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A distributed Architecture to implement a Prognostic Function for Complex Systems

The proactivity in maintenance management is improved by the implementation of CBM (Condition-Based Maintenance) and of PHM (Prognostic and Health Management). These implementations use data about the health status of the systems. Among them, prognostic data make it possible to evaluate the future health of the systems. The Remaining Useful Lifetimes (RULs) of the components is frequently required to prognose systems. However, the availability of complex systems for productive tasks is often expressed in terms of RULs of functions and/or subsystems; those RULs provide information about the components. Indeed, the maintenance operators must know what components need maintenance actions in order to increase the RULs of the functions or subsystems, and consequently the availability of the complex systems. This paper aims at defining a generic prognostic function of complex systems aiming at prognosing its subsystems, functions and at enabling the isolation of components that needs maintenance actions. The proposed function requires knowledge about the system to be prognosed. The corresponding models are detailed. The proposed prognostic function contains graph traversal so its distribution is proposed to increase the calculation speed. It is carried out by generic agents.

INTRODUCTION

The implementation of the Condition-Based Maintenance (CBM) recommendations usually leads to the improvement of the equipment availability [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF][START_REF] Scarf | A Framework for Condition Monitoring and Condition Based Maintenance[END_REF]. The CBM actions are planned and led according to the health status of equipments. Monitoring, diagnostic and prognostic functions assess these statuses. The development of health assessment functions has often been considered as a downstream activity in the design process of complex systems with few allocated means. This has often led to a lack of collaboration with upstream activities and to centralized deployment in light computational modules although those functions have to process numerous pieces of data of different kinds. The consequences are increasing rates of useless replacements of devices, with the increasing complexity of the systems. Those replacements are not only costly but may also cause additional damage to the system. Therefore, health assessment functions now become a major issue for complex system designers. Among those functions, the prognostic function aims at defining the future health of the system that contributes to plan productive tasks or maintenance tasks. Among the difficulties leading to the implementation of prognostic functions in complex systems, there are the numerous hardware or software components, devices, functions or subsystems of complex systems. Those equipments are designed, manufactured, assembled by different industrial partners (OEMs, suppliers, subcontractors, etc.). Each partner has a part of the needed knowledge to carry out the prognosis of the complex system. However, some pieces of this knowledge are parts of the own know-how of the partners and so they cannot be shared.

To tackle this difficulty, a decentralized/distributed architecture can be proposed. Indeed, such architectures enable the implementation of the Remaining Useful Lifetime (RUL) assessment and prognostic functions closer to components, devices, functions or subsystems. Therefore, each OEMs, suppliers or subcontractors can provide RUL assessment and prognostic functions for their equipments. Nevertheless, those functions have to collaborate in order to ensure the convergence of the prognostic process of complex systems. Indeed, the union of local prognoses is not the global prognosis. To illustrate that point, let us consider a system made of a power supply and a computer. If the RUL of the power supply is lower than the one of the computer, the computer will not probably be able to carry out its activity beyond the RUL of the power supply. Agents that carry out RUL assessment and prognostic function can be used to ensure this collaboration. An agent is defined as a self-contained problem-solving computational entity able, at least, to perform most of its problem-solving tasks, to interact with its environment, to perceive its environment and to respond within a given time, to take initiatives when it is appropriate [START_REF] Jennings | Applying agent technology[END_REF].

The aim of this article is to present an architecture for implementing a distributed prognostic function for complex systems. Firstly, the interest of distributed prognostic function is discussed. To implement prognostic function, knowledge about the complex system is necessary. Then the paper describes the principles of the prognostic function for complex systems. The notion of Time before Out of order (TBO) is introduced. Then the paper shows the proposed architecture that is based on the multi-agent system concept with generic agents and how to split up the modeled knowledge between the agents.

DISTRIBUTED PROGNOSIS

One aim of the Prognostic and Health Management (PHM) is to assess the ability of complex systems to carry out future tasks from diagnostic and prognostic results and the definition of the constraints of the future tasks. [START_REF] Roemer | An overview of selected prognostic technologies with reference to an integrated PHM architecture[END_REF] advise that diagnostic and prognostic algorithm should be processed as close as possible to the monitored components and that the produced data should be then exploited by ascending the hierarchical structure of the complex system. Therefore, bringing the PHM into operation requires the implementation of prognostic functions.

If [START_REF] Vachtsevanos | Fault prognosis using dynamic wavelet neural networks[END_REF] consider that the prognostic activity consists in assessing a RUL once an early detection of failure have been made, [START_REF] Lebold | Open standards for condition-based maintenance and prognostics systems[END_REF] consider that it is a reliable assessment of the RUL of a system or a device. From these studies it appears that the assessment of the RUL is the keystone of the prognostic activity. Indeed, the data it provides are used as decision support for maintenance planning and proactive maintenance [START_REF] Iung | Degradation state model-based prognosis for proactively maintaining product performance[END_REF] or for e-maintenance [START_REF] Muller | On the concept of e-maintenance: Review and current research[END_REF].

Several studies have been led dealing with the design of prognostic functions of devices. Several techniques are described in [START_REF] Vachtsevanos | Intelligent fault diagnosis and prognosis for engineering system[END_REF]. Nevertheless, in the case of complex systems, the set of the RULs of the devices may not be enough to be a suitable decision support for maintenance or for productive tasks planning purposes. The sets of RULs shall therefore be processed. In complex systems, the number of RULs can be so huge that the only reasonable way to process them is distributed. Another good reason in using distributed architecture is that it enables implementations of prognostic processes as close as possible to the monitored devices as [START_REF] Roemer | An overview of selected prognostic technologies with reference to an integrated PHM architecture[END_REF] advise it. Works dealing with distributed prognosis are quite recent and several ways to distribute the prognostic processes were already proposed.

In [START_REF] Voisin | Generic prognosis model for proactive maintenance decision support: application to pre-industrial emaintenance test bed[END_REF] the prognosis is considered as a business process whose activities can be distributed in a context of e-maintenance. The mentioned distribution is made according to different actors located on different sites. [START_REF] Saha | A distributed prognostic health management architecture[END_REF] propose an architecture made of several agents that can communicate between each other. An agent diagnoses a device and when it detects a fault it switches to the prognostic mode and informs a base station. The base station plans tasks, can reinitialize the processes of agents if errors are detected, it manages the accesses to resources like the ones to an external database and it manages the availability of agent in terms of computation load. [START_REF] Dragomir | Framework for a distributed and hybrid prognostic system[END_REF] present an architecture for health assessment that consists of two levels: the local level corresponds to the components and global level that is associated to the complex system. In this architecture, each local agent brings into operation several known prognostic methods according to the available knowledge about the monitored component. The global agent collects the health assessment data from the local agents and computes a health assessment for the system thanks to a neural network. [START_REF] Takai | Inference-Based Decentralized Prognosis in Discrete Event Systems[END_REF] propose a decentralized prognoser for discrete event systems where local agents generate prognoses that are sent to the other agents. Then the agents cooperate in order to converge to a prognosis of the system thanks to an inference engine.

The sets of RULs shall also be processed according to knowledge as mentioned in [START_REF] Saha | A distributed prognostic health management architecture[END_REF].

KNOWLEDGE MODELING

During the design stage of a complex system, different kinds of knowledge are elaborated. Among them, the structural knowledge, the functional knowledge and the behavioral knowledge are required to implement prognostic functions [START_REF] Reiter | A theory of diagnosis from RST principles, Readings in model-based diagnosis[END_REF][START_REF] Chittaro Ranon | Hierarchical model-based diagnosis based on structural abstraction[END_REF]. HAZard and OPerability (HAZOP) methodology, that is a process hazard analysis technique, enable to study not only the hazards of a system, but also its operability problems, by exploring the effects of any deviations from design conditions [START_REF] Dunjo | Hazard and operability (HAZOP) analysis. A literature review[END_REF]. This methodology enables to identify functions and interconnections.

The functional knowledge modeling

The functional knowledge modeling aims at providing the sets of components that implements the functions of the complex system from the users point of views. Knowing the RUL of a function will help to plan future missions of the system and/or the maintenance actions it needs.

Therefore, the functional knowledge modeling consists in defining functions as sets of components or devices, which we call all "devices". Functions can also be made of functions. Complex systems can also be divided into subsystems. In that case, a subsystem can be considered as a set of functions. Thus, a complex system is made of subsystems. A subsystem is made of functions. A function is made of devices and/or functions.

Three types of functions must be considered for the computation of prognostic of functions.

Simple functions are functions that fail if one their entities fails (devices or functions) at least.

For reliability purposes, complex systems contain functions with redundancies. These functions are carried out by at least two entities (devices and/or subfunctions) that bring into operation the same activities, services... For example, we suppose that a flight control function of an aircraft is made of three functions we call "flight controllers". If one or even two flight controllers fail, the flight control can still carry out its task. However, if two flight controllers fail, there is no more redundancy. That is why we consider redundancies as functions called redundancy functions. Those functions are the only entities included in the functions with redundancies.

Subsystems are considered as sets of functions that are not included in other functions. Thus, subsystems can be considered as simple functions. The prognostic of the complex system can then be assessed from the prognostic of its subsystems.

The modeling of this knowledge can be done thanks to a UML (Unified Modeling Language), which is an object oriented modeling language, class diagram shown in figure 1.

The structural knowledge modeling

The structural modeling aims at representing the direct interactions between devices and their failure modes mainly in order to propagate the effects of failures [START_REF] Worn | Diamond: distributed multi-agent architecture for monitoring and diagnosis[END_REF]. Therefore the structural knowledge can be modeled thanks to a set of arcs with , where an arc means that the device will be out of order (mode ) if the failure mode of a device occurs. Let us note that the mode can be the mode . However, some particular cases exist. For example, a laptop uses a power supply function. Let us simplify by assuming that the battery and the electricity distribution network carry out this function. If only the battery or the electricity distribution network fails, the computer still operates normally. That is why, the cases where a function fails or becomes out order makes components become out of order must also be considered. Thus, the structural model must also represent a set of arcs with the same meaning with . So, the structural model consists of the sets S 1 and S 2 . Those sets of arcs represent a graph where the nodes are the failure modes of the devices and the functions of the complex system.

The out of order mode (M oo ) is quite relevant because it indicates that the origin of the predicted failure of an entity is not the entity itself.

The behavioral knowledge modeling

The behavioral modeling mainly aims at defining the dynamical behavior of a system. Behavioral models can be used to detect degradation and to analyze their trends in order to define the RUL of the monitored device.

The behavioral models used to prognose a device can be achieved thanks to three approaches [START_REF] Byington | Prognostic enhancements to gas turbine diagnostic systems[END_REF]: experience-based, evolutionary and/or statistical trending or model based. The implemented behavioral models to prognose a complex system can so be numerous and of various kinds that it is difficult to consider all of them. They also require design knowledge of devices, functions or subsystems that may reveal the know-how of their providers. Nevertheless, the most important things are what they contribute to produce: the RULs of the devices. We then assume that a monitoring layer made of one or several agents provides the RULs to the proposed prognostic function. The monitoring layer agents can so bring into operation the most suitable techniques to assess RULs of devices.

RUL modeling

In order to be processed by a prognostic function, a RUL has to assess a duration T between the instant t 0 , at which it is calculated, and the predicted instant t 0 +T at which the device will fail according to a given failure mode. Thus, a RUL must contain four entities [START_REF] Voisin | Generic prognosis model for proactive maintenance decision support: application to pre-industrial emaintenance test bed[END_REF] that are:

• the involved device,

• the involved failure or degraded mode,

• the instant at which it was calculated,

• the duration. RULs are assessments, so fields can be added to deal with uncertainty or confidence level. However, the proposed prognostic function of complex system does not take into account any kind of uncertainty representations. The aim of this paper is to propose a principle for prognosing a complex system that can be distributed into generic agents. Handling uncertainty of RULs would likely lead to implement different processes into the tasks described in section 4. The RULs that the monitoring layer provides are the base of the proposed prognostic function for complex systems but this function also needs the functional and structural knowledge.

PROGNOSTIC FUNCTION FOR COMPLEX SYSTEMS

This section is dedicated to the proposed generic principle for prognosing complex systems from RULs and from the modeled functional and structural knowledge. We assume that the monitoring layer sends to the Complex System Prognostic Function (CSPF) each RUL that it computes for each failure mode of the devices unless the out of order mode. The CSPF is divided into three main tasks that are:

1. the computation of the RUL of the device for which a RUL has been received, 2. the computation of the RUL of the devices that are interconnected (directly or not) to the device for which a RUL has been received, 3. the computation of the RUL of functions from the former task, The process of the CSPF starts when a RUL is received from the monitoring layer.

Computation of the RUL of a device (task 1)

The RUL received by the CSPF from the monitoring layer is noted RUL(D i , M j , t k , T l ) where D i is the device, M j is the predicted failure mode, t k is the instant at which the RUL was computed and T l is remaining lifetime such as t k +T l is the predicted instant at which the failure will likely occur.

When a RUL RUL(D i , M f , t k , T l ) is received at the instant t, it is recorded and it replaces the last stored RUL for D i with the failure mode M j RUL(D i , M f , t k-1 , T l-1 ) if t k > t k-1 else the task stops. If t k > t k-1 , the RUL of D i is then defined thanks to its last recorded RULs for all its failure modes. These RULs are noted RUL(D i , M j , t kj , T lj ). The new RUL of D i becomes RUL(D i , M p , t, T p ) where p correspond to the failure mode for which:

(1) Then this RUL is compared to the last recorded RUL for the device noted RUL(D i , M q , t kq , T lq ) if , RUL(D i , M p , t, T p ) becomes the new RUL of the device D i . It is stored and replaces RUL(D i , M q , t kq , T lq ) and then, if at least one arc starts from the node , the task 2 is processed else the task 3 is processed. If RUL(D i , M p , t, T p ) does not become the new RUL of the device D i the CSPF stops.

Computation of the RUL of the devices that are interconnected (task 2)

This task consists in propagating the new RUL(D i , M p , t, T p ) in the graph described by the arcs where the devices will likely be out of order earlier than previously predicted because of this new RUL. We must here introduce the notion of Time Before Out of order (TBO). This notion explains that a device will likely become out of order because of the failure M p of the device D i . This notion is meaningful for maintenance because it enables to localize the devices for which maintenance actions will be necessary. The TBO so contains five entities:

• the involved device,

• the device for which the RUL has generated the TBO,

• the failure mode of the device for which the RUL has generated the TBO,

• the instant at which the TBO was computed,

• the remaining time before the out of order mode occurs.

If the prognostic function handles uncertainty, TBOs must also contain fields dealing with this notion. That is not the case in this paper.

This second task does not consist of the computation of the new RULs of the interconnected devices but of their new TBOs. Two cases are considered:

• one for the arcs ,

• one for the arcs .

For all the arcs , RUL(D i , M p , t kp , T p ) is compared to the last recorded TBOs of the devices D j for which TBOs are noted TBO(D j , D x , M qx , t kqx , T qx ) with j≠x. This comparison is made at the instant t. If , then the new TBO of D j becomes TBO(D j , D i , M p , t, T pt ) with

. This new TBO is recorded and replaces the previous stored one and it is propagated in the graph from the node otherwise the propagation in the graph from the node is stopped.

For all the other arcs the TBO of the device D n noted TBO(D n , D i , M p , t pt , T pt ) is compared to the last recorded TBO of D m noted TBO(D m , D j , M q , t qt , T qt ). This comparison is made at the instant t. If , then the new TBO of D m becomes TBO(D m , D i , M p , t, T) with . This new TBO is recorded and replaces the previous stored one and it is propagated in the graph from the node otherwise the propagation from the node is stopped.

This tasks ends when there is no more TBO to propagate.

Then the prognostic of the functions must be done by the CSPF from the RULs and TBOs that were updated.

Computation of the RUL of the functions (task 3)

According to section 3.1, three types of functions must be considered for the computation of their prognoses: simple functions, functions with redundancies and redundancy functions.

The failure mode of a function is directly linked to the failure mode of one of its devices and/or to the missing service carry out by one of its subfunctions. That is why we only consider the TBOs of the functions instead of their RULs. The TBO of a function contains the same fields as the ones of the TBOs for devices except the involved function instead of the involved device.

The TBO of a function is computed if, at least, one RUL of one its devices has been modified or if one TBO of one of its entities (devices or functions), noted X, has been modified by the CSPF.

For a simple function F j , if the RUL RUL(D i , M p , t p , T p ) of one of its device has been modified its

TBO(F j , D k , M l , t l , T l ) is modified if is verified then it becomes TBO(F j , D i , M p , t, T) with .
For a simple function F j , if the TBO of one of its functions or of its devices TBO(X q , D i , M p , t p , T p ), where X q denotes either the function or the device, has been modified its

TBO(F j , D k , M l , t l , T l ) is modified if is verified then it becomes TBO(F j , D i , M p , t, T) with .
The new TBO is recorded and replace the previous stored one.

For functions with redundancies, the TBOs and/or RULs of their entities included in their redundancy functions are considered. For an entity that is a device D i , we consider its RUL RUL(D i , M p , t p , T p ) or its TBO TBO(D i, , D x, M q , t q , T q ) and the value Tt i that is computed with the relationship (2):

(2)

If an entity is a function F j with TBO(F j, , D x, M q , t q , T q ), the value Tt j is computed with the relationship (3):

(3)

The TBO(F wr, , D y, M s , t, T) of a function with redundancies is computed from ( 4):

(4)

where D y and M s are the device and its failure mode for which the RUL or TBO that have the greatest value Tt and t is the instant at which the TBO has been computed. The new TBO is recorded and replace the previous stored one.

For a redundancy function, the TBOs and/or RULs of their entities are considered. For an entity that is a device D i , we consider its RUL(D i , M p , t p , T p ) or TBO(D i, , D x, M q , t q , T q ) and the value Tt i , that is also computed with the relationship (2). For a function entity F j with TBO(F j, , D x, M q , t q , T q ), the value Tt j is computed with the relationship (3) too. The TBO(F r, , D y, M s , t, T) of a redundancy function is computed from (5):

(

where D y and M s are the device and its failure mode for which the RUL or TBO that have the nth greatest value Tt and t is the instant at which the TBO has been computed (generally n=2). The new TBO is recorded and replace the previous stored one.

If the TBO of a function F k has changed and if its linked to a device by an arc , which is in fact an arc , the task 2 is then processed with the same procedure as the one for arcs .

The TBOs of the functions and RULs of the devices are the elements of the prognostic.

Experimental results

The CSPF was successfully tested. In order to illustrate the results it provides, we propose the case study of the figure 2 where the arcs represent the structural knowledge and the boxes the functional knowledge.

Figure 2. Case study.

In this system, only one mode of failure is considered for each device and the effect of this failure is supposed to be the same as the out of order mode. That is why only one kind of arcs is represented in Figure 2. However, one case of system with devices having two failure modes with different effects has also been successfully tested.

The table 1 shows an overview of the results provided by the CSPF for a simulated scenario. In this table the first column is the rank of reception of a RUL, the second column is the identifier of the device for which the monitoring layer has emitted a RUL, the third column is the date (which is the sum t+T of the fields contained in the received RUL) at which the device will probably fail. The other columns of the table contain the dates (the sums t+T) of the RULs or TBO of devices and functions that are modified by the CSPF because of the received RUL. Dates in red mean that the date (t+T) of RUL's device is earlier than the date of its TBO.

The proposed CSPF is processed on-line each time a new RUL is received but it always leads to reduce the dates (t+T) of the RULs and TBOs of devices and functions. Thus, it is a pessimistic approach of the prognostic of the complex system. In that case, we can consider that the prognostic made on-line is dedicated to control operators. However, the CSPF can be run off-line for maintenance operators. The T values of the TBO must so be set to very great values. Then the CSPF is then run for all the RULs of each device. Thus, the maintenance operators have so indications about the devices that need maintenance actions. Once a device have been replaced or fixed, its RUL must be set at new values.

In such cases, the T value of the RUL of the replaced or fixed device may be set to a value equal to its MTBF (Mean Time Between Failures) or MTTF (Mean Time To Failure).

The T values of the TBO are then set to very great values. Then the CSPF is then run for all the RULs of each device.

However, The CSPF requires graph traversal and it can so be a long process. One way to reduce the computation time is to distribute the CSPF.

DISTRIBUTION OF THE CSPF

The proposed distribution of the CSPF consists of several agents that all process the CSPF. Assuming that there are few interconnections between subsystems, we propose one agent by subsystem in order to reduce the number of the sent messages between the agents. The agents have to be implemented into different computing platforms to increase the computation of the CSPF. Thus, the architecture can be represented as shown in figure 3. The SPAs are the Subsystem Prognostic Agent. They contain a database in which the functional and structural knowledge are represented as well as the structural interconnections between the subsystems. In this architecture the monitoring layer sends the RULs of the devices to the SPA that prognoses the subsystem to which the device belongs.

In the proposed distribution of the CSPF, the knowledge is distributed to the SPAs. The SPAs are generic agents because they all process the same tasks but their results depend on the knowledge modeled in their databases. The prognostic of the complex system is made of the RULs of the devices and the TBOs of the functions that are recorded by the SPAs.

Thus the proposed architecture is also quite scalable. Indeed, adding a device or a new function consists mainly in adding functional and structural descriptions in the SPA of the subsystem it belongs to and, perhaps, some arcs for the structural models of the other SPAs. However, they do not need to modify the algorithms processed by the SPAs.

Assuming the case study of the figure 2, three SPAs are implemented.

The parts of knowledge that are modeled in the databases of the SPAs are described in figure 4 (4.1 for SPA1, 4.2 for SPA2 and 4.3 for SPA3).

From the structural knowledge, an SPA knows to what SPA a TBO must be sent thanks to the identifier of the external devices.

The communication between the SPAs can be modeled thanks to an UML sequence diagram as shown in figure 5 where the monitoring layer is considered as a single agent but it could made of several ones. Two SPAs are represented: the one that receives the RUL and one that represent the other SPAs. The task 1 is processed only once when a "New_RUL" message is received by a SPA. The "Modified_TBO" messages are emitted by the SPA from task 2 or task 3. Those messages indicate to the SPA that receives it what device is impacted by the TBO. Thus, when a SPA receives such a message, it processes the task 2 and the task 3. Even if it is distributed, the CSPF can be quite long to execute and "New_RUL" or "Modified_TBO" messages can be received while a SPA is running. So those messages have to be stored in a kind of buffer. The t values, which are fields of RULs and TBOs, can be used to sort the messages by increasing date. 

CONCLUSION

This paper presented a generic algorithm to carry out the prognosis of complex system from the RULs of its devices. This approach requires functional and structural knowledge of the complex systems whose models were given.

Requirements for the functional modeling were detailed. As the proposed prognostic principle requires graph traversal, its distribution into generic agents in order to reduce its computation time was presented. The distribution of the functional and structural models into the prognostic agents was proposed. The principle of prognosis provides online pessimistic results but it can be run off-line for more optimistic results. So one can consider that online process is dedicated to control operators (TBOs of functions) and that off-line process is dedicated to maintenance (TBOs of functions and RULs of devices).

The distributed simulation platform is under development. It uses a middleware to bring into operation the communication between the monitoring layer agents and SPAs. This platform shall enable to compare the centralized approach (with one SPA) and the distributed approach with several SPAs.

Another perspective will consist of the definition of functional and structural model to assess TBOs of devices and functions even when RULs of devices are increasing (when t+T is increasing). Eventually, the problem of uncertainty of RULs could be addressed for prognosing complex systems.

Figure 1 .

 1 Figure 1. Functional knowledge model. Failure Modes and Effects Analysis (FMEA) or HAZOP studies enable to collect the necessary knowledge for structural modeling. Indeed, those studies enable to identify what happens to other devices when one or several devices fail.
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 3 Figure 3. Distributed architecture scheme.
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 4 Figure 4. Modeled knowledge in SPAs .
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 5 Figure 5. Sequence diagram.
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