φ a (t) ∈ C [t], such that a n = Φ a (n) for n large enough. The postulation number is the smallest integer β a such that a n = Φ(n) for n > β a . It is well known that β a = deg h(a)(t)d a .

Our second application is motivated by the paper [C-M], where is computed the Castelnuovo-Mumford regularity of the Segre Veronese embedding, we can extend partially their result. Our main result is:

Theorem. Let S 1 , . . . , S s be graded polynomial rings on disjoints of set of variables. For all i = 1, . . . , s, let M i be a graded finitely generated S i -Cohen-Macaulay module. We assume that

M i = ⊕ l 0 M i,l as S i -module. Let d i = dim M i , b i = d i -1 ≥ 0, α i = d i -reg(M i ), where reg(M i ) is the Castelnuovo-Mumford regularity of M i . If reg(M i ) < d i , for all i = 1, . . . , s then (1) M 1 ⊗ . . . ⊗M s is a Cohen-Macaulay S 1 ⊗ . . . ⊗S s -module. (2) reg(M 1 ⊗ . . . ⊗M s ) = (b 1 + . . . + b s + 1) -max{α 1 , . . . α s }. (3) For n i ∈ N, let M <n i > i be the n i -Veronese transform of M i , then reg(M <n 1 > 1 ⊗ . . . ⊗M <ns> s ) = (b 1 + . . . + b s + 1) -max{⌈ α 1 n 1 ⌉, . . . , ⌈ α s n s ⌉}.
Note that this result can be proved easily by using local cohomology, but our purpose is to give a very elementary proof.

Segre transform of Laurent series

In this paper, we deal only with formal Laurent series

a = l σa a l t l , σ a ∈ Z, a l ∈ C such that ( * ) a = h(a)(t) (1 -t) da , for some d a 0, h(a)(t) ∈ C[t, t -1 ].
We will set h(a)(t) = n σa h n (a)t n .

Definition 1.1. Let a, b be two formal Laurent series satisfying (*). the Segre transform a⊗b is defined by

a⊗b = l σ a l b l t l ,
where σ = max{σ a , σ b }.

In all this paper we assume that a⊗b = 0.

Lemma 1.2. a⊗b satisfies ( * ).

Proof. By [M1], property (*) is equivalent to the existence of a polynomial Φ a (l) such that Φ a (l) = a l for l large enough. Moreover,

d a = deg Φ a + 1 if Φ a is a non zero polynomial d a = 0 if Φ a = 0.
We have also a polynomial Φ b (l) such that Φ b (l) = b l for l large enough. Hence a l b l = Φ a (l)Φ b (l) is a polynomial for l large enough, and again by [M1], there exist a Laurent polynomial h(a⊗b)(t) such that

a⊗b = h(a⊗b)(t) (1 -t) d a⊗b ,
where

d a⊗b = 0 if either d a = 0 or d b = 0 d a + d b -1 if d a , d b 1.
Remark 1.3. We recall that binomial coefficients can be defined in a more general setting than natural numbers, indeed for k ∈ N, binomial coefficients are polynomial functions in the variable n. More precisely:

(1)

If k = 0 then let n 0 = 1, for all n ∈ C. (2) If k > 0 then let n k = n(n-1)...(n-k+1) k!
, for all n ∈ C.

Note that for all n ∈ C,

n k = (-1) k k-n-1 k and if n ∈ N, n < k, then n k = 0.
2 Segre transform is bilinear

Let recall the following Lemma 1 from [M1].

Lemma 2.1. Let a = l σa a l t l = h(a)(t) (1 -t) da , with h(a)(t) = h σa t σa + . . . + h ra t ra , d a 0 and σ a ≤ r a ∈ Z. We will set b a = d a -1.
Then for all n = σ a , . . . , r a we have

h n (a) = n-σa k=0 (-1) k d a k a n-k = n k=σa (-1) n-k d a n -k a k . (1)
On the other hand we have for all k σ a

a k = k-σa i=0 h k-i (a) b a + i i = k i=σa h i (a) b a + k -i k -i (2)
The first claim follows from the equality:

( l σa a l t l )((1 -t) da ) = h(a)(t).
The second claim since:

l σa a l t l = h(a)(t) (1 -t) da = (h(a)(t))( i 0 b a + i i t i )
The following two theorems extend [F-K, Theorem 1].

Theorem 2.2. Let a, b be two formal power series satisfying property (*). If

d a = 0 , then for all n ∈ Z h n (a⊗b) = a n b n = h n (a) n j=σ b h j (b) b b + n -j n -j . Moreover, deg h(a⊗b)(t) deg a. If d b > 0 and h j (b) 0, for all j then deg h(a⊗b)(t) = deg(a).
Proof. Since d a = 0, a is a Laurent polynomial, we have that h n (a) = a n , for all n ∈ Z and a n = 0 for n > deg(a), which implies that

a⊗b = n deg(a)
a n b n t n .

hence deg h(a⊗b)(t) ≤ deg(a). Now suppose that d b > 0 and h j (b) 0 for all j, by using equation (2) we have,

h n (a⊗b) = h n (a) n j=σ b h j (b) b b + n -j n -j . Note that h σ b > 0, b b +n-σ b n-σ b > 0, for n ≥ σ b . The assumption (a⊗b) = 0 implies σ b deg a, so deg a j=σ b h j (b) b b +deg a-j deg a-j > 0.
Hence h deg a (a⊗b) > 0 and the claim is over.

Remark 2.3. Let a, b be two formal power Laurent series satisfying property (*), the product h i (a)h j (b) is null for any i < σ, j < σ, where σ is any of the numbers σ a , σ b , σ (a⊗b) = max(σ a , σ b ), min(σ a , σ b ). Then for any n ∈ Z

h n (a⊗b) = ∞ i=σ ∞ j=σ h i (a)h j (b) b a + j -i n -i b b + i -j n -j .
The proof will follow immediately from the Lemma 2.1 and the proof of [F-K, Theorem 1]:

3 Postulation number, Castelnuovo-Mummford regularity Lemma 3.1. Let i, j ∈ Z, b 1 := d 1 -1 0, b 2 := d 2 -1 0 and T i d 1 := t i (1 -t) d 1 ; T j d 2 := t j (1 -t) d 2 Then T i d 1 ⊗T j d 2 = r i,j n=max(i,j) b 1 +j-i n-i b 2 +i-j n-j t n (1 -t) b 1 +b 2 +1 , (3) 
where :

r i,j = min(b 1 + j, b 2 + i) if b 2 + i -j 0 and b 1 + j -i 0 max(b 1 + j, b 2 + i) if b 2 + i -j < 0 or b 1 + j -i < 0.
Proof. The equality (3) follows from theorem 2.4. We need to check that for n > r i,j , we have b 1 +j-i n-i b 2 +i-j n-j = 0, and that for n = r i,j , we have b 1 +j-i n-i b 2 +i-j n-j = 0. We have two cases:

1. If b 1 + j -i ≥ 0 and b 2 + i -j ≥ 0, then b 1 +j-i n-i = 0 if and only if b 1 + j < n. Hence r i,j = min(b 1 + j, b 2 + i).

Either b

1 + j -i < 0 or b 2 + i -j < 0. Suppose for example that b 1 + j -i < 0 then b 1 +j-i n-i = 0, and b 2 +i-j n-j = 0 if and only if b 2 + i < n, but b 1 + j < i ≤ b 2 + i < n. Hence r i,j = max(b 1 + j, b 2 + i). Example 3.2. Let α, β ∈ Z, we study T α d ⊗T β 1 . We consider two cases: (1) If max(α, β) = α then T α d ⊗T β 1 = t α (1 -t) d . (2) If max(α, β) = β > α then T α d ⊗T β 1 = t α -t α ( β-α-1 l=0 d-1+l l t l )(1 -t) d (1 -t) d . Note that deg(t α -t α ( β-α-1 l=0 d-1+l l t l )(1 -t) d ) = d -1 + β. Proposition 3.3. Let a = h(a)(t) (1 -t) da ; b = h(b)(t) (1 -t) d b , where h(a)(t), h(b)(t) ∈ C[t, t -1 ].
For any non null Laurent series satisfying property (*), we denote σ a = min n h n (a) = 0, r a = deg h(a)(t). Then (2) Since for all σ a i r a , σ b j r b , we have that b b + ij 0 and b a + ji 0, by the Lemma 3.1, we have that r i,j = min(b a + j, b b + i). This implies for all i, j that A i,j,r i,j = 0 and A i,j,n = 0 for n > r i,j .

On the other hand

min(b a + r b , b b + r a ) min(b a + r b , b b + i) min(b a + j, b b + i), for all σ a i r a , σ b j r b . Hence A i,j,n = 0 for n > min(b a + r b , b b + r a )
. Note that the conditions b a + ji 0, b b + ij 0 implies that A i,j,n 0 for all n. Hence if for all i, j, h i (a) 0, h j (b) 0 then h n (a⊗b) 0 for all n, and for m := min(b a + r b , b b + r a ) we have:

h m (a⊗b) = i,j|A i,j,m =0 h i (a)h j (b)A i,j,m > 0.
( (2) ⇒ (1). Take i = σ a , j = r b in the first inequality and j = σ b , i = r a in the second.

(1) ⇒ (2). Let σ a i r a , σ b j r b , then Proposition 3.7. Let consider a 1 , . . . , a s Laurent formal series satisfying (*)

i + b b -j i + b b -r b σ a + b b -r b 0 and j + b a -i i + b a -r a σ b + b a -r a 0.
a i = h(a i )(t) (1 -t) d i , h(a i )(t) ∈ C[t, t -1 ].
We set

r i = deg h(a i )(t), α i = d i -r i , b i = d i -1 0 and a 1 ⊗ . . . ⊗a s = h(a 1 ⊗ . . . ⊗a s )(t) (1 -t) b 1 +...+bs+1 . Then (1) deg(h(a 1 ⊗ . . . ⊗a s )) (b 1 + . . . + b s + 1) -min(α 1 , . . . , α s ).
(2) If the condition (**) of Lemma 3.5 is fulfilled for

{a 1 , a 2 }, {a 1 ⊗a 2 , a 3 }, . . . , {a 1 ⊗ . . . ⊗a s-1 , a s }
and h k (a i ) 0 for all i and k, then

deg(h(a 1 ⊗ . . . ⊗a s )) = (b 1 + . . . + b s + 1) -max(α 1 , . . . , α s ).
(3) If for all i = 1, ..., s, 0 ≤ σ i r i < d i , then the condition (**) of Lemma 3.5 is fulfilled for {a 1 , a 2 }, {a 1 ⊗a 2 , a 3 }, . . . , {a 1 ⊗ . . . ⊗a s-1 , a s }.

Proof.

(1) Note that

max(b 1 + r 2 , b 2 + r 1 ) = max(b 1 + b 2 + 1 -α 2 , b 1 + b 2 + 1 -α 1 ) = b 1 + b 2 + 1 -min(α 1 , α 2 ).
Now suppose s 3, we prove the claim by induction. Assume that (1) is true for the case s -1 : deg(h(a 1 ⊗ . . . ⊗a s-1 )) (b 1 + . . . + b s-1 + 1) -min(α 1 , . . . , α s-1 ).

Then, by the Proposition 3.3

deg(h(a 1 ⊗ . . . ⊗a s-1 )⊗a s )) max(b 1 + . . . + b s-1 + r s , b s + deg(a 1 ⊗ . . . ⊗a s-1 ) max(b 1 + . . . + b s-1 + b s + 1 -α s , b 1 + . . . + b s + 1 -min(α 1 , . . . , α s-1 ) = b 1 + . . . + b s + 1 + max(-α s , -min(α 1 , . . . , α s-1 )) = b 1 + . . . + b s + 1 -min(α s , min(α 1 , . . . , α s-1 )) = b 1 + . . . + b s + 1 -min(α s , min(α 1 , . . . , α s ))
(2) Since condition (**) is fulfilled, we can apply Proposition 3.3 and we get:

deg(a 1 ⊗a 2 ) min(b 1 + r 2 , b 2 + r 1 ) = min(b 1 + b 2 + 1 -α 2 , b 2 + b 1 + 1 -α 1 ) = b 1 + b 2 + 1 + min(-α 1 , -α 2 ) = b 1 + b 2 + 1 -max(α 1 , α 2 )
and we have equality if h k (a i ) 0, for all i, k. By induction hypothesis we assume that

deg(a 1 ⊗ . . . ⊗a s-1 ) (b 1 + . . . + b s-1 + 1 -max(α 1 , . . . , α s-1 ) (4)
and we have equality if h k (a i ) 0, for all i, k. Moreover by Proposition 3.3,the coefficients h k (a 1 ⊗ . . . ⊗a s-1 ) are 0. On the other hand, condition (**) is fulfilled, so we can apply Proposition 3.3, we have:

deg(a 1 ⊗ . . . ⊗a s-1 )⊗a s )) min(b 1 + . . . + b s-1 + r s , b s + deg(a 1 ⊗ . . . ⊗a s-1 ) (5),
where we have the equality if h k (a s ) 0 and h k (a 1 ⊗ . . . ⊗a s-1 ) 0, which is true since by hypothesis h k (a i ) 0 for all i, k.

Using (4) in (5) we get deg(h(a 1 ⊗ . . . ⊗a s )) min(b 1 + . . . + b s-1 + 1 -α s , b s + b 1 + . . . + b s-1 + 1 -max(α 1 , α s-1 )) = b 1 + . . . + b s + 1 + min(-α s , -max(α 1 , . . . , α s-1 )) = b 1 + . . . + b s + 1 -max(α s , max(α 1 , . . . , α s-1 )) = b 1 + . . . + b s + 1 -max(α s , min(α 1 , . . . , α s ))
and we have the equality if h k (a i ) 0 for all i, k.

(3) The proof is immediate from Proposition 3.3.

4 hvector of the Segre product of s power series

The proof of the following theorem is direct from 2.4 by using induction.

Theorem 4.1. With the notations of Proposition 3.7.

For

σ s ≤ i s ≤ b 1 + ... + b s -min{α 1 , ..., α s } we have h is (a 1 ⊗...⊗a s ) = (i 1 ,i 2 ,...,i s-1 ,l 2 ,...,ls)∈∆ h i 1 (a 1 )h l 2 (a 2 )...h ls (a s )A i 1 ,l 2 ,i 2 ...A i s-1 ,ls,is where ∀k = 2, ..., s; A i k-1 ,l k ,i k = b 1 + ... + b k-1 + l k -i k-1 i k -i k-1 b k + i k-1 -l k i k -l k ,
and ∆ is defined by : for any τ = 2, ..., s,

σ τ ≤ l τ ≤ b τ + 1 -α τ , σ τ -1 ≤ i τ -1 ≤ min{b 1 + ... + b τ -1 -min{α 1 , ..., α τ -1 }, i τ }.
There is an important corollary that will be used in [M1] to prove the conjecture by Simon Newcomb: Theorem 4.2. For j = 1, ..., n, let S j be a polynomial ring over a field K in b j + 1 variables, a j the Hilbert-Poincare series of S j , that is a j = 1 (1t) b j +1 then: Applying Proposition 3.7 to modules we get the following Theorem (note that this theorem can be proved easily by using [G-W], but our purpose is to prove it by using only elementary tools):

Theorem 4.3. Let S 1 , . . . , S s be graded polynomial rings on disjoints sets of variables. For all i = 1, . . . , s, let M i be a graded finitely generated S i -Cohen-Macaulay module. We assume that M i = ⊕ l 0 M i,l as S i -module. Let

d i = dim M i , b i = d i -1 ≥ 0, α i = d i -reg(M i ), where

  Theorem 2.4. Let a, b be any formal power Laurent series satisfying property (*). Let b a = d a -1 0, b b = d b -1 0 and σ be any of the numbers σ a , σ b , σ (a⊗b) = max(σ a , σ b ), min(σ a , σ b ).

( 1 )

 1 r a⊗b max(b a + r b , b b + r a ).(2) If for all σ a i r a , σ b j r b such that h i (a) = 0, h j (b) = 0 we have b b + ij 0 and b a + ji 0 then r a⊗b min(b a + r b , b b + r a ). Moreover, if for all i, j, h i (a) 0, h j (b) 0 then r a⊗b = min(b a + r b , b b + r a ). (3) If 0 σ a r a b a and 0 σ b r b b b , then r a⊗b min(b a + r b , b b + r a ). Moreover, if for all i, j, h i (a) 0, h j (b) 0 then r a⊗b = min(b a + r b , b b + r a ). Proof. (1) Let n > max(b a + r b , b b + r a ), for all i r a , j r b . By the Lemma 3.1, this implies that A i,j,n = 0, for all i r a , j r b . Hence h n (a⊗b) = 0, which implies that σ ( a⊗b) max(b a + j, b b + i).

  ) If 0 σ a r a b a and 0 σ b r b b b then b a + j b a i and b b + i b b j. Therefore b a + ji 0 and b b + ij 0. Hence, the claim follows from the claim 2. Remark 3.4. The bounds obtained are sharp. Lemma 3.5. The following statements are equivalent: (1) For all σ a i r a and σ b j r b , we have b b + ij 0 and b a + ji 0. (2) b b + σ ar b 0 and b a + σ br a 0. ( * * ) Proof.

  Remark 3.6. Suppose that M a , M b are Cohen-Macaulay modules of dimensions d a = b a +1 ≥ 2, d b = b b + 1 ≥ 2, with Hilbert-Poincaré series a, b. Then the conditions b b + σ ar b 0 and b a + σ br a 0 are equivalent to say that M a ⊗M b is a Cohen-Macaulay module by [G-W][Proposition (4.2.5)].

For

  k = 0, ..., b 1 + ... + b n -max{b 1 , ..., b n }, we haveA([b], k) = (i 2 ,...,i n-1 )∈∆ A i 2 A i 2 ,i 3 A i 3 ,i 4 ...A i n-1 ,in , where i n := k; A i 2 = b 1 i 2 b 2 i 2 ; ∀s = 2, ..., n -1, A is,i s+1 = b 1 + ... + b si s i s+1i s b s+1 + i s i s+1 ≥ 0and ∆ is defined by : for any τ = 2, ..., n -10 ≤ i τ ≤ min{b 1 + ... + b τ -max{b 1 , ..., b τ }, i τ +1 }

reg (M i ) is the Castelnuovo-Mumford regularity of M i . If reg(M i ) < d i , for all i = 1, . . . , s then

(1) M 1 ⊗ . . . ⊗M s is a Cohen-Macaulay S 1 ⊗ . . . ⊗S s -module.

(

Proof. We have that for all i = 1, ..., s, The third claim follows from the second and the fact that for all i = 1, ..., s, reg(M

If one of the modules has dimension 0, then we get the following Corollary of Theorem 2.2.

Theorem 4.4. Let S 1 , . . . , S s be graded polynomial rings on disjoints of set of variables. For all i = 1, . . . , s, let M i be a graded finitely generated S i -Cohen-Macaulay module of dimension d i = dim M i . We assume that M i = ⊕ l∈Z M i,l as S i -module, and there is an index

To end this section we exhibit two large classes of ideals that satisfy the hypothesis of Theorem 4.3.

(I) Let NA be a finite generated normal semigroup homogeneous, then by [St][13.14]