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Abstract. This communication deals with mass customization and the associa-

tion of the product configuration task with the planning of its production 

process while trying to minimize cost and cycle time. We consider a two steps 

approach that first permit to interactively (with the customer) achieve a first 

product configuration and first process plan (thanks to non-negotiable require-

ments) and then optimize both of them (with remaining negotiable require-

ments). This communication concerns the second optimization step. Our goal is 

to evaluate a recent evolutionary algorithm (EA). As both problems are consi-

dered as constraints satisfaction problems, the optimization problem is con-

strained. Therefore the considered EA was selected and adapted to fit the  

problem. The experimentations will compare the EA with a conventional 

branch and bound according to the problem size and the density of constraints. 

The hypervolume metric is used for comparison. 

Keywords: mass customization, aiding configuration, aiding planning, con-

straint satisfaction problem, evolutionary algorithm. 

1 Introduction 

This paper deals with mass customization and more accurately with aiding the two 

activities, product configuration and production planning, achieved in a concurrent 

way. According to the preferences of each customer, the customer requirements (con-

cerning either the product or its production) can be either non-negotiable or negotia-

ble. This situation allows considering a two-step process that aims to associate the 

two conflicting expectations, interactivity and optimality. The first interactive step, 

that sequentially processes each non-negotiable requirement, corresponds with a first 

configuration and planning process that reduces the solution space. This process is 

present in many commercial web sites using configuration techniques like automotive 



 

industry for example. Then, a second process optimizes the solution with respect to 

the remaining negotiable requirements. As the solution space can quickly become 

very large, the optimization problem can become hard. Thus, this behavior is not fre-

quent in commercial web sites. Meanwhile some scientific works have been published 

on this subject (see for example [1] or [2]) and the focus of this article is on the opti-

mization problem. In some previous conferences we proposed an interesting adapted 

evolutionary algorithm for this problem [3]. However, the presentation was rather 

descriptive and experimentations were not significant. Therefore, the goal of this pa-

per is to compare this algorithm with a classical branch and bound. This initial section 

introduces the problem and the organization of the paper.   

1.1 Concurrent Configuration and Planning Processes as a CSP 

Deriving the definition of a specific or customized product (through a set of proper-

ties, sub-assemblies or bill of materials, etc…) from a generic product or a product 

family, while taking into account specific customer requirements, can define product 

configuration [4]. In a similar way, deriving a specific production plan (operations, 

resources to be used, etc...) from some kind of generic process plan while respecting 

product characteristics and customer requirements, can define production planning 

[5]. As many configuration and planning studies (see for example [6] or [5]) have 

shown that each problem could be successfully considered as a constraint satisfaction 

problem (CSP), we have proposed to associate them in a single CSP in order to 

process them concurrently.  

This concurrent process and the supporting constraint framework present three 

main interests. Firstly, they allow considering constraint that links configuration and 

planning in both directions (for example: a luxury product finish requires additional 

manufacturing time or a given assembly duration forbids the use of a particular kind 

of component). Secondly they allow processing in any order product and planning 

requirements, and therefore avoid the traditional sequence: configure product then 

plan its production [7]. Thirdly, CSP fit very well on one side, interactive process 

thanks to constraint filtering techniques, and on the other side, optimization thanks to 

various problem-solving techniques. However, we assume infinite capacity planning 

and consider that production is launched according to each customer order and pro-

duction capacity is adapted accordingly. 

In order to illustrate the addressed problem we consider a very simple example 

dealing with the configuration and planning of a small plane. The constraint model is 

shown in figure 1. The plane is defined by two product variables: number of seats 

(Seats, possible values 4 or 6) and flight range (Range, possible values 600 or 900 

kms). A constraint Cc1 forbids a plane with 4 seats and a range of 600 kms. The pro-

duction process contains two operations: sourcing and assembling. (noted Sourc and 

Assem). Each operation is described by two process variables: resource and duration: 

for sourcing, the resource (R-Sourc, possible resources “Fast-S” and “Slow-S”) and 

duration (D-Sourc, possible values 2, 3, 4, 6 weeks), for assembling, the resource (R-

Assem, possible resources “Quic-A” and “Norm-A”) and duration (D-Assem, possi-

ble values 4, 5, 6, 7 weeks). Two constraints linking product and process variables 



 

 

modulate configuration and planning possibilities: one linking seats with sourcing, 

Cp1 (Seat, R-Sourc, D-Sourc), and a second one linking range with the assembling, 

Cp2 (Range, R-Assem, D-Assem). The allowed combinations of each constraint are 

shown in the 3 tables of figure 1. Without taking constraints into account, this model 

shows a combinatory of 4 for the product (2x2) and 64 for the production process 

(2x4) x (2x4) providing a combinatory of 256 (4 x 64) for the whole problem. Consi-

dering constraints lead to 12 solutions for both product and production process. 

Fig. 1.  Example of a concurrent configuration and planning CSP model 

1.2 Optimizing Configuration and Planning Concurrently 

Given previous problem, various criteria can characterize a solution: on the product 

configuration side, performance and product cost, and on the production planning 

side, cycle time and process cost. In this paper we only consider cycle time and cost. 

The cycle time matches the ending date of the last production operation of the confi-

gured product. Cost is the sum of the product cost and process cost. We are conse-

quently dealing with a multi-criteria optimization problem. As these criteria are in 

conflict, it is better for decision aiding to offer the customer a set of possible com-

promises in the form of Pareto Front. 

In order to complete our example, we add a cost and cycle time criteria as 

represented in figure 2. For cost, each product variable and each process operation is 

associated with a cost parameter and a relevant cost constraint: (C-Seats, Cs1), (C-

Range, Cs2), (C-Sourc, Cs3) and (C-Assem, cs4) detailed in the tables of figure 2. 

The total cost is obtained with a numerical constraint and the cycle time, sum of the 

two operation durations, is also obtained with a numerical constraint as follow: 

Total cost = C-Seats + C-Range + C-Sourc + C-Assem.                                          

Cycle time = D-Sourc + D-Assem 

The twelve previous solutions are shown on the figure 3 with the Pareto front gather-

ing the optimal ones. In this figure, all solutions are present. When non-negotiable 

requirements are processed during interactive configuration and planning, some of 

these solutions will be removed. Once all these requirements are processed, the identi-

fication of the Pareto front can be launched in order to propose the customer a set of 

optimal solutions. 
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Fig. 2. Concurrent configuration and planning model to optimize 

 

Fig. 3. Optimal solutions on the Pareto Front  

A strong specificity of this kind of problems is that the solution space is large. It is 

reported in [8] that a configuration solution space of more than 1.4* 10
12  

is required 

for a car configuration problem. When planning is added, the combinatorial structure 

can become huge. Specificity lies in the fact that the shape of the solution space is not 

continuous and in most cases shows many singularities. Furthermore, the multi-

criteria aspect and the need for Pareto optimal results are also strong problem expecta-

tions. These points explain why most of the articles published on this subject (as for 



 

 

example [9]) consider genetic or evolutionary approaches to deal with this problem. 

However classic evolutionary algorithms have to be adapted in order to take into ac-

count the constraints of the problem as explained in [10]. Among these adaptations, 

the one we have proposed in [3] is an evolutionary algorithm with a specific con-

strained evolutionary operators and our goal is to compare it with a classical branch 

and bound approach. 

In the following section we characterize the optimization problem and briefly re-

call the optimization techniques. Then experimentation results are presented and dis-

cussed in the last section. 

2 Optimization Problem and Optimization Techniques 

2.1 Optimization Problem 

The problem of figure 2 is generalized as the one shown in figure 4. The optimization 

problem is defined by the quadruplet <V, D, C, f > where V is the set of decision va-

riables, D the set of domains linked to the variables of V, C the set of constraints on va-

riables of V and f the multi-valuated fitness function. Here, the aim is to minimize both 

cost and cycle time. The set V gathers: the product descriptive variables and the resource 

variables. The set C gathers constraints (Cc and Cp). Cost variables and operation dura-

tions are deduced from the variables of the set V thanks to the remaining constraints.  

 

Product descriptive variables

Production operation variables

Production cost variables

Product cost variables

duration

resource

Cs

Cs

Cp
cycle

time

total

cost

Cc

op-1 op-2 …..

Product descriptive variables

Production operation variables

Production cost variables

Product cost variables

duration

resource

CsCs

CsCs

CpCp
cycle

time

total

cost

CcCc

op-1 op-2 …..
 

Fig. 4. Constrained optimization problem  

Experimentations will consider different problem sizes: different numbers of prod-

uct variables, different number of production operations and different number of poss-

ible values for these variables. Different constraint densities (percentage of excluded 

combinations of values) will be also considered. 

2.2 Optimization Techniques 

The proposed evolutionary algorithm is based on SPEA2 [11] with an added con-

straints filtering process that avoids infeasible individuals (or solutions) in the arc-

hive. This provides the six steps following approach: 



 

1. Initialization of individual set that respect the constraints (thanks to filtering), 

2. Fitness assignment (balance of Pareto dominance and solution density) 

3. Individuals selection and archive update 

4. Stopping criterion test 

5. Individuals selection for crossover and mutation operators (binary tournaments) 

6. Individuals crossover and mutation that respect constraints (thanks to filtering) 

7. Return to step 2. 

For initialization, crossover and mutation operators, each time an individual is created 

or modified, every gene (decision variable of V) is randomly instantiated into its cur-

rent domain. To avoid the generation of unfeasible individuals, the domain of every 

remaining gene is updated by constraint filtering. As filtering is not full proof, incon-

sistent individuals can be generated. In this case a limited backtrack process is 

launched to solve the problem. For full details please see [3]. 

The key idea of the Branch and Bound algorithm is to explore a search tree but using 

a cutting procedure that stops exploration of a branch when a better branch has already 

been found. The first tool is a splitting procedure that corresponds to the selection of one 

variable of the problem and to the instantiation of this variable with each possible value. 

The second tool is a node-bound evaluation procedure. The filtering process is used to 

achieve this task with a partial instantiation and is able to evaluate if the partial instan-

tiation is consistent with the constraints of the problem, and, if this is the case, to pro-

vide the lower bound of each criterion cycle time and cost. When the search reaches a 

leaf of the search tree, or complete instantiation, the filtering system gives the exact 

evaluation of the solution. Thus, the values of leaf solutions can be used to compute the 

current Pareto front and then to cut remaining unexplored branches that are dominated 

by any aspect of the Pareto front solution (e.g. the upper bounds of the leaf solution 

dominate the minimal bounds of the branch to cut).  

3 Experimentations 

The optimization algorithms were implemented in C++ programming language and 

interacted with a filtering system coded in Perl language. All tests were done using a 

laptop computer powered by an Intel core i5 CPU (2.27 Ghz, only one CPU core is 

used) and using 2.8 GB of RAM. These tests compared the behavior of our con-

strained EA algorithm with the exact branch-and-bound algorithm. 

3.1 First Experimentation: Problem Size and Constraint Densities 

An initial first model, named "full model" is considered. It can be consulted and inte-

ractively used at http://cofiade.enstimac.fr/cgi-bin/cofiade.pl select model ‘Aircraft-

CSP-EA-10’. It gathers five product variables with a domain size between 4 and 6, six 

production operations with a number of possible resources between 3 and 25. Without 

constraints consideration, the solution space of the product model is 5,184, and the 

 



 

 

planning model is 96,000. The size of the global problem model is 497,664,000. A 

second model, named “small model”, has been derived from the previous one with the 

suppression of a high combinatory task and a reduction of one domain size. This re-

duces the planning problem size to 12,000 and global model 6,220,800. 

In order to evaluate the impact of constraints density, two versions of each model 

were produced: one with a "weak density" of constraints (20% of possible combina-

tions are excluded in each constraint Cc and Cp) and the other with a "high density" 

of constraints (50% excluded). These values are frequently met in industrial configu-

ration situations. This provides four models characteristics in table 1. 

 
Solution quantity Without constraints Low density High density
Small model 6 220 800 595 000 153 000
Full model 497 664 000 47 600 000 12 288 000  

Table 1.  Problems characteristics 

For the small models, evolutionary settings are tuned to: population size: 50; arc-

hive size: 40; Pmut: 0.4; Pcross: 0.8. The ending criterion used is a time limit of half an 

hour. For the full models, we adapt settings for a wider search: population size: 150; 

archive size: 100; Pmut: 0.4; Pcross: 0.8. The ending criterion used is the time required 

by the BB algorithm. In order to analyze the two optimization approaches, we com-

pare the hypervolume evolution during optimization process. Hypervolume metric has 

been defined in [12]. It measures the hypervolume of space dominated by a set of 

solutions and is illustrated in Figure 5. 

 

 

Fig. 5. Hypervolume linked to a Pareto front  

Results are presented in figure 6 where EA curves are average results for 30 execu-

tions. Both algorithms start with a lapse of time where performance is null. For the 

BB algorithm, this corresponds to the time needed to reach a first leaf on the search 

tree, while for the EA; it corresponds to the time consumed to constitute the initial 

population.  

For the small models (first two curves), the BB algorithm reaches the optimal Pare-

to front much faster compared with EA performance. On the other hand, when the 

problem size increases, the EA is logically better than the BB algorithm on the full 

model. For example, on the low-constrained model, the BB algorithm took 20 times 

longer to reach a good set of solutions (less than 0.5% of the optimal hypervolume). 



 

The impact of constraints density could also be discussed. As it can be seen, the 

BB algorithm performance is improved when the density of constraints is high. In-

deed the filtering allows more branches to be cut on the search tree, in such way that 

the algorithm reaches leaf solutions and, consequently, optimal solutions more quick-

ly. The EA performance moves in the opposite way. The more the model is  

constrained, the more the random crossover operation will have to backtrack to find 

feasible solutions, and thus the time needed by the algorithm will be consequent. 

 

Fig. 6. First experimentation results  

3.2 Experimentations on Problem Size  

In order to try to identify the problem size where EA is more suitable than BB, we 

have modified the low constrained model as follows. We consider now a model ga-

thering six product variables and six production operations with three possible values 

for each, and sequentially add either a product variable and or an operation. The range 

of study is between 12 and 16 decision variables with three possible values for each. 

Relevant solution spaces without constraint vary between 1.6*10
6
 and 43*10

6
. 

The results are shown in the left part of figure 7. The vertical axis corresponds with 

the computation time and the horizontal one with the number of decision variables. 

For BB curves, it shows the time to reach the optimal solution. For the EA curve it 

shows the time required for nine EA runs over ten to reach the optimal solution. Order 

of magnitude are close for both around 13 or 14 variables corresponding with a solu-

tion space around 2*10
6
  to 5*10

6
 comparable with our previous small model size. 

 



 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Experimentation results dealing with problem size 

As we already mentioned, industrial models are frequently larger than that. We 

therefore try our EA approach with a low constrained model with 30 variables and a 

solution space around 10
16

. The stopping criterion is "2 hours without improvement". 

The right part of figure 7 shows that the optimization process has stopped after 48 

hours (172800 seconds). It can be noticed that 90% of the final score was obtained 

after 3 hours and 99% in 10 hours. This allows underlining the good performance of 

our approach when facing large low constrained problem. 

Finally we also try to break optimization in two steps. The idea is: (i) compute 

quickly a low quality Pareto, (ii) select the area that interest the customer (iii) com-

pute a Pareto on the restricted area. The restricted area is obtained by constraining the 

two criteria total cost and cycle time (or interesting area) and filtering these reductions 

on the whole problem. The search space is greatly reduced and the second optimiza-

tion much faster. This is shown in figure 8 where the left part shows the single step 

process with 10 and 60 minutes Pareto and the right part shows the restricted area 

with the two previous curve and the one corresponding with a 10 minutes Pareto 

launched on the restricted area. It shows that the sequence of two optimization steps 

of 10 minutes provide a result almost equivalent (only 3 points are missing) to a 60 

minutes optimization process.  

Fig. 8. Experimentations with a two steps optimization process 
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4 Conclusions 

The goal of this communication was to propose a first evaluation of an adapted evolu-

tionary algorithm that deals with concurrent product configuration and production 

planning. The problem was recalled and the two optimization approaches (Evolutio-

nary algorithm and branch and bound) where briefly presented. Various experimenta-

tions have been presented. A first result is that: (i) the proposed EA works fine when 

the size of the problem gets large compare to the BB, (ii) when problem tends to be 

more constrained the tendency goes to the opposite. When problem is low constrained 

(90% of excluded solutions) with 13-14 decision variables with 3 values each, they 

perform equally. When the problem gets larger, BB cannot be considered and EA can 

provide good quality results for the same problem with up to 30 variables (around 

10
16

 solutions - 90% unfeasible). Finally some ideas about a two steps optimization 

process have shown that the proposed approach is quite promising for large problems. 

These are first experimentation results and we are now working on comparing our 

proposed EA with some penalty function approaches.  
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