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∗ Aix Marseille Université, Université de Toulon, CNRS, CPT, UMR7332, 13288 Marseille, France

Email: briolle@cpt.univ-mrs.fr, xavier.leoncini@cpt.univ-mrs.fr
†Lab. Analyse, Topologie, Probabilité, Aix-Marseille Université, France
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Abstract—Transport in low dimensional Hamiltonian chaos
can be anomalous due to stickiness and rise of Lévy flights.
We suggest a signal processing method to detect these flights
in signals, in order to characterize the nature of transport
(diffusive or anomalous). We use time-frequency techniques such
as Fractional Fourier transform and matching pursuit in order
to be robust to noise. The method is tested on data obtained from
chaotic advection.

I. INTRODUCTION

Characterizing anomalous transport in low dimensional

Hamiltonian systems and quantifying its impact is of crucial

importance in different fields of physics. One can for instance

think of mixing related problems in oceans or atmospheres,

or in micro-fluidic devices, but also in magnetically confined

fusion plasmas etc...[1], [2], [3], [4], [5], [6], [7], [8], [9]

In order to analyze chaotic transport, several tools are being

used such as a fractal analysis of the trajectories, giving

Lyapunov exponents, multi-fractal analysis. In this article, we

suggest a method for analyzing anomalous transport, when

it is dominated by intermittent behavior and long lasting

Lévy flights. In this situation, the individual particle motion

displays typically periods of ballistic transport (Lévy flights)

in between chaotic motion which looks like standard random

walks (Brownian motion). From a statistical point of view,

this can generate anomalous transport phenomenon and this

anomaly can be quantified for instance by measuring the

characteristic exponent of the variance growth. We may also

try to quantify it with more details and try to characterize in a

more accurate way by detecting and counting the amount and

duration of these Lévy flights. For this purpose it is important

to remember that in most experimental data noise is present

in the signal to analyze. This noise may impact the classical

statistical methods used to quantify transport. At variance, our

signal processing analysis is able to detect and extract levy

flights even if embedded in noise (of reasonable amplitude).

This is definitively a plus when considering using the method

in practical situations.

To be more precise, the signal processing method relies

on the so-called uncertainty principle. This principle simply

states that time and frequency (or momentum and position in

quantum mechanics) can not be known simultaneously with

arbitrary precision: If ∆t is the accuracy of the measure in

time and ∆f is the accuracy in frequency, the Heisenberg

principle implies that:

∆t ·∆f ≥ c,

where c is a strictly positive constant. This phenomenon is

usually seen as a problem and many works have been focusing

on trying to minimize the uncertainty c. Conversely, we

shall take advantage of it. Indeed, anticipating on the precise

description of our method, we transfer the tracer trajectory

seen as a signal into the time-frequency plane. As a direct

consequence of the uncertainty principle the Brownian motion

becomes blurry while the ballistic flights remain distinct. Thus,

the detection of Lévy flights becomes the detection of straight

lines in the time-frequency plane. This can be efficiently done

by a projection onto a family of bases chirp functions [10]

and in the end, the uncertainty principle gives us the ability

to accurately detect flights even in the presence of noise.

Considering the numerical aspects, it is also important to note

that this procedure is fast and relying on the fast Fourier

transform: the complexity is of O(N2 logN), where N is the

size of the sampled data.

This paper is organized as follows, first, in part II we present

a special physical problem, namely the phenomenon of chatic

advection, which motivated the establishment of our signal

processing technique and will provide us the data to test it

with. The notion of transport and Lévy flight is as well stated

with precision along with the type of data to analyze. Then,

in part III the method for analyzing this particular anomalous

transport is presented. The method is then tested using data

from part II. In fine, the results of the detection of Lévy flights

are presented.

II. CHAOTIC ADVECTION PHENOMENA

In this section we discuss the stickiness that occurs in

low-dimensional Hamiltonian systems. To bemore specific, we

consider more specifically the phenomenon in the setting of

chaotic advection of passive tracers in a flow generated by

three vortices.

A. Definitions

We first briefly describe the advection phenomenon. For this

purpose, we consider the flow v(r, t) of an incompressible



fluid (∇ · v = 0). In this setting the trajectories of passive

particles1 are solutions of the following differential equation:

ṙ = v(r, t) , (1)

where r = (x, y, z) corresponds to the passive particle posi-

tion. When the flow is two-dimensional, the motion becomes

Hamiltonian, indeed since ∇ · v = 0, we defined a stream

function Ψ such that v = ∇ ∧ Ψ, and for two-dimensional

flow, Ψ = Ψ z corresponds actually to a scalar field Ψ. We

can then rewrite Eq. (1):

ẋ =
∂Ψ

∂y
, ẏ = −

∂Ψ

∂x
. (2)

A peculiar feature of this Hamiltonian is that the physical

space is identified to the phase space as x and y are canonical

conjugate variables of the Hamiltonian Ψ. Note that we obtain

a one dimensional integrable Hamiltonian system if Ψ is in-

dependent of time, which just means that that particles follow

stream lines. If Ψ depends on time, we generically obtain

Hamiltonian chaos and a system with 1− 1
2 degree of freedom.

This chaotic nature of the trajectories is in this context referred

to the phenomenon of Chaotic advection: even if the flow

has a laminar (non turbulent) structure, passive particles or

tracers display Hamiltonian chaos[11], [12], [13]. Becasue of

this phenomenon, mixing is considerably enhanced in chaotic

regions, as usually the erratic motion due to chaos motions

mixes much faster than the microscopic molecular diffusion

[14], [15], [16]. This phenomenon becomee the method of

choice when mixing fragile molecules in micro-fluidic devices.

There are also a multitude of physical systems and applications

as for instance in geophysical flows or magnetized fusion

plasmas [1], [2], [3], [4], [5], [6], [7], [8], [9].

To generate the flows from which we will analyze the

data given by trajectories, we consider a flow generated by a

system with three point vortices. Before moving on, we briefly

describe what a system of point vortices is.

B. A system of point vortices

We shall start with the Euler equation, which for the

vorticity in a two-dimensional incompressible flow writes:

∂Ω

∂t
+ [Ω,Ψ] = 0 , Ω = −∇2Ψ , (3)

where [·, ·] and denotes the Poisson brackets. If we now

consider a vorticity field given by a superposition of Dirac

functions:

Ω(r, t) =

N∑
i=1

kiδ (r− ri(t)) , (4)

where, ki designate the vorticity of the point vortex localized at

point ri(t); we find that this so-called point vortex distribution

is a solution of the Euler equation if the vortices have a specific

dynamics [17]. To be more precise, vortex motion results from

1also referred as tracers

N -body Hamiltonian dynamics whose Hamiltonian writes (on

an infinite plane):

H =
1

2π

∑
i>j

kikj ln |ri − rj | , (5)

where and similarly to the passive tracers kiyi and xi are the

canonically conjugate variables of the Hamiltonian (5).

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Y

X

0 0.5 1 1.5 2

x 10
5

−5

−4

−3

−2

−1

0

1

2

3

4
x 10

4

s
(t

)−
<

V
>

t

t

Fig. 1. Left: Poincaré section of a system of three point vortices. Vorticities
are (−0.2, 1, 1). Right: Deviation from average arc-length (s(t)−V t) versus
time for an ensemble of 30 particles advected in the flow. We notice the
presence of Lvy flights. The run is performed over 20000 (quasi-)periods of
the vortex motion.

We obtain as well the stream function, namely the Hamil-

tonian of passive tracers:

Ψ(r, t) = −
1

2π

N∑
i=1

ki ln |r− ri(t)| . (6)

We shall now make a few remarks regarding the Hamiltonian

(5); it is invariant by translation and by rotation in the

plane, giving rise to two extra independant constant of the

motion besides the energy. It can then be shown the system

is integrable if the number of point vortices N is such that

N ≤ 3, on the other hand vortex motion is not integrable and

consequently chaotic if N > 3 [18], [19]. To mimic a laminar

flow, we consider a regular one time dependent one, and this

we consider a the flow generated by three vortices. Also, and

since we are interested in asymptotic transport properties we

have considered initial conditions giving rise to a periodic

motion of the vortices. We now briefly discuss the transport

properties of advected particles.

C. Stickiness and anomalous transport

Before considering the system of point vortices per se let us

precise the nomenclature, that we shall consider to characterize

transport. In fact the classification of the type of transport is

usually based on the value of the characteristic exponent of

the evolution of the second moment.

Transport is said to be anomalous if it is not diffusive in

the sense 〈X2〉 ∼ tµ, µ 6= 1

1) If µ < 1 transport is anomalous and one refers to it as

sub-diffusion

2) If µ = 1 transport is Gaussian and one refers to it as

diffusion



3) If µ > 1 transport is anomalous and one refers to it as

super-diffusion.

In fact to be more precise we should consider all moments of

the distributions and not only the variance, and this can lead

to more sublte refinenemnt in the different type of transport

properties (self-similar, multifractal etc...) .

For the specific case of the advection in the flow of three

point vortices depicted in Fig. 1, we have to specifiy what

transport properties we are considering. Indeed one notices a

chaotic sea filled with isalnds of stability, so the system per

se is not ergodic (in the sense that there are no trajectory that

becomes as close as possible of any phase space point). So

the transport is considered for trajectories in teh choatic sea.

However since this chaotic area is bounded, using positions

to measure dispersion is not usually not a good idea, as teh

boundaries are usually quickly reached and it becomes difficult

to extract a characteristic exponent on such short times. In

order to circumvent this problem, we monitor “transport prop-

erties” of the lengths of trajectories, actually we monitor the

dispersion among different initial conditions of this quantity

si(t) =

∫ t

0

|vi(τ)|dτ , (7)

where vi(τ) is the norm of the speed (in phase space, but

identical to the real spead) of particle i at time τ . Then we

compute the moments

Mq(t) ≡ 〈|s(t)− 〈s(t)〉|q〉 , (8)

where 〈. . . 〉 corresponds to ensemble averaging over different

trajectories and then we extract a characteristic exponent from

the evolution of the different moments

Mq(t) ∼ tµ(q) . (9)

It was shown that for the point vortex flow, the transport

is superdiffusive and multi-fractal [20]. These anomalous

features were traced back to the phenomenon of stickiness:

when a trajectory arrives in the neighbourhood of an island

of stability it can get stuck around the island for arbitrary

large times which act as pseudo-traps, and displays therefore a

Lévy flight in the evolution of the length of teh trajectory. This

generates strong memory effects (slow decay of correlations)

and as a consequence displays anomalous transport properties.

We have drawn in Fig. 1 the relative evolution of the length

with respect to the mean of an ensemble of 30 different

particles. And indeed can see that the time evolution is

reminiscent of some random walks by parts coming from the

chaotic sea and there are some parts where the evolution looks

regular and ballistic usually referred to as Levy flights, each

different slope corresponding to a different sticky region.

III. TIME-FREQUENCY METHOD

We shall now introduce the particularities of the data set

from a signal processing point of view and describe the

analyzing method. For clarity, the result of each step will

be illustrated with applications to the simulated data of the

previous part (trajectories of tracers evolving in the flow

generated by three vortices).

A. The data set

From a typical arc-length trajectory it is possible to get a

one-dimensional signal m(t) of N = 1000 sampling points,

t ∈ [1, N ]. A set of signals is shown on Fig. 1 (right), and one

of them on Fig. 2 (left). Several parts can be distinguished: a

random fluctuation (Brownian motion) and some almost linear

segments of different length corresponding to Lévy flights. Our

method is dedicated to the detection of these linear parts and

the estimation of their length and slope (proportional to the

velocity ∆h/∆t).

B. The detection method

As illustrated in Fig. 1 (right) and Fig. 2 (left), Lévy flights

correspond to an almost linear evolution of the arc length. It is

then important to notice that due to the uncertainty principle:

• random fluctuations in frequency cannot be rendered

precisely in the time-frequency plane. It requires to be

precise both in time and frequency, which is forbidden.

• linear parts or more generally slowly varying frequency

components are emphasized by the time-frequency rep-

resentation. Moreover, linear parts, called chirp signals,

can be detected efficiently using the fractional Fourier

transform.

It is hence interesting and natural for us to take advantage of

this fact for the analysis of the data set. To perform our analysis

we shall therefore considered m(t) as the phase derivative of

a new signal M(t). This corresponds to the first step of the

process: let us introduce the phase

ϕ(t) =

∫ t

1

m(τ)dτ, (10)

M(t) = eiϕ(t) = e
i
∫

t

1
m(τ)dτ

. (11)
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Fig. 2. left: time representation of m(t), arc-length of a single particle.
right: short-time Fourier transform representation of the signal M(t).

The above signal M(t) is a non-stationary signal of ma-

gnitude one and the phase derivative (instantaneous frequency)

fM (t) is equal to m(t) :

fM (t) =
dϕ(t)

dt
= m(t) (12)



The time-frequency representation of M on Fig. 2 (right), also

called the spectrogram[21], shows the fluctuations of the phase

derivative f(t) as a function of time. This frequency compo-

nent mimicks the behavior of the signal m, but the important

difference is that, thanks to the uncertainty principle, Brownian

fluctuations become diffuse stains (see Fig. 2 (right)). As a

consequence pure random behavior is blurred, but linear parts

remain sharp. Our first objective is attained: the linear behavior

has been emphasized over the Brownian motion.

We now move on to the second part of the process. We

are looking for lines in the time-frequency ‘picture’. For this

purpose we project the signal M(t) on a family of orthogonal

basis of chirps signals:

• Given a parameter θ0 ∈ (−π, π), we introduce the basis

of chirps {ψθ0,µ}µ with a frequency slope of 1
tan θ0

,

ψθ0,µ(t) = ei(
1

2 tan θ0
t2+ µ

sin θ0
t). (13)

Since t ∈ [1, N ], µ = 2πn/N with n ∈ [1, N ].
The phase derivative (instantaneous frequency) of

ψθ0,µ(t) is equal to :

fψ(t) =
1

tan θ0
t+

µ

sin θ0
. (14)

Notice that µ/ sin θ0 is the frequency value at t = 0
(frequency offset) of the chirp ψθ0,µ. The projection of

the signal is described by the following procedure:

C(θ0, µ) =

N∑
t=1

M(t)ψθ0,µ(t), (15)

where the bar denotes the complex conjugate.

This projection is equivalent to the fractional Fourier

transform (up to a normalizing factor) [22].

Due to the orthogonality of the basis {ψθ0,µ}µ, it is

possible, from the projection, to re-synthetize the signal

M(t):

M(t) =
∑
µ

C(θ0, µ)ψθ0,µ(t), (16)

• Since Lévy flights may have different slopes, it is neces-

sary to project the signal onto a set of P bases of chirps

{ψθi,µ}µ, with P values of θi ∈ (−π, π). We get a P×N
matrix C(θi, µj) of projections.

• When the characteristics of a chirp (frequency slope

and offset) match the one of a ”frequential picture”,

|C(θi, µj)| is a maximum.

Taking the signal m(t) shown in Fig. 2 as an exam-

ple, there is a specific direction θn (related to the slope

of the largest Levy flight) where several maxima could

be detected. Using a threshold, four main maxima are lo-

calized |C(θn, µ1)|, |C(θn, µ2)|, |C(θn, µ3)|, |C(θn, µ4)| for

µ1 ∼ 400, µ2 ∼ 750, µ3 ∼ 780, µ4 ∼ 850 (dash lines on

Fig. 3).This give evidence that there are four Lévy flights with

a particular slope 1
tan θn

.This process detects linear parts in the

time-frequency plane.
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Fig. 3. For θn, signal projections |C(θn, µ)|.

The detected Lévy flights can be extracted from the original

signal M(t) thanks to the orthogonal projection. They can be

gathered in a new signal M1(t):

M1(t) = ei
1

2 tan θn
t2

∑
µ1,µ2,µ3,µ4

C(θn, µ)e
i

µ
sin θn

t, (17)

which may be used later for futher investigations on these

slopes (future work). This step is illustrated in Fig. 4 (left),

which represents the short-time Fourier transform of the newly

recreated signal M1. The four main Lévy flights are visible as

four dark lines. Notice that since it is an orthogonal projection,

one can write:

M(t) =M1(t) +M⊥

1 (t),

where M⊥

1 contains the rest, i.e. the Brownian motion and

(possibly) shorter lévy flights. As it is shown on Fig. 4, the

Lévy flights (right) velocities and durations are related to the

caracteristics of the extracted components (right): The velocity

is propotional to the chirp slope 1
tan θn

, the duration to the

chirp length.
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Fig. 4. Left: Short-time Fourier transform of the signal M1; four Lévy
flights have been detected. Right : Comparison of signals m(t) and m1(t);
characterization of Lévy flignts.

To detect secondary flights, the above procedure may be

iterated but this time on M⊥

1 (t) until all the flights larger

than a predefined length are detected. This is the principe of

the matching pursuit [24]. It allow to obtain a final rest Mf

where only Brownian noise is present. This open the way to

the analysis of the residual noise as the flights have all been

efficiently extracted (ongoing work). This should be of great

interest when analysing experimental signals. A faster but



slightly less accurate analysis may be done by picking directly

all the maxima of the matrix C, avoiding the iterative scheme.

Extracting all the flight at once may create small artifacts,

inducing small errors in the calculus of flight durations; the

matching pursuit has been designed to avoid such artifacts.

The steps of the process can be summarized as follow, for

a single trajectory :

• Trajectory m(t) as a phase derivative of a signal M(t) :

time-frequency transformation

• Search for lines in the time-frequency ‘picture’ : projec-

tion on a basis of chirps

• Lévy flight detection : peak picking on the matrix C
and partial synthesis of M1(t) (with or without matching

pursuit)

• Characterization of the Lévy flights.

Remark 1: The computational complexity for obtaining the

matrix C is of order N2 logN . For each θ the projection onto

the chirp basis is performed via a fast Fourier transform[23],

[22] of complexity N logN . This is done for a number of θ
proportional to N .

Remark 2: For Lévy flights with steep slopes, numerical

problems may arise due to the discretization. The solution

used here is to make a 90 degrees rotation of the signal in

the time-frequency plane before the projection on chirps and

adapt the values of θ in consequence: this rotation is simply

obtained by applying a Fourier transform to the signal M .

IV. RESULTS

As a test of the method we now consider the data obtained

from the advection of 253 tracers in the point vortex flow

described in section 1. Our goal is to detect the multi-fractal

nature of the transport resulting from the sticky islands, which

would serve as a proof of concept and pave the way to apply

the method to numerical and experimental data.

In [20] transport was analyze with traditional tools and

found to be anomalous and super diffusive. The origine of the

anomaly was trace back to a multi fractal nature of transport

linked to stickiness on four different regular regions. One

would thus expect four different type of Lévy flights in the

data.

The method was applied on the data. We localize Lévy

flights and meas. The results are displayed in Fig. 5, where

duration is the function of velocity. As it can be seen, four

different type of flights are detected, and their corresponding

velocities are in good agreement with the result found in [20],

confirming the accuracy of the analyzing signal processing

method.

V. CONCLUSIONS

The first step of the method help emphasing the straight

lines over random fluctuations.

The second step consists in the detection of straight lines in

the time-frequency image. The Fractional Fourier transform

applied to a one-variable signal is similar to a Radon transform

or Hough transform of a standard image.
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Fig. 5. For 253 arc-length trajectories, lengths of the Lévy flights as a
function of the velocity (∆h/∆t). Four main distributions of the velocity
can be observed.

This method and its first results open the way to more

systematic detections of Levy flights in anomalous transport

phenomena. The detection algorithm is efficient and fast,

allowing the analysis of a large number of tracers trajectories

in a short time. The output, yielding the number Levy flight

and their duration, can be analysed in a second step by

statistical tools (e.g. mean number of flight in a trajectory,

mean length, variance,...). This will lead to a more accurate

characterization of this particular case of anomalous transport.

Open Questions

• Can we analyse the remaining random signal Sn and

recover Brownian motion?

• This method can detect noisy flights, what is the maximal

level of noise admitted?

• What is the minimal length of a Levy flight?

• Is it possible to quantify anomalous transport with this

technique?
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