Dzyaloshinskii-Moriya driven helical-butterfly structure in Ba 3 NbFe 3 Si 2 O 14

Valerio Scagnoli, Winnie S. Huang, Mario Garganourakis, Raquel A. de Souza, Urs Staub, Virginie Simonet, Pascal Lejay, Rafik Ballou

- To cite this version:

Valerio Scagnoli, Winnie S. Huang, Mario Garganourakis, Raquel A. de Souza, Urs Staub, et al.. Dzyaloshinskii-Moriya driven helical-butterfly structure in Ba3NbFe3Si2O14. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2013, 88, pp.104417. 10.1103/PhysRevB.88.104417 . hal-00963848

HAL Id: hal-00963848

https://hal.science/hal-00963848

Submitted on 22 Mar 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Dzyaloshinsky-Moriya driven helical-butterfly structure in $\mathrm{Ba}_{3} \mathrm{NbFe}_{3} \mathrm{Si}_{2} \mathrm{O}_{14}$

V. Scagnoli*
Swiss Light Source, Paul Scherrer Institut, CH 5232 Villigen PSI, Switzerland and
ETH Zürich, Institut für Quantenelektronik, W. Pauli Strasse 16, 8093 Zürich, Switzerland

S. W. Huang, M. Garganourakis, R. A. de Souza, and U. Staub

Swiss Light Source, Paul Scherrer Institut, CH 5232 Villigen PSI, Switzerland
V. Simonet, P. Lejay, and R. Ballou

Institut Néel, CNRS and Université Joseph Fourier, BP166, 38042 Grenoble Cedex 9, France
(Dated: June 13, 2013)

Abstract

We have used soft x-ray magnetic diffraction at the $\mathrm{Fe}^{3+} \mathrm{L}_{2,3}$ edges to examine to what extent the Dzyaloshinsky-Moriya interaction in $\mathrm{Ba}_{3} \mathrm{NbFe}_{3} \mathrm{Si}_{2} \mathrm{O}_{14}$ influences its low temperature magnetic structure. A modulated component of the moments along the c-axis is present, adding to the previously proposed helical magnetic configuration of co-planar moments in the a, b-plane. This leads to a "helical-butterfly" structure and suggests that both the multi-axial in-plane and the uniform out-of-plane Dzyaloshinsky-Moriya vectors are relevant. A non zero orbital magnetic signal is also observed at the oxygen K edge, which reflects the surprisingly strong hybridization between iron $3 d$ and oxygen $2 p$ states, given the nominal spherical symmetry of the Fe^{3+} half filled shell.

I. INTRODUCTION

The term chirality was first utilized in science by Lord ${ }^{56}$ Kelvin. His original definition has evolved with time and ${ }^{57}$ we now speak about a chiral system if such a system ${ }^{58}$ exists in two distinct (enantiomeric) states that are in- ${ }^{59}$ terconverted by space inversion, but not by time rever- ${ }^{60}$ sal combined with any proper spatial rotation. ${ }^{1}$ Chiral- ${ }^{61}$ ity permeates natural sciences from biochemistry to solid ${ }^{62}$ state physics. The fact that living organisms use only the ${ }^{63}$ left enantiomers of amino acids is still not well under- ${ }^{64}$ stood. Chirality is also found in magnets. ${ }^{2,3}$ An example ${ }^{65}$ is the left- or right- handedness associated with the he- ${ }^{66}$ lical order of magnetic moments. In principle, the two ${ }^{67}$ states are degenerate, resulting in an equipopulation of ${ }^{68}$ chiral domains. However, competing interactions or ex- ${ }^{69}$ ternal effects such as strain, can unbalance this ratio, ${ }^{70}$ favoring one particular state. In particular, in non cen- ${ }^{71}$ trosymmetric crystals, characterized by the absence of ${ }^{72}$ parity symmetry, a single domain might be selected. De- ${ }^{73}$ spite having 65 non centrosymmetric (including 22 chi- ${ }^{74}$ ral) space groups allowing chiral crystal structures, out ${ }^{75}$ of 230 , only few single handed magnetic compounds were ${ }^{76}$ reported. ${ }^{4-7}$ Interest in such systems is two-fold. First, ${ }^{77}$ they can exhibit interesting physical properties such as ${ }^{78}$ magnetic Skyrmion lattices ${ }^{8}$ or helimagnons. ${ }^{7}$ The sec- ${ }^{79}$ ond is related to the discovery of magnetically induced ${ }^{80}$ multiferroics ${ }^{9}$ where researchers struggle to find mate- ${ }^{81}$ rials with a stronger electrical polarization. ${ }^{10}$ The lat- ${ }^{82}$ ter is directly affected by the imbalance between chiral ${ }^{83}$ domains, which possess opposite electric polarizations. ${ }^{84}$ Therefore, materials showing a single chiral domain are ${ }^{85}$ promising candidates to host a significant macroscopic ${ }^{86}$ electrical polarization, which makes them an ideal model ${ }^{87}$ system to study. $\mathrm{Ba}_{3} \mathrm{NbFe}_{3} \mathrm{Si}_{2} \mathrm{O}_{14}$ gathered attention in ${ }^{88}$ this respect, exhibiting fully chiral magnetism ${ }^{5}$ and mag- ${ }^{89}$ netoelectric coupling phenomena. ${ }^{11-13}$
$\mathrm{Ba}_{3} \mathrm{NbFe}_{3} \mathrm{Si}_{2} \mathrm{O}_{14}$ crystallizes in a trigonal P321 space group ($a=b=8.539, c=5.241, \gamma=120^{\circ}$). It displays an antiferromagnetic order below $T_{N}=27 \mathrm{~K}$. The magnetic moments are localized on the Fe^{3+} ions ($L \simeq 0$, $S=5 / 2$). These occupy the Wyckoff position (3f) ($0.2496,0,0.5$) with .2 . site symmetry, forming triangular units in the a, b-planes. Elastic neutron scattering studies ${ }^{5}$ suggest that the same triangular configuration of co-planar moments at 120° from each other is stabilized within each triangle of an a, b-plane and that this arrangement is helically modulated from a, b-plane to a, b-plane along the c-axis according to the propagation vector $(0,0, \tau)$ with τ close to $1 / 7$ (see Fig. 1a). An extremely appealing discovery was that the single crystals are grown enantiopure and that the low temperature magnetic structure is single domain, with a single chirality of the triangular magnetic arrangement on the triangles and a single chirality of the helical modulation of the magnetic moments, which was dubbed helicity. ${ }^{5}$ It was suggested that the Dzyaloshinsky-Moriya ${ }^{14,15}$ exchange interaction might be responsible for selecting the ground state configuration ${ }^{5}$ and for the opening of a small gap in the magnetic excitation spectrum. ${ }^{16}$ Another inelastic neutron scattering study proposed the latter to arise from single ion anisotropy, ${ }^{17}$ but recent spin resonance experiments support the first scenario indicating furthermore that not only the uniform component along the c-axis of the Dzyaloshinsky-Moriya vector but also its multiaxial component within the a, b-plane might be sizeable. ${ }^{18}$ The latter could generate an additional component to the magnetic structure not necessarily detected by neutron scattering. To find evidence for such a magnetic motif we have used resonant x-ray diffraction at the Fe L edges. Our results show clear deviations from the magnetic structure previously proposed, confirming the existence of such a component.

II. EXPERIMENTAL DETAILS

Powders of $\mathrm{Ba}_{3} \mathrm{NbFe}_{3} \mathrm{Si}_{2} \mathrm{O}_{14}$ were synthesized by solid state reaction from stoichiometric amounts of $\mathrm{Nb}_{2} \mathrm{O}_{3}$, $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$ oxides and BaCO_{3} barium carbonate, at $1150^{\circ} \mathrm{C}$ in air within an alumina crucible. The reagents were carefully mixed and pressed at 1 GPa to form compact cylinders before annealing. The phase purity was checked by x-ray powder diffraction. Single crystals were grown from the as-prepared polycrystalline cylinders by the floating-zone method in an image furnace. ${ }^{19}$ The single crystal used in the present investigation was extracted from the same batch as the one used in Ref. 5 and has the same structural chirality ϵ_{T}, to be precise $\epsilon_{T}=-1$. After polishing the surface perpendicular to the [001] direction it was annealed to improve the surface quality.

We have performed resonant x-ray diffraction experiments at the $\mathrm{Fe}_{2,3}$ edge. These energies correspond to a wavelength of approximately $17 \AA$ and are associated to an electric dipole resonance from the iron $2 p$ to $3 d$ levels. Experiments were performed with the RESOXS chamber ${ }^{20}$ at the X11MA beamline ${ }^{21}$ of the Swiss Light Source. The twin Apple undulators provide linear, horizontal π and vertical σ, and circularly, right R and left L, polarized x rays with a polarization rate close to 100%. The polarization of the diffracted beam was not analyzed. The sample was attached to the cold finger of an He flow cryostat with a base temperature of 10 K . Azimuthal scans were achieved by rotation of the single crystal, with an accuracy of approximately $\pm 5^{\circ}$.

III. RESONANT X-RAY SCATTERING

The x-ray cross section for magnetic scattering is nor-145 mally very small, though at synchrotron photon sources ${ }^{146}$ such weak signals are routinely measurable. ${ }^{22-25}$ How-147 ever, when working close to an atomic absorption edge ${ }^{148}$ the magnetic scattering signals are significantly enhanced ${ }_{149}$ and are element sensitive. Resonant x-ray diffraction 150 occurs when a photon excites a core electron to empty states, and is subsequently re-emitted when the electron and the core hole recombine. ${ }^{26-28}$ This process introduces anisotropic contributions to the x-ray susceptibility ten-151 sor, ${ }^{29-31}$ the amplitude of which increases dramatically ${ }_{152}$ as the photon energy is tuned to an atomic absorption ${ }_{153}$ edge. In the presence of long-range magnetic order, or ${ }_{154}$ a spatially anisotropic electronic distribution, the inter-155 ference of the anomalous scattering amplitudes may lead ${ }_{156}$ to Bragg peaks at positions forbidden by the crystallo-157 graphic space group. An example of such a resonant ${ }_{158}$ enhancement of the diffracted intensity as a function of f_{159} energy occurring in the vicinity of the $\mathrm{Fe}^{\mathrm{L}} \mathrm{L}_{3}$ edge in ${ }_{160}$ $\mathrm{Ba}_{3} \mathrm{NbFe}_{3} \mathrm{Si}_{2} \mathrm{O}_{14}$ is given in Fig. 3. X rays thus prove ${ }_{161}$ to be a valid alternative or complementary tool to neu-162 tron diffraction for the study of magnetic structures. ${ }^{32-36}{ }_{163}$ Its superior resolution in reciprocal space can be advanta-164 geous, simplifying for instance the precise determination ${ }_{165}$

FIG. 1. (Color online) a) Perspective view of the magnetic structure as suggested by neutron diffraction experiments. Fe ions are in black and different colors are used for the moments on the three Bravais lattices. b) (left to right) shows different types of magnetic ordering: a simple spiral, a ferromagnetic (conical) spiral, a complex spiral (or butterfly) and a static longitudinal wave. c) Pictorial view of the magnetic structure suggested by the present study. The dark colored moments describe the same pattern as in a). The light colored moments represent the magnetic structure as the sinusoidal modulation along the c-axis is superimposed to the basal helical order previously reported. Cones visualize the rotation of the magnetic moments about the c-axis and visualize the change in the modulation amplitude. Shaded areas are parallel to (00ℓ) planes. Note that the tilting out of the a, b-plane is exaggerated for clarity.
of incommensurate magnetic phases, which is relevant in cases where the incommensurability is very small. ${ }^{37}$

To understand the content of the x-ray resonant magnetic cross section, it is customary to use the expression first derived by Hannon and Trammell for an electric dipole (E1) event: ${ }^{26-28}$
$F_{\boldsymbol{\epsilon}^{\prime}, \boldsymbol{\epsilon}}^{E 1}=\left(\boldsymbol{\epsilon}^{\prime} \cdot \boldsymbol{\epsilon}\right) F^{(0)}-i\left(\boldsymbol{\epsilon}^{\prime} \times \boldsymbol{\epsilon}\right) \cdot \hat{\mathbf{z}}_{n} F^{(1)}+\left(\hat{\boldsymbol{\epsilon}}^{\prime} \cdot \hat{\mathbf{z}}_{n}\right)\left(\hat{\boldsymbol{\epsilon}} \cdot \hat{\mathbf{z}}_{n}\right) F^{(2)}$,
where the first term contributes to the charge (Thompson) Bragg peak. The second and third terms correspond to magnetic diffraction. $\hat{\mathbf{z}}_{n}$ is a unit vector in the direction of the magnetic moment of the nth ion in the unit cell and $\boldsymbol{\epsilon}\left(\boldsymbol{\epsilon}^{\prime}\right)$ describes the polarization state of the incoming (outgoing) x rays. $F^{(i)}$ depend on atomic properties and determine the strength of the resonance. ${ }^{2,28}$ In an antiferromagnet, the second term produces the firstharmonic magnetic satellites and the third term, which contains two powers of the magnetic moment, produces the second-harmonic magnetic satellites. It shows how the intensity of the magnetic diffraction depends on the motif of the magnetic moments and on the orientation of the sample relative to the incident x-ray polarization state. In particular, a non collinear magnetic motif is able

FIG. 2. (Color online) Scan along the [001] direction in reciprocal space at an incident photon energy of 709.8 eV corresponding to the Fe_{3} edge. r.l.u. denotes reciprocal-lattice units. Dashed (black) line represents data collected at 8 K while the continuous (red) line represents data collected above T_{N} at 32 K . The peak visible in the vicinity of 0.5 r.l.u. corresponds to higher harmonic contamination from the (001) reflection
to produce a different diffraction intensity depending on the helicity of the incident x rays, e.g. $I_{R} \neq I_{L}$, where I_{R} is the intensity measured with incident right-handed ${ }_{197}$ circularly polarized photons and I_{L} for left-handed ones. ${ }_{198}$ Rotating the sample about the diffraction wave vector ${ }_{199}$ might result in a smooth change of the diffracted intensity ${ }_{200}$ which helps to reconstruct the magnetic moment motif. ${ }_{201}$ It is worth emphasizing that Eq. (1) is an approximation ${ }_{202}$ for the resonant magnetic scattering cross section which, ${ }_{203}$ strictly speaking, is only valid for a cylindrical symmetri- ${ }_{204}$ cal environment of the resonant ion. When this approx- ${ }_{205}$ imation does not hold the diffracted intensities must be ${ }_{206}$ described as exemplified in Ref. 2, 38-42.

IV. RESULTS

Once the sample is cooled below the Néel tempera- ${ }^{213}$ ture T_{N}, superstructure peaks $(0,0, n \tau)$ of order n up ${ }^{214}$ to three arise from magnetic ordering and magnetically ${ }^{215}$ induced lattice distortions (Fig. 2). The observation of ${ }^{216}$ such reflections is remarkable as, given the magnetic mo- ${ }^{217}$ tif suggested by neutron diffraction, they should be ab- ${ }^{218}$ sent. They are of resonant nature and they disappear ${ }^{219}$ when the energy of the incident x rays is detuned from ${ }^{220}$ the iron L edges (Fig. 3). Non-resonant magnetic inten- ${ }^{221}$ sity could be zero or too small to be visible. Resonant x-222 ray diffraction is sensitive to the spin, orbital and charge ${ }_{223}$ degrees of freedom. ${ }^{28,43-45}$ In order to assert their ori-224 gin and refine the magnetic structure, we collected their ${ }_{225}$ energy, azimuthal and temperature dependence. Fig. 3_{226}

FIG. 3. (Color online) Intensity versus energy of the three satellite reflections in the vicinity of the $\mathrm{Fe} \mathrm{L}_{3}$ edge. Spectra collected with incident π [(blue) square] and σ polarizations [(red) filled circle] at 10 K . Spectra are scaled $[(0,0, \tau)$ and $(0,0,3 \tau)$ were multiplied by 2.5 and 80 respectively] and shifted for clarity and lines are guides to the eye. The reflectivity contribution has been evaluated and subtracted by performing the same scan above T_{N}. The black continuous line represents the sample absorption spectra collected in fluorescent mode.
shows the energy dependence of the three superstructural peaks collected for x rays with polarization in the diffraction plane (so-called π geometry) and perpendicular to it (σ geometry). They measure the maximum intensity of the diffraction peak at different energies (i.e. energy scans at fixed momentum transfer). The first harmonic peak $(n=1)$ shows equal intensity $\left(I_{\pi}=I_{\sigma}\right)$ for both incident x-rays polarization as the energy of the incident x rays is swept across the iron L_{3} edge. The ratio I_{π} over I_{σ} is very close to one and has no significant modulation as the sample is rotated about the diffraction wave vector $(0,0, \tau)$ (so-called azimuthal-angle rotation), as exemplified in Fig. 4. Data are collected for a Bragg angle $\theta_{B}=14.1^{\circ}$ where a significant contribution from specular reflectivity is present. Such a contribution is different for I_{π} and I_{σ} and, combined with the weakness of the signal, complicates the determination of the magnetic Bragg diffraction contribution. In this respect, the data gathered with incident circularly polarized photons (I_{R} and I_{L}) provide a more reliable data set, as being a complex combination of the linearly polarized light, they present the same background for I_{R} and I_{L}. Indeed the ratio I_{L} over I_{R} is very close to one over the investigated range and sports smaller error bars.

The second harmonic ($0,0,2 \tau$) energy dependence has $I_{\pi} \neq I_{\sigma}$. Being associated with small lattice or electron density deformations induced by the magnetic ordering, it is expected to exhibit a I_{σ} / I_{π} ratio different from one. We do not observe any intensity far from the absorp-

FIG. 4. (Color online) Azimuthal angle dependence of the ${ }_{251}^{250}$ I_{σ} / I_{π} (red) and I_{L} / I_{R} (black) ratio for the $(0,0, \tau) \mathrm{mag}^{2525}$ netic reflection. The (black) line represents the predictions ${ }^{252}$ of the model described in the text ($\chi^{2}=4.0$ for comparison ${ }^{253}$ with both dataset, $\chi^{2}=1.5$ for the ratio I_{L} / I_{R} alone). Mea- ${ }^{254}$ surements were performed in the vicinity of the $\mathrm{Fe}_{\mathrm{L}} \mathrm{L}_{3}$ edge ${ }^{255}$ $(\mathrm{E}=709.8 \mathrm{eV})$. The azimuthal angle equals zero when the $[100]^{256}$ direction is in the scattering plane.

FIG. 5. (Color online) Azimuthal angle dependence of the $0,2 \tau)$ superstructural reflection. The line represents a fit to the data with a constant $\left(\chi^{2}=1.6\right.$ for the ratio $\left.I_{\sigma} / I_{\pi}\right)$, as ${ }_{279}$ expected form the model presented in the text. Measurements ${ }^{279}$ were performed in the vicinity of the Fe_{3} edge $(\mathrm{E}=709.8 \mathrm{eV}) .{ }^{280}$ The azimuthal angle equals zero when the [100] direction is ${ }^{281}$ in the scattering plane. tion edge. It indicates that the signal originates from the ${ }^{285}$ asymmetry of the electron density that appears below the ${ }^{286}$ magnetic ordering temperature, possibly triggered by the ${ }^{287}$ antiferromagnetic ordering. We have also collected its az- ${ }^{288}$ imuthal angle dependence (Fig. 5). In analogy with the 289 first harmonic peak it shows no modulation, with I_{σ} and 2_{290}
I_{π} constant within the error bars. Such results are supported also by the azimuthal variation of the ratio I_{σ} over I_{π} which displays smaller error bars due to the elimination of possible systematic errors, which equally affect both intensities, such as misalignments and changes in the sample illuminated area during the azimuthal scan. Finally we discuss the third harmonic reflection (0,0 , 3τ). Its energy dependence is quite peculiar. Being I_{π} equal to I_{σ} suggests the peak to be of magnetic origin, as in the case of $(0,0, \tau)$ reflection. However, the spectral shape differs strongly from the one of the fundamental harmonic. It presents two principal features close in energy rather than a single peak with two shoulders as in the case of the $(0,0, \tau)$. As the iron site symmetry (.2.) does not forbid mixed events (e.g. electric dipolequadrupole) one possible explanation can be a small contribution coming from the electric quadrupole or electric dipole-quadrupole event, ${ }^{28,38,39,46}$ though such contributions are usually expected to be negligible. Note that the odd reflection intensities are between two and three orders of magnitude smaller compared to other magnetic ordering signal found in oxides. ${ }^{32,34,47-51}$ Effect of absorption correction can be discarded as they would influence more significantly the $(0,0, \tau)$ reflection. At lower angles the penetration length is reduced as the x rays have to travel longer into the sample before being diffracted into the detector. It was unfortunately not possible to collect its azimuthal angle dependence due to the weakness of the signal.

The temperature dependence of the satellite reflections (Fig. 6) shows strong resemblance to the one observed in rare-earth metals. ${ }^{52,53}$ Pursuing the parallel with the rare-earth metals we would expect that the first harmonic arises from magnetic diffraction at the dipole resonance. The second harmonic corresponds to charge or orbital diffraction arising from lattice or electron density modulations. The third-order harmonic might be a magnetic harmonic of the first or might originate from an electric quadrupole resonance, ${ }^{28}$ although such a contribution is expected to be orders of magnitudes weaker. In this case it could even originate from the presence of higher "multipole" moments (e.g. octupoles) order.
Our estimate of the critical exponent β found that it is not consistent with mean-field theory. A fit to power-law behavior $I_{n \tau} \propto\left(T_{N}-T\right)^{2 \beta_{n}}$ gave an estimate for the critical exponents. They are respectively $\beta_{1}=0.34 \pm 0.04, \beta_{2}=0.54 \pm 0.05, \beta_{3}=0.93 \pm 0.08$. In this respect our system shares similarities with the "basal plane" ordered rare earth Dy and Ho ($\beta_{1}^{D y}=0.41 \pm 0.04$ and $\beta_{1}^{H o}=0.39 \pm 0.04$ respectively $)^{52,53}$ as opposed to c axis modulated one Er and Tm which follow mean field theory. However, the analogy cannot be brought further. A notable difference between the two families of compounds is that in our case the intensity of the second harmonic peak dominates the one of the first harmonic, whilst the opposite is true for the rare earth.

Given the long modulation period of the magnetic structure it was possible to extend our investigation also

FIG. 6. (Color online) Normalized integrated intensity vs temperature of the three satellite reflections. The solid lines show the best fit to power-law behavior $I_{n \tau} \propto\left(T_{N}-T\right)^{2 \beta_{n}}$. The dashed line is the expected mean-field theory dependence. The $(0,0,2 \tau)$ satellite is 7 times more intense than the $(0$, $0, \tau)$. The same ratio holds between the $(0,0, \tau)$ and the (0 , $0,3 \tau)$ satellites. Data was measured with π incident photon energy of 710 eV .
to the oxygen K edge, which corresponds to an electric ${ }^{324}$ dipolar transition from the $1 s$ to the $2 p$ level. Upon cooling below T_{N} a signal is observed at this energy. 325 Figure 7 shows its resonant nature. Observation of a326 resonant signal on an anion is not unusual. ${ }^{54-56}$ A reso-327 nant signal can arise, given a non zero overlap between328 the initial and the final state, whereas a difference exists ${ }_{329}$ in the up/down spin dipolar overlap integrals. The dif-330 ference can be induced by polarization of the orbitals. ${ }^{57}{ }_{331}$ Such an asymmetry can arise also in case of a difference 3_{32} in the lifetime of the up/down spin channels. Recently ${ }_{333}$ Beale et al. ${ }^{55}$ observed a resonant signal at the oxygen K_{334} edge in $\mathrm{TbMn}_{2} \mathrm{O}_{5}$, which they interpreted as a signature 3_{35} of an antiferromagnetically ordered spin polarization on ${ }_{336}$ the oxygen site. Such an observation is quite remarkable 3_{37} and we share their opinion that the study of oxygen spin ${ }_{338}$ polarization may lead to new insight in the understanding ${ }_{339}$ of the magnetoelectric coupling mechanism. As a mat-340 ter of fact, an antiferromagnetic order at the oxygen site 3_{341} is consistent with neutron diffraction experiments that342 have already suggested a spin polarization of the oxy-343 gen by finding a value of $4 \mu_{B}$ instead of the expected ${ }_{34}$ $5 \mu_{B}$ for the spherical Fe^{3+} half filled ion magnetic mo-345 ment. ${ }^{5,11}$ In our case the signal at the oxygen K edge is ${ }_{346}$ 90 times weaker than the corresponding one observed at ${ }_{347}$ the iron L_{3} edge. Note that at the K edge the signal ${ }_{348}$ originates solely from the orbital magnetic moment com-349 ponent, given the absence of spin-orbit splitting of the 3_{350} hole in the core state. ${ }^{39,58,59}$ No intensity was observed ${ }_{351}$ at the $(0,0,2 \tau)$ and $(0,0,3 \tau)$ satellites at the oxygen K_{352} edge.

FIG. 7. (Color online) Intensity [(red) circle] vs energy of the $(0,0, \tau)$ satellite reflection at the oxygen K edge collected at 10 K with π incident x rays. The fluorescence spectra [(blue) open square] obtained in the vicinity is also shown. Full (red) circle results from a fit of the integrated intensity of a reciprocal lattice scan along the c^{*} reciprocal lattice direction. Open (red) circle are a result of an energy scan with fix momentum transfer. The (black) continuous line is a Gaussian fit of the oxygen resonance with a $\mathrm{FWHM}=1.4 \pm 0.1 \mathrm{eV}$.

V. SYMMETRY CONSIDERATIONS

Insights into the results can be obtained from group representation analysis, ${ }^{60}$ provided that a single irreducible representation is selected at the magnetic ordering. The analysis is simplified by the fact that the space group P321 associated with the paramagnetic phase is symmorphic. It is, to be precise, a semi-direct product of the abelian translation group associated with a hexagonal lattice and the dihedral point group 32, which consists of the identity 1 , the anti-clockwise rotation 3^{+}and the clockwise rotation $3^{-}=\left(3^{+}\right)^{2}$ about the ternary c axis and the dyads (π-rotations) about the three binary axes at 120° to each other within the a, b-plane. A vector along the reciprocal c^{\star}-axis is reversed under the dyads and is invariant otherwise. It follows that the star of the magnetic propagation vector consists of the two vectors $\vec{\tau}_{ \pm}=(0,0, \pm \tau)$ each being associated with the little space group P3, which is a semi-direct product of the translation group of the paramagnetic phase and the abelian cyclic point group 3. An abelian group G of n_{G} elements has n_{G} conjugacy classes (each being reduced to a singleton owing to the commutativity), which implies that it has n_{G} irreducible representations $\Gamma_{i}\left(i=1, \ldots, n_{G}\right)$. It follows that these are necessarily all of dimension $d_{i}=1$, to comply with the identity $\sum_{i=1}^{n_{G}} d_{i}^{2}=n_{G}$. Each Γ_{i} coincides then with its character χ_{i}. The value of χ_{i} on any group element g is an n_{G}-th root $\mathrm{e}^{i 2 \pi p / n_{G}}\left(p=1, \ldots, n_{G}\right)$ of 1 , because the order of g always divide n_{G}. The character table is then built by making use of the orthogonality theorems. The basis vector of the invariant subspace of
each Γ_{i} is also easily deduced by applying the projection ${ }_{395}$ operator $\mathcal{P}_{i}=\frac{d_{i}}{n_{G}} \sum_{g \in G} \chi_{i}(g)^{\star} g$ on trial vectors. Table I_{396} summarizes such results for the cyclic group 3 .
The choice of a propagation vector amounts to select398 an irreducible representation of the translation group399 and determines a dephasing of moments within each400 Bravais lattice. Information on the phase relations be-401 tween moments of distinct Bravais lattices can be ex-402 tracted only from the irreducible representations of the ${ }^{403}$ little co-group. Three Bravais lattices $\mathcal{L}_{\nu}(\nu=1,2,404$ $3)$ are associated with the positions $(0.2496,0,0.5), 405$ $(0,0.2496,0.5)$ and $(-0.2496,-0.2496,0.5)$ of the $\mathrm{Fe}^{3+}{ }_{406}$ ions on the 3 f site. Under the symmetry operation $3^{+}{ }_{407}$ a moment of \mathcal{L}_{1} (resp. $\mathcal{L}_{2}, \mathcal{L}_{3}$) is rotated by an an-408 gle of 120° about the c-axis and is transported into $\mathcal{L}_{2}{ }^{409}$ (resp. $\mathcal{L}_{3}, \mathcal{L}_{1}$) whereas under the symmetry 3^{-}it is ro-410 tated by an angle of 240° about the c-axis and is trans-411 ported into \mathcal{L}_{3} (resp. $\left.\mathcal{L}_{1}, \mathcal{L}_{2}\right)$. This defines a repre-412 sentation Γ of the cyclic group 3 of dimension 9 whose ${ }_{413}$ character χ takes the values $\chi(1)=9, \chi\left(3^{+}\right)=0$ and444 $\chi\left(3^{-}\right)=0$ on the group elements. Γ reduces into irre- 415 ducible components as : $\Gamma=3 \Gamma_{1} \oplus 3 \Gamma_{2} \oplus 3 \Gamma_{3}$. A magnetic ${ }_{416}$ structure can be most generally regarded as composed417 of several sine-wave amplitude modulations of moments:418 $\frac{1}{2}\left(\vec{v}_{\nu}\left(\theta_{\nu}, \phi_{\nu}\right) e^{-i \xi_{\nu}} e^{-i \vec{\tau}_{ \pm} \cdot \vec{r}_{\nu n}}+c . c.\right)$, where $\vec{r}_{\nu n}=\vec{r}_{\nu}+\vec{R}_{n}{ }^{419}$ defines the position of the moment of \mathcal{L}_{ν} in the n-th unit420 cell, ξ_{ν} stands for an initial phase and c.c. means to421 take the complex conjugate. The reduction of Γ then ${ }_{422}$ suggests that, whatever the selected irreducible repre-423 sentation Γ_{i}, three independent directions of the mo-424 ments are allowed by symmetry and can be combined, ${ }_{425}$ for instance along two orthogonal unit vectors in the $a, b-426$ plane, $\hat{x}_{\nu}=\left(\pi / 2, \phi_{\nu}\right)$ at an angle ϕ_{ν} from the a-axis and ${ }_{427}$ $\hat{y}_{\nu}=\left(\pi / 2, \phi_{\nu}+\pi / 2\right)$ at an angle $\phi_{\nu}+\pi / 2$ from the a-axis, 4_{228} and along the unit vector $\hat{z}_{\nu}=(0,0)$ of the c-axis, with $_{429}$ possibly vectors $\vec{v}_{\nu}\left(\theta_{\nu}, \phi_{\nu}\right)$ of different lengths.

VI. DISCUSSION

It was shown, ${ }^{5}$ from collected neutron diffraction inten-435 sities, that a helicoidal modulation is stabilized within ${ }^{436}$ each \mathcal{L}_{ν}, associated with a combination of the form ${ }^{437}$

| | Characters | | | | Basis Vectors |
| :---: | :---: | :---: | :---: | :---: | :---: |${ }^{440}{ }^{441}$

TABLE I Irreducible representations of the cyclic point group 47 3 , little co-group of the propagation vectors $\vec{\tau}_{ \pm}=(0,0, \pm \tau)$ in ${ }_{448}$ the space group P321, and associated invariant basis vectors.449 $\vec{v}_{\nu}(\theta, \phi)$ symbolizes a vector associated to a Bravais lattice $\mathcal{L}_{\nu_{450}}$ at an angle θ from the c-axis and the projection of which in ins $_{45}$ the perpendicular plane is at an angle ϕ from the a-axis.
$\vec{v}_{\nu}\left(\pi / 2, \phi_{\nu}\right) e^{-i \xi_{\nu}}+\sigma \epsilon_{H} \vec{v}_{\nu}\left(\pi / 2, \phi_{\nu}+\pi / 2\right) e^{-i\left(\xi_{\nu}-\pi / 2\right)}=$ $m_{a, b}\left(\hat{x}_{\nu}+i \sigma \epsilon_{H} \hat{y}_{\nu}\right) e^{-i \xi_{\nu}}$ with $\sigma=+1$ for $\vec{\tau}_{+}$and $\sigma=$ -1 for $\vec{\tau}_{-}$. It is implicitly assumed that the vectors $\vec{v}_{\nu}\left(\pi / 2, \phi_{\nu}\right)=m_{a, b} \hat{x}_{\nu}$ and $\vec{v}_{\nu}\left(\pi / 2, \phi_{\nu}+\pi / 2\right)=m_{a, b} \hat{y}_{\nu}$ have the same length $m_{a, b}$, which leads to a circular helix. An elliptic helix would have been obtained otherwise, which a priori cannot be excluded. $\epsilon_{H}= \pm 1$ defines the magnetic helicity, that is to say the sense of the rotation of the moments in the helix as one moves along the propagation vector: $\vec{m}\left(\vec{r}_{\nu n}\right) \times \vec{m}\left(\vec{r}_{\nu n}+\vec{c}\right)=$ $\epsilon_{H} m_{a, b}^{2} \sin (2 \pi \tau)(\vec{c} /|\vec{c}|)$ whatever the chosen description between $\vec{\tau}_{+}$and $\vec{\tau}_{-}$. If we impose $\phi_{\nu=2,3}-\phi_{1}$ according to Table I then we must have $\xi_{1}=\xi_{2}=\xi_{3}$, which can be set to 0 , together with ϕ_{1}, without loss of generality. Table I illustrates that a triangular configuration of the moments on each triangle is associated with Γ_{1} with a magnetic triangular chirality +1 , that is to say with an anti-clockwise sense of the rotation of the moments as one moves anti-clockwise on a triangle. A triangular configuration of the moments on each triangle with the opposite magnetic triangular chirality -1 , that is to say with a clockwise sense of the rotation of the moments as one moves anti-clockwise on a triangle, emerges from Γ_{2} (resp. Γ_{3}) when $\epsilon_{H}=+1$ (resp. $\epsilon_{H}=-1$), in which case $\Gamma_{3}\left(\right.$ resp. $\left.\Gamma_{2}\right)$ describes a ferro-collinear configuration of the moments on each triangle. Intensity asymmetry of the pairs $\vec{K} \pm \vec{\tau}$ of magnetic satellites about reciprocal nodes \vec{K} indicated that for, a lefthanded structural chirality $\epsilon_{T}=-1$, if $\epsilon_{H}=-1$ then Γ_{1} is selected and if $\epsilon_{H}=+1$ then Γ_{2} is selected. This interdependence of the dephasing of moments within and between the Bravais lattices \mathcal{L}_{ν} was explained as arising from the twist in the exchange paths connecting the moments of consecutive a, b-planes, which depends on the structural chirality ϵ_{T} and imposes the magnetic triangular chirality $\epsilon_{T} \epsilon_{H}$. X-ray anomalous scattering confirmed that the structural chirality of the investigated crystal is $\epsilon_{T}=-1$. Neutron spherical polarimetry finally demonstrated that only the magnetic helicity $\epsilon_{H}=-1$, and therefore only the $\left(\epsilon_{H}, \epsilon_{T} \epsilon_{H}\right)=(-1,+1)$ magnetic helicity-triangular chirality pair, is selected, which was ascribed to the uniform Dzyaloshinsky-Moriya interactions with the Dzyaloshinsky-Moriya vectors all along the c-axis. This model ${ }^{5}$ was later confirmed by polarized neutron inelastic scattering with polarization analysis, which allowed probing both the symmetric and antisymmetric nature of the dynamical correlations associated with the magnon excitations emerging from the magnetic order. ${ }^{16}$

A crucial point of the reported model of the circular helices with moments within the a, b-plane is that the dephasing of the moments associated with the triangular configuration of moments on each triangle leads to zero magnetic structure factors at the scattering vectors $(0,0, \pm \tau)$. One however may recall that the neutrons detect only the components of the moments perpendicular to the scattering vectors. An additional sine-wave amplitude modulated component along the c axis of the moments is therefore not to be excluded,
in which case we would rather have the combination503 $\vec{v}_{\nu}\left(\pi / 2, \phi_{\nu}\right) e^{-i \xi_{\nu}}+\sigma \epsilon_{H} \vec{v}_{\nu}\left(\pi / 2, \phi_{\nu}+\pi / 2\right) e^{-i\left(\xi_{\nu}-\pi / 2\right)}+_{504}$ $\vec{v}_{\nu}(0,0) e^{-i \xi_{\nu}^{\prime}}=m_{a, b}\left(\hat{x}_{\nu}+i \sigma \epsilon_{H} \hat{y}_{\nu}\right) e^{-i \xi_{\nu}}+m_{c} \hat{z}_{\nu} e^{-i \xi_{\nu}^{\prime}}$. The 505 length m_{c} of the vector $\vec{v}_{\nu}(0,0)$ should however be small506 enough so that the neutron intensities to which it should507 give rise at the other scattering vectors, $(h, k, \ell \pm \tau)$ with ${ }^{508}$ $h \neq 0$ or $k \neq 0$, are drowned beneath the statistical un-509 certainties of the neutron intensities associated with the ${ }^{510}$ main helical modulation component. Table I actually il-511 lustrates that this c-component of the moments would $_{512}$ lead to a zero magnetic structure factor for the scatter-513 ing vectors $(0,0, \pm \tau)$, and therefore would no longer be 5_{514} detected by resonant x-ray scattering, if the stabilized ir-515 reducible representation is either Γ_{2} or Γ_{3}. A non-zero ${ }_{516}$ magnetic structure factor vectorially oriented along the ${ }_{517}$ c-axis is computed only in the case of the irreducible rep-518 resentation $\Gamma_{1}: F_{m}^{\Gamma_{1}}=\left(0,0, f_{z}\right)$. The magnetic intensity ${ }_{519}$ $I_{\epsilon^{\prime} \epsilon}=F_{\epsilon^{\prime} \epsilon} F_{\epsilon^{\prime} \epsilon}^{*}$ (* stands for complex conjugation) in the ${ }_{520}$ different diffraction channels ${ }^{61}\left(\epsilon=\sigma, \pi \text { and } \epsilon^{\prime}=\sigma^{\prime}, \pi^{\prime}\right)_{521}$ associated with this amplitude modulated c-component, 522 can be calculated with the help of Eq. (1) leading to ${ }_{523}$

$$
\begin{align*}
I_{\sigma^{\prime} \sigma} & =I_{\pi^{\prime} \pi}=0 \tag{2}\\
I_{\pi^{\prime} \sigma} & =I_{\sigma^{\prime} \pi} \propto \sin ^{2} \theta_{B}
\end{align*}
$$

where θ_{B} is the Bragg angle. Noteworthy is the absence ${ }_{528}$ of any azimuthal dependence. We therefore expect nO_{529} modulation of the intensity as we rotate the sample about ${ }_{530}$ the scattering wave vector. Moreover, we expect $I_{\sigma}=_{531}$ $\left(I_{\sigma^{\prime} \sigma}+I_{\pi^{\prime} \sigma}\right)=I_{\pi}=\left(I_{\sigma^{\prime} \pi}+I_{\pi^{\prime} \pi}\right)$ and $I_{R}=I_{L}$. The $_{532}$ latter equality can be derived from Eq. (A1) in Ref. 62_{533} which states $I_{R}-I_{L}=\operatorname{Im}\left\{F_{\sigma^{\prime} \pi}^{*} F_{\sigma^{\prime} \sigma}+F_{\pi^{\prime} \pi}^{*} F_{\pi^{\prime} \sigma}\right\}$.

534
Another deviation of the magnetic structure might ${ }_{535}$ arise from a slight ellipticity of the helices, but according ${ }_{536}$ to Table I this would remain invisible in the case of the ir-537 reducible representation Γ_{1}. A finite magnetic structure ${ }_{538}$ factor, either $F_{m}^{\Gamma_{2}}=\left(f_{x}, f_{y}, 0\right)$ or $F_{m}^{\Gamma_{3}}=\left(f_{x}^{\prime}, f_{y}^{\prime}, 0\right)$, for ${ }_{539}$ the scattering vectors $(0,0, \pm \tau)$ would be obtained only ${ }_{540}$ if either the Γ_{2} irreducible representation or the Γ_{3} irre-541 ducible representation were to be stabilized as the main ${ }_{542}$ helical modulation component of the magnetic structure,543 but this is ruled out from the neutron diffraction data. ${ }_{544}$
A mixing of the irreducible representation Γ_{1} with the ${ }_{545}$ irreducible representation Γ_{2} (or Γ_{3}) finally is a priori not $_{546}$ to be excluded, though this would imply that the mag- ${ }_{547}$ netic transition is necessarily first order. Nevertheless ${ }_{548}$ the additional magnetic component should be extremely ${ }_{549}$ tiny to escape standard powder neutron detection, since ${ }_{550}$ it should lie in the a, b-plane to produce a non zero mag- ${ }_{551}$ netic structure factor. In the case of the ferro-collinear ${ }_{552}$ configuration in the a, b-plane, associated with irreducible ${ }_{553}$ representation Γ_{2} for $\epsilon_{H}=-1$, which gives rise to a mag- ${ }_{554}^{553}$ netic structure factor of the form $F_{m}^{\Gamma_{2}}=\left(f_{x}, f_{y}, 0\right)$, one ${ }_{555}$ calculates with the help of Eq. (1) the intensities:

$$
\begin{aligned}
I_{\sigma^{\prime} \sigma} & =0 \\
I_{\pi^{\prime} \sigma} & =I_{\sigma^{\prime} \pi}=k_{1} \cos ^{2} \theta_{B}, \\
I_{\pi^{\prime} \pi} & =k_{2} \sin ^{2}\left(2 \theta_{B}\right),
\end{aligned}
$$

where the constants k_{i} depend on the amplitude of the component of the moments associated with the irreducible representation Γ_{2} and their orientation in the a, b-plane with respect to the moments associated with the main irreducible representation Γ_{1}. Even in this case there is no azimuthal angle dependence, but we find $I_{\sigma}<I_{\pi}$ and $I_{R} \neq I_{L}$. Including both Γ_{1} and Γ_{3} contributions will lead to an azimuthal angle dependence in the rotated channels and again $I_{\sigma}<I_{\pi}$ and $I_{R} \neq I_{L}$.

We are now in the position to compare the x-ray experimental data with the prediction from representation theory. Fig. 4 shows that the ratio I_{R} over I_{L} is constant as a function of the azimuthal angle and equals one. Also the ratio I_{σ} over I_{π} is roughly constant within the error bars and is very close to one. It is thus clear that no mixing of irreducible representations is detected and that the magnetic structure abides by only the irreducible representation Γ_{1} but involves components of the moments along the three orthogonal direction in space. As a whole it consists of moments in a triangular arrangement on each triangle in the a, b-plane helically modulated along the c-axis and exhibiting small up and down oscillations along the c-axis in phase with each other and with the same period as the helical modulation, as depicted for a single helix in Fig. 1b and for the three lattices in Fig. 1c. Such a motif is reminiscent of the beatings of butterfly wings (although these wings here are three in number and not four), that lead us to dub it as "helical-butterfly". The existence of the butterfly component is consistent with the Dzyaloshinsky-Moriya interactions. Owing to the presence of the three 2 -fold axes at 120° of each other in the a, b-plane, each being perpendicular to one of the three sides of every triangle of moments, the Dzyaloshinsky-Moriya vector associated with each pair of moments must by symmetry lie within the plane containing the link connecting the two moments. ${ }^{63}$ The Dzyaloshinsky-Moriya vector field may therefore have a uniform component along the c-axis and a multi-axial component along the side of each triangle. It is this last component that gives rise to the butterfly component. It has been suggested that its contribution might be significant ${ }^{64}$ if not dominating. ${ }^{18}$

Let us now analyze the azimuthal-angle dependence of the $(0,0,2 \tau)$ reflection. According to the Γ_{1} magnetic structure factor $F_{m}^{\Gamma_{1}}=\left(0,0, f_{z}\right)$ and the formalism to calculate magnetic diffraction intensity in Ref. 28 we should observe intensity only in the unrotated $\pi^{\prime} \pi$ scattering channel which is at odds with the data shown in Fig. 5. To reconcile the observations with theoretical prediction we must adopt a more sophisticated model which does not rely on the fact that the resonant ion environment is cylindrically symmetrical. We need a tensorial structure factor Ψ_{Q}^{K} where the positive integer K is the rank of the tensor, and the projection Q can take the $(2 K+1)$ integer values which satisfy $-K \leq Q \leq K$. For a dipole transition, tensors up to rank 2 contribute $(K \leq 2) . K=0$ reflects charge contribution, $K=1$ time-odd dipole, and $K=2$ time-even quadrupole. For our superstructural re-
flection we are interested in the quadrupolar contribution600 and given the presence of the 3 -fold axis parallel to the ${ }_{601}$ c-axis we have $\Psi_{Q}^{K}(0,0,2 \tau)=(-1)^{2 \tau}\left\langle T_{Q}^{K}\right\rangle[1+2 \cos (Q \alpha)]_{602}$ which is non-zero only for $Q=0 .\left\langle T_{Q}^{K}\right\rangle$ is an atomic ${ }^{603}$ tensor that describes the contribution of each atom to ${ }^{604}$ the structure factor. Making use of the formula in ap-605 pendix C of Ref. 41 we obtain the following results for the structure factor in the different polarization channels: ${ }_{606}$

$$
\begin{align*}
F_{\sigma^{\prime} \sigma} & =-\frac{1}{\sqrt{6}} \Psi_{0}^{2}, \tag{4}\\
F_{\pi^{\prime} \sigma} & =F_{\sigma^{\prime} \pi}=0, \\
F_{\pi^{\prime} \pi} & \propto \frac{1}{\sqrt{6}}\left(1+\cos ^{2} \theta_{B}\right) \Psi_{0}^{2}, \\
F_{\sigma} / F_{\pi} & =-1 /\left(1+\cos ^{2} \theta_{B}\right) .
\end{align*}
$$ pendix. Such a model suggests no azimuthal dependence ${ }_{614}$ in all the diffraction channels and a ratio $I_{\sigma} / I_{\pi}=0.6 \mathrm{in}_{615}$ relative agreement with the azimuthal dependence shown in Fig. 5 with a $\chi^{2}=6.1$. Agreement is improved ($\chi^{2}=2.2$) by letting the ratio value vary as a free parameter, with the experimental value of 0.54 ± 0.02, still reasonably close to the one derived by Eq.(4). However, such a ratio, as exemplified in Fig. 3, is not constant as a function of energy. These deviations might arise from a small symmetry break resulting in a loss of the 3 -fold axis which would cause extra terms to appear in the structure factor. The latter has also been suggested recently by terahertz spectroscopy. ${ }^{65}$ Experimental uncertainties are however too big to extract more quantitative conclusions ${ }_{616}$ on the presence of such contributions.

VII. CONCLUSION

We have studied the magnetic structure of the intriguing compound $\mathrm{Ba}_{3} \mathrm{NbFe}_{3} \mathrm{Si}_{2} \mathrm{O}_{14}$ with resonant x-ray diffraction at the Fe L edges and O K edge. These experiments give new insight into the details of the magnetic structure recently determined by neutron diffraction. Our experiments have found an extra sinusoidal modulation of the Fe magnetic moments along the crys-617 tallographic c-axis, concomitant with the helical order ${ }^{618}$ in the a, b-plane, generating an helical-butterfly magnetic ${ }^{619}$ structure. Such sinusoidal modulation arises from the ${ }^{62}$ Dzyaloshinsky-Moriya interaction as suggested by sym-621 metry consideration and recent linear spin-wave theory ${ }^{622}$ calculations. ${ }^{64}$ The orbital magnetic signal observed at623 the oxygen K edge reflects the strong hybridization be-624
tween iron $3 d$ and oxygen $2 p$ states. Finally, the energy dependence of I_{σ} / I_{π} ratio for the ($0,0,2 \tau$) reflection hints to a possible symmetry break with loss of the 3 fold axis, however ab initio calculation would be needed to obtain quantitative informations.

ACKNOWLEDGMENTS

We would like to thank S. W. Lovesey and J. P. Hill for stimulating discussion. This work has been supported by the Swiss National Science Foundation, NCCR MaNEP.

Appendix: Quadrupolar structure factor

In analogy with Ref. 41 we obtain expression for Ψ_{Q}^{K}, written in the coordinate space ($\mathrm{x}, \mathrm{y}, \mathrm{z}$), as a sum of quantities that are even $\left(A_{Q}^{K}\right)$ and odd $\left(B_{Q}^{K}\right)$ functions of the projection Q with $-K \leq Q \leq K$.
We give expression analog to Eq. (B5) of Ref. 41 for a generic $(0,0, \ell)$ reflection:

$$
\begin{equation*}
A_{0}^{0}=\Psi_{0}^{0} \tag{A.1}
\end{equation*}
$$

Limiting ourselves to the quadrupolar contribution ($K=2$) and taking advantage of the structure factor $\Psi_{Q}^{2}(0,0,2 \tau)=(-1)^{2 \tau}\left\langle T_{Q}^{2}\right\rangle[1+2 \cos (Q \alpha)]$ we have only Ψ_{0}^{2} different from zero.
Expressions in Eq. (A.3) therefore simplify leading to e.g. $B_{Q}^{2}=0$ and $A_{2}^{2} \propto A_{0}^{2}$. Substituting Eq. (A.3) in Eq. (C1-C3) of Ref. 41 one obtains the expression quoted in Eq. (4).

* valerios@ethz.ch

1 M. Avalos, R. Babiano, P. Cintas, J. L. Jimnez, J. C. Pala-
cios, and L. D. Barron, Chemical Reviews 98, 2391 (1998),
http://pubs.acs.org/doi/pdf/10.1021/cr970096o.
691
S. W. Lovesey and S. P. Collins, X-ray Scattering and Ab-692 sorption by Magnetic Materials (Clarendon Press, 1996). 693
${ }^{3}$ V. Simonet, M. Loire, and R. Ballou, The European Phys-694 ical Journal Special Topics 213, 5 (2012).

695
4 M. Ishida, Y. Endoh, S. Mitsuda, Y. Ishikawa, and696 M. Tanaka, Journal of the Physical Society of Japan 54,697 2975 (1985).
${ }^{5}$ K. Marty, V. Simonet, E. Ressouche, R. Ballou, P. Lejay, 699 and P. Bordet, Phys. Rev. Lett. 101, 247201 (2008).
6 S. V. Grigoriev, D. Chernyshov, V. A. Dyadkin, 701 V. Dmitriev, S. V. Maleyev, E. V. Moskvin, D. Menzel, 702 J. Schoenes, and H. Eckerlebe, Phys. Rev. Lett. 102,703 037204 (2009).

704
${ }^{7}$ M. Janoschek, F. Bernlochner, S. Dunsiger, C. Pfleiderer,705 P. Böni, B. Roessli, P. Link, and A. Rosch, Phys. Rev. B706 81, 214436 (2010).
8 S. Mühlbauer, B. Binz, F. Jonietz, C. Pflei-708 derer, A. Rosch, A. Neubauer, R. Georgii,709 and P. Bni, Science 323, 915 (2009),710 http://www.sciencemag.org/content/323/5916/915.full.pdf.11
${ }^{9}$ T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima,712 and Y. Tokura, Nature 426, 55 (2003).
${ }^{10}$ R. D. Johnson, L. C. Chapon, D. D. Khalyavin, P. Manuel P. G. Radaelli, and C. Martin, Phys. Rev. Lett. 108,715 067201 (2012).
${ }_{716}$
${ }^{11}$ K. Marty, P. Bordet, V. Simonet, M. Loire, R. Ballou, 717 C. Darie, J. Kljun, P. Bonville, O. Isnard, P. Lejay, B. Za--18 wilski, and C. Simon, Phys. Rev. B 81, 054416 (2010). 719
${ }^{12}$ H. D. Zhou, L. L. Lumata, P. L. Kuhns, A. P. Reyes, E. S.720 Choi, N. S. Dalal, J. Lu, Y. J. Jo, L. Balicas, J. S. Brooks,721 and C. R. Wiebe, Chemistry of Materials 21, 156 (2009),722 http://pubs.acs.org/doi/pdf/10.1021/cm8018082. ${ }^{723}$
${ }^{13}$ C. Lee, E. Kan, H. Xiang, and M.-H.724 Whangbo, Chemistry of Materials 22, 5290 (2010),,725 http://pubs.acs.org/doi/pdf/10.1021/cm101441p.
${ }^{14}$ I. Dzyaloshinsky, Journal of Physics and Chemistry of ${ }_{727}{ }^{726}$ Solids 4, 241 (1958).
${ }^{15}$ T. Moriya, Phys. Rev. Lett. 4, 228 (1960). ${ }^{16}$ M. Loire, V. Simonet, S. Petit, K. Marty, P. Bordet, P. Le-730 jay, J. Ollivier, M. Enderle, P. Steffens, E. Ressouche,731 A. Zorko, and R. Ballou, Phys. Rev. Lett. 106, 207201732 (2011).

17 C. Stock, L. C. Chapon, A. Schneidewind, Y. Su, P. G. ${ }^{733}$ Radaelli, D. F. McMorrow, A. Bombardi, N. Lee, and735 S.-W. Cheong, Phys. Rev. B 83, 104426 (2011).
${ }^{736}$
18 A. Zorko, M. Pregelj, A. Potočnik, J. van Tol,737 A. Ozarowski, V. Simonet, P. Lejay, S. Petit, and R. Bal-738 lou, Phys. Rev. Lett. 107, 257203 (2011).
${ }^{19}$ P. Bordet, I. Gelard, K. Marty, A. Ibanez, J. Robert, V. Si-740 monet, B. Canals, R. Ballou, and P. Lejay, Journal of 7_{41} Physics: Condensed Matter 18, 5147 (2006).
${ }^{20}$ U. Staub, V. Scagnoli, Y. Bodenthin, M. García ${ }^{742}$ Fernández, R. Wetter, A. M. Mulders, H. Grimmer, and744 M. Horisberger, J. Synchr. Rad. 15, 469 (2008).

21 U Flechsig F Nolting A F Rodriguez J Krem-7 ${ }^{745}$ pasky, C. Quitmann, T. Schmidt, S. Spielmann, and747 D. Zimoch, in SRI 2009: THE 10TH INTERNATIONAL L_{748} CONFERENCE ON SYNCHROTRON RADIATION IN-749 Strumentation, AIP Conference Proceedings, Vol.750 1234 (AMER INST PHYSICS, 2010) pp. 319-322.
${ }^{22}$ V. Fernandez, C. Vettier, F. de Bergevin, C. Giles, and752 W. Neubeck, Phys. Rev. B 57, 7870 (1998).${ }^{23}$ T. Brückel, M. Lippert, T. Köhler, J. R. Schneider, W. Prandl, V. Rilling, and M. Schilling, Acta Crystallographica Section A 52, 427 (1996).
${ }^{24}$ J. Strempfer, T. Brückel, U. Rütt, J. R. Schneider, K.-D. Liss, and T. Tschentscher, Acta Crystallographica Section A 52, 438 (1996).
${ }^{25}$ W. Neubeck, C. Vettier, F. de Bergevin, F. Yakhou, D. Mannix, L. Ranno, and T. Chatterji, J. Phys. Chem. Solids 62, 2173 (2001).
${ }^{26}$ J. P. Hannon, G. T. Trammell, M. Blume, and D. Gibbs, Phys. Rev. Lett. 61, 1245 (1988).
${ }^{27}$ J. P. Hannon, G. T. Trammell, M. Blume, and D. Gibbs, Phys. Rev. Lett. 62, 2644 (1989).
28 J. P. Hill and D. F. McMorrow, Acta Cryst. A 52, 236 (1996).
${ }^{29}$ D. Templeton and L. Templeton, Acta Cryst. A 38, 62 (1982).
${ }^{30}$ V. Dmitrienko, Acta Cryst. A 39, 29 (1983).
${ }^{31}$ D. Templeton and L. Templeton, Acta Cryst. A 42, 478 (1986).
${ }^{32}$ V. Scagnoli, U. Staub, A. M. Mulders, M. Janousch, G. I. Meijer, G. Hammerl, J. M. Tonnerre, and N. Stojic, Phys. Rev. B 73, 100409 (R) (2006).
${ }^{33}$ S. B. Wilkins, T. R. Forrest, T. A. W. Beale, S. R. Bland, H. C. Walker, D. Mannix, F. Yakhou, D. Prabhakaran, A. T. Boothroyd, J. P. Hill, P. D. Hatton, and D. F. McMorrow, Phys. Rev. Lett. 103, 207602 (2009).
${ }^{34}$ H. Jang, J.-S. Lee, K.-T. Ko, W.-S. Noh, T. Y. Koo, J.-Y. Kim, K.-B. Lee, J.-H. Park, C. L. Zhang, S. B. Kim, and S.-W. Cheong, Phys. Rev. Lett. 106, 047203 (2011).
${ }^{35}$ R. D. Johnson, S. Nair, L. C. Chapon, A. Bombardi, C. Vecchini, D. Prabhakaran, A. T. Boothroyd, and P. G. Radaelli, Phys. Rev. Lett. 107, 137205 (2011).
${ }^{36}$ V. Scagnoli, M. Allieta, H. Walker, M. Scavini, T. Katsufuji, L. Sagarna, O. Zaharko, and C. Mazzoli, Phys. Rev. B 86, 094432 (2012).
${ }^{37}$ S. Agrestini, C. Mazzoli, A. Bombardi, and M. R. Lees, Phys. Rev. B 77, 140403 (2008).
${ }^{38}$ P. Carra and B. T. Thole, Rev. Mod. Phys. 66, 1509 (1994).
${ }^{39}$ S. W. Lovesey, E. Balcar, K. S. Knight, and J. F. Rodriguez, Phys. Reports 411, 233 (2005).
${ }^{40}$ N. Stojic, N. Binggeli, and M. Altarelli, Phys. Rev. B 72, 104108 (2005).
${ }^{41}$ V. Scagnoli and S. W. Lovesey, Phys. Rev. B 79, 035111 (2009).
${ }^{42}$ M. W. Haverkort, N. Hollmann, I. P. Krug, and A. Tanaka, Phys. Rev. B 82, 094403 (2010).
${ }^{43}$ Y. Murakami, H. Kawada, H. Kawata, M. Tanaka, T. Arima, Y. Moritomo, and Y. Tokura, Phys. Rev. Lett. 80, 1932 (1998).
${ }^{44}$ U.Staub, G. I. Meijer, F.Fauth, R. Allenspach, J. G. Bednorz, J. Karpinski, S. M. Kazakov, L. Paolasini, and F. d'Acapito, Phys. Rev. Lett. 88, 126402 (2002).
${ }^{45}$ U. Staub, M. Shi, C. Schulze-Briese, B. D. Patterson, F. Fauth, E. Dooryhee, L. Soderholm, J. O. Cross, D. Mannix, and A. Ochiai, Phys. Rev. B 71, 075115 (2005).
${ }^{46}$ I. Marri and P. Carra, Phys. Rev. B 69, 113101 (2004).
47 S. B. Wilkins, P. D. Spencer, P. D. Hatton, S. P. Collins, M. D. Roper, D. Prabhakaran, and A. T. Boothroyd, Phys. Rev. Lett. 91, 167205 (2003).
${ }^{48}$ U. Staub, V. Scagnoli, A. M. Mulders, K. Katsumata, Z. Honda, H. Grimmer, M. Horisberger, and J. M. Tonnerre, Phys. Rev. B 71, 214421 (2005).
${ }^{49}$ M. García-Fernández, V. Scagnoli, U. Staub, A. M. Mul-780 ders, M. Janousch, Y. Bodenthin, D. Meister, B. D. Pat-781 terson, A. Mirone, Y. Tanaka, T. Nakamura, S. Grenier,,782 Y. Huang, and K. Conder, Phys. Rev. B 78, 054424_{783} (2008).
${ }^{50}$ U. Staub, Y. Bodenthin, C. Piamonteze, M. García-785 Fernández, V. Scagnoli, M. Garganourakis, S. Koohpayeh,786 D. Fort, and S. W. Lovesey, Phys. Rev. B 80, 140410787 (2009).

788
${ }^{51}$ R. A. de Souza, U. Staub, V. Scagnoli, M. Garganourakis,789 Y. Bodenthin, and H. Berger, Phys. Rev. B 84, 014409790 (2011).
${ }^{52}$ G. Helgesen, J. P. Hill, T. R. Thurston, D. Gibbs, J. Kwo,792 and M. Hong, Phys. Rev. B 50, 2990 (1994).
${ }^{53}$ G. Helgesen, J. P. Hill, T. R. Thurston, and D. Gibbs,794 Phys. Rev. B 52, 9446 (1995).
54 D. Mannix, A Stunault, N Bernhoeft, L. Paolasini, G. H. ${ }^{795}$ Lander, C. Vettier, F. de Bergevin, D. Kaczorowski, and797 A. Czopnik, Phys. Rev. Lett. 86, 4128 (2001).

55 T. A. W. Beal S. B. Wikis, R. D. Jonso T. A. W. Beale, S. B. Wilkins, R. D. Johnson, S. R.799 Bland, Y. Joly, T. R. Forrest, D. F. McMorrow, F. Yakhou,800 D. Prabhakaran, A. T. Boothroyd, and P. D. Hatton, Phys. Rev. Lett. 105, 087203 (2010).
${ }^{56}$ R. A. de Souza, U. Staub, V. Scagnoli, M. Garganourakis, Y. Bodenthin, S.-W. Huang, M. Garcia-Fernandez, S. Ji,
S.-H. Lee, S. Park, and S.-W. Cheong, Phys. Rev. B 84, 104416 (2011).
57 M. van Veenendaal, J. B. Goedkoop, and B. T. Thole, Phys. Rev. Lett. 78, 1162 (1997).
${ }^{58}$ P. Carra, B. T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett. 70, 694 (1993).
${ }^{59}$ J. Luo, G. T. Trammell, and J. P. Hannon, Phys. Rev. Lett. 71, 287 (1993).
${ }^{60}$ R. Ballou and B. Ouladdiaf, in Neutron Scattering from Magnetic Materials, edited by T. Chatterji (Elsevier, 2006) Chap. 3.
${ }^{61}$ We drop the bold style for $\boldsymbol{\epsilon}\left(\epsilon^{\prime}\right)$ to $\epsilon\left(\epsilon^{\prime}\right)$ for the sake of simplicity.
${ }^{62}$ J. Fernández-Rodríguez, S. W. Lovesey, and J. A. Blanco, Phys. Rev. B 77, 094441 (2008).
${ }^{63}$ T. Moriya, Phys. Rev. 120, 91 (1960).
${ }^{64}$ J. Jensen, Phys. Rev. B 84, 104405 (2011).
${ }^{65}$ L. Chaix, S. de Brion, F. Lévy-Bertrand, V. Simonet, R. Ballou, B. Canals, P. Lejay, J. B. Brubach, G. Creff, F. Willaert, P. Roy, and A. Cano, Phys. Rev. Lett. 110, 157208 (2013).

