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On the exit time from an orthant for badly oriented random walks

1. Introduction 1.1. Context. This work is a continuation of the paper [START_REF] Garbit | On the exit time from a cone for random walks with drift[END_REF] in which the authors studied the exponential decreasing rate of the probability that a random walk (with some exponential moments) stays in a d-dimensional convex cone, and found that this rate is equal to the minimum on the dual cone of the Laplace transform of the random walk increments, provided that this minimum exists. In the present work, we shall restrict our attention to the case where the cone is a d-dimensional orthant, and extend the preceding result so as to cover also the remaining cases where the random walk is "badly oriented" -a terminology that will be explained later -with respect to the orthant.

In order to be more specific, let us introduce some notations. For any fixed probability distribution µ on R d , let P x µ denote the probability measure on R ∞ under which the canonical process (S 0 , S 1 , . . . , S n , . . .) is a random walk started at x (meaning that S 0 = x a.s.) whose independent increments S n+1 -S n have distribution µ.

Let K ⊂ R d be some convex cone with non-empty interior and let τ K = inf{n 1 : S n / ∈ K} denote the exit time of the random walk from K.

For random walks with no drift, the precise asymptotics

P x µ (τ K > n) = cρ n n -α (1 + o(1)
), n → ∞ was derived by Denisov and Wachtel in [START_REF] Denisov | Random walks in cones[END_REF] from the corresponding tail distribution for Brownian motion by using a strong approximation theorem. In that case ρ = 1. They also obtained a local limit theorem from which Duraj could derive in [START_REF] Duraj | Random walks in cones: the case of nonzero drift[END_REF] the presice asymptotics for random walks with "negative" drift, that is when the global minimum on R d of the Laplace transform In that case, he found that ρ = min R d L µ . The problem of determining the exponential rate only, but disregarding the position of the global minimum on R d , was solved with great generality in [START_REF] Garbit | On the exit time from a cone for random walks with drift[END_REF]. In that paper, we found that the right place to look at is the position of the global minimum on the dual cone K * of the Laplace transform. Indeed, the main result in [START_REF] Garbit | On the exit time from a cone for random walks with drift[END_REF] is that the exponential decreasing rate

L µ (z) =
ρ x = lim inf n→∞ P x µ (τ K > n) 1
/n is given by the identity [START_REF] Billingsley | Convergence of probability measures[END_REF] ρ x = min K * L µ , for all x far enough from the boundary of K, provided that this minimum exists. Note that in this case, there is essentially no dependence in the starting point x.

The goal of the present work is to study the case where this minimum does not exist. For technical reasons (that should become clearer when reading the rest of the paper), we shall restrict our attention to the case where K = Q is the positive orthant

Q = {x ∈ R d : x i 0, i = 1 . . . d},
where x i denotes the ith coordinate of x with respect to the standard basis (e 1 , e 2 , . . . , e d ). Note that Q * = Q. In addition, in order to simplify the exposition, we will assume that the probability distribution µ has all exponential moments, that is, L µ (z) is finite for all z ∈ R d .

For a truly d-dimensional distribution µ, i.e. a distribution whose support is not included in any linear hyperplane, the condition that L µ reaches a global minimum on Q is equivalent to the following geometric condition (see [START_REF] Garbit | On the exit time from a cone for random walks with drift[END_REF] for a proof):

(H) The support of µ is not included in any half-space u -= {x ∈ R d : x, u 0} with u ∈ Q \ {0}. Random walks with a distribution µ that does not fulfill condition (H) are called badly oriented. In this case, the exponential rate ρ x may depend on the starting point x.

Example 1. Consider the 2-dimensional lattice distribution µ defined by µ(1, -1) = µ(-1, 1) = q, µ(-1, -1) = p, p + 2q = 1, p, q > 0.

The corresponding random walk is badly oriented since the support of µ is included in (1, 1) -. Its Laplace transform satisfies the relations L µ (i, j) = 2q cosh(ij) + pe -(i+j) > 2q, and lim i→+∞ L µ (i, i) = 2q.

Therefore, the infimum 2q of L µ on Q is not a minimum. It is proved in [START_REF] Garbit | On the exit time from a cone for random walks with drift[END_REF] that, for x = (i, j) ∈ N 2 + with i + j = 2N ,

ρ x = 2q cos π 2N + 2 .
Thus ρ x depends on x, but we nevertheless observe that lim

x →∞

ρ x = 2q = inf Q L µ .
The aim of this paper is to explain this phenomenon by giving a "universal" result that applies to both well and badly oriented random walks. More precisely, we shall prove that the equality (1) is in fact a particular case of the following equality

lim ρ x = inf Q L µ ,
where the interpretation of the limit symbol depends on a linear subspace associated with µ that we call the reduced support of µ.

The central idea in [START_REF] Garbit | On the exit time from a cone for random walks with drift[END_REF] was to perform a standard Cramér transformation (i.e. an exponential change of measure) based on the point x 0 where L µ reaches its minimum on Q. The main novelty here is that we provide a way to achieve this transformation when x 0 is "at infinity".

Reduction.

The assumption (H) was used in [START_REF] Garbit | On the exit time from a cone for random walks with drift[END_REF] to ensure the existence of a global minimum of L µ on Q. The implication follows easily from the following property of the Laplace transform (see [START_REF] Garbit | On the exit time from a cone for random walks with drift[END_REF]Lemma 3]):

lim t→+∞ L µ (z + tu) = +∞ if µ(u -) < 1 u ⊥ e z,y µ(dy) if µ(u -) = 1,
where u ⊥ denotes the hyperplane orthogonal to u. Indeed, for a distribution satisfying assumption (H), the Laplace transform tends to infinity in each direction u ∈ Q ∩ S d-1 . Since this function is convex, this implies by a compactness argument that L µ is coercive in Q, and the existence of a global minimum follows. Suppose now that the random walk is badly oriented, i.e. that there exists a direction

u 1 ∈ Q ∩ S d-1 such that µ(u - 1 ) = 1.
Then, the "best" way to stay in Q is certainly not to perform a step outside of u ⊥ 1 . Thus, it seems natural to compare our original random walk with a conditioned version of it, namely the random walk with distribution ν( * ) = µ( * |u ⊥ 1 ). Since this new random walk may still be badly oriented, we shall construct by induction a reduced support V in the following way:

Definition 2. An r-tuple (u 1 , u 2 , . . . , u r ) ∈ Q r is admissible if (i) the vectors u 1 , u 2 , .
. . , u r are linearly independent, and (ii) they satisfy the following relations:

           µ(u - 1 ) = 1 µ(u - 2 ∩ u ⊥ 1 ) = µ(u ⊥ 1 ) . . . µ(u - r ∩ (u ⊥ r-1 ∩ • • • ∩ u ⊥ 1 )) = µ(u ⊥ r-1 ∩ • • • ∩ u ⊥ 1
).

An admissible r-tuple (u 1 , u 2 , . . . , u r ) is maximal if there is no u ∈ Q such that (u 1 , u 2 , . . . , u r , u) be admissible.

If there exists an admissible tuple (i.e. if the random walk is badly oriented), then there exist maximal tuples, and the linear subspace [u 1 , u 2 , . . . , u r ] generated by a maximal tuple does not depend on the specific maximal tuple chosen (Lemma 8).

Definition 3. The orthogonal complement V = [u 1 , u 2 , . . . , u r ] ⊥
of the subspace generated by any maximal tuple is called the reduced support of µ. By convention, if there is no admissible tuple, we set V = R d .

With the reduced support V , we associate the set I of indices i ∈ 1, d such that e i ∈ V , and the cone

V + = {x ∈ V : x, e i 0, ∀i ∈ I}.
Then (Lemma 9) the infimum on Q of the Laplace transform of µ is given by the relation

(2) inf Q L µ = inf v∈V + V
e v,y µ(dy).

If inf Q L µ = 0, then ρ x = lim inf n→∞ P x µ (τ Q > n) 1/n = 0 for all x ∈ Q, since inf Q L µ
is a universal upper bound for ρ x (see equation ( 5)). Thus, from now on, we will exclude this degenerate case by assuming inf

Q L µ > 0.
Therefore µ(V ) > 0 and equality (2) can be rewritten as

(3) inf Q L µ = µ(V ) inf V + L µ|V ,
where µ|V denotes the conditional distribution µ|V ( * ) = µ( * |V ). Now, the "maximality" of V (in the sense of Definition 2) ensures that the conditioned random walk with distribution µ|V is well oriented with respect to V + , i.e. that the infimum on V + is in fact a minimum (Lemma 10), so that a Cramér transformation can be applied to this conditioned random walk. We interpret this as a Cramér transformation at infinity.

Main result.

In what follows, µ is any probability distribution on R d with all exponential moments. To avoid trivialities, we assume inf

Q L µ > 0.
We denote by V the reduced support of µ (see Definitions 2 and 3), and define

I = {i ∈ 1, d : e i ∈ V }, I ⊥ = {i ∈ 1, d : e i ∈ V ⊥ },
and, for

x in Q, d(x) = min i / ∈I∪I ⊥ x i ,
with the convention that d(x) = ∞ when I ∪ I ⊥ = 1, d . Finally, we set

Q δ = Q + δ(1, 1, . . . , 1) = {x ∈ R d : x i δ, ∀i ∈ 1, d }.
We are now in position to state our main result.

Theorem 4. There exists δ 0 such that

lim d(x)→∞ x∈Q δ ρ x = inf Q L µ .
Let us illustrate this theorem with some basic examples.

Example 5. If µ satisfies assumption (H), then

V = R d , I = 1, d , V + = Q, I ⊥ = ∅, and d(x) = ∞.
Thus we recover the non-asymptotic theorem of [START_REF] Garbit | On the exit time from a cone for random walks with drift[END_REF]: There exists δ 0 such that

ρ x = inf Q L µ , for all x ∈ Q δ .
Example 6. Consider the 2-dimensional lattice distribution µ defined by µ(-1, 0) = α, µ(0, 1) = β, µ(0, -1) = γ, α + β + γ = 1, α, β, γ > 0.

The associated random walk is badly oriented since µ(e - 1 ) = 1. Now, (e 1 ) is maximal since

β, γ > 0, therefore V = e ⊥ 1 , I = {2}, V + = {(0, j) : j 0}, I ⊥ = {1} and d(x) = ∞, meaning that ρ x = inf Q L µ ,
for all x ∈ Q δ , for some constant δ 0. Let us compute the value of ρ x . The Laplace transform of µ is given by

L µ (i, j) = αe -i + βe j + γe -j .
Minimizing first on i 0 leads to the relation inf

Q L µ = inf j 0 (βe j + γe -j ) = (β + γ) inf j 0 (β ′ e j + γ ′ e -j ),
where β ′ = β/(β + γ) and γ ′ = γ/(β + γ) sum up to 1. Notice that the above formula corresponds exactly to equality (3) with V = e ⊥

1 . An easy computation shows that inf j 0

(β ′ e j + γ ′ e -j ) = 2 √ β ′ γ ′ if γ ′ β ′ 1 else.
Hence

ρ x = inf Q L µ = 2 √ βγ if γ β β + γ else.
Example 7. Consider the 2-dimensional lattice distribution µ defined by

µ(-1, -1) = α, µ(-1, 1) = β, µ(1, -1) = γ, α + β + γ = 1, α, β, γ > 0.
The associated random walk is badly oriented since the support of µ is included in (1, 1) -. Here, V = (1, 1) ⊥ , I = I ⊥ = ∅, V + = V and d(x) = min{x 1 , x 2 }. Therefore, we obtain lim

x 1 ,x 2 →∞ ρ x = inf Q L µ = 2 βγ,
as the reader may check.

The rest of the paper is organized as follows: In Section 2, we present the proof of Theorem 4. The construction of the reduced support enables us to perform a Cramér's transformation at infinity, and then compare our initial exponential decreasing rate with that of a conditioned random walk whose distribution is more "favorable". The exponential rate of this conditioned random walk is then analysed in Section 3. The Appendix at the end of the paper provides some material on polyhedra that is needed in a technical lemma and for which no reference were found.

Proof of Theorem 4

The first subsection recalls the strategy used in [START_REF] Garbit | On the exit time from a cone for random walks with drift[END_REF] in order to obtain the exponential decreasing rate in the case where the random walk is well oriented. Though not necessary, its reading is recommended in order to become acquainted with the basic ideas of the proof of Theorem 4. We will then present the construction and the main properties of the reduced support, and finally use it to perform our Cramér's transformation at infinity in order to conclude the proof of Theorem 4.

2.1. Sketch of proof for well oriented random walks. The reader may know, or at least should let his intuition convince himself that ρ x = 1 when the drift vector m = E(µ) belongs to the orthant Q. In other cases, the basic idea is to carry out an exponential change of measure in order to transform the drift vector m into a new one, m 0 , that belongs to Q. To do this, fix any x 0 ∈ R d and define

µ 0 (dy) = e x 0 ,y L µ (x 0 ) µ(dy).
Clearly, µ 0 is a probability distribution with Laplace transform

L µ 0 (z) = L µ (z + x 0 ) L µ (x 0 ) .
Furthermore, it is well-known that the expectation of a probability distribution is equal to the gradient of its Laplace transform evaluated at 0. Thus

m 0 = E(µ 0 ) = ∇L µ (x 0 )/L µ (x 0 ).
If L µ reaches a global minimum on Q at x 0 , then its partial derivatives are non-negative at x 0 and, therefore, the drift m 0 belongs to Q. So, the distribution µ 0 is "nice" in the sense that the value of the exponential rate for a random walk with that distribution is known. The link between the distribution of our canonical random walk under P x µ and P x µ 0 is expressed via Cramér's formula (see [START_REF] Garbit | On the exit time from a cone for random walks with drift[END_REF]Lemma 6] for example) which leads in our case to the relation ( 4)

P x µ (τ Q > n) = L µ (x 0 ) n e x 0 ,x E x µ 0 e -x 0 ,Sn , τ Q > n .
From this, we already notice that for all x 0 ∈ Q (being a minimum point or not), lim sup

n→∞ P x µ (τ Q > n) 1/n L µ (x 0 ),
since x 0 , S n 0 as soon as S n ∈ Q. Thus, the upper bound

(5) lim sup n→∞ P x µ (τ Q > n) 1/n inf Q L µ
holds for any probability distribution µ (with all exponential moments).

In order to obtain the corresponding lower bound in the case where L µ reaches a global minimum on Q at x 0 , we use formula (4) with our nice distribution µ 0 . What is not so nice here is the exp(-x 0 , S n ) term, which could become very small since (S n ) has a drift m 0 ∈ Q. But, in fact, the growth of x 0 , S n can be controled thanks to the following observation: Let K be the set of indices i such that x (i) 0 > 0. Since x 0 belongs to Q, the other coordinates are equal to zero, and

x 0 , S n = i∈K x (i) 0 S (i) n . Furthermore, if x (i) 0 > 0 for some index i, then 0 is a local minimum of the partial function t ∈ [-x (i) 0 , +∞) → L µ (x 0 + te i ) and therefore m (i) 0 = 0, because it is proportional to ∂ x i L µ (x 0 ) = 0.
So, the coordinates of the random walk that we need to control have zero mean. Since √ n is a natural bound for the norm of a square integrable centered random walk, one can expect that adding the constraint

(6) max i∈K |S (i) n | √ n
will not decrease too much the probability on the right-hand side of equation ( 4). As proved in [START_REF] Garbit | On the exit time from a cone for random walks with drift[END_REF] this happens to be true: For any distribution µ satisfying assumption (H),

lim inf n→∞ P x µ 0 max i∈K |S (i) n | √ n, τ Q > n 1/n = 1.
Under the constraint ( 6), the exponential term exp(-x 0 , S n ) in ( 4) is bounded from below by exp(-x 0 √ n), a term that disappears in the nth root limit. Thus, we obtain the lower bound

ρ x L µ (x 0 ) lim inf n→∞ P x µ 0 max i∈K |S (i) n | √ n, τ Q > n 1/n = L µ (x 0 ),
and this concludes the analysis.

2.2.

Construction and properties of the reduced support. In this section, we prove the uniqueness of the reduced support of µ (Definitions 2 and 3) and establish some of its properties. When µ satisfy assumption (H), the reduced support V is equal to R d -by definition -and all properties listed below are trivial, as the reader may check. Therefore, in what follows, we assume the existence of a direction u 1 ∈ Q ∩ S d-1 such that µ(u - 1 ) = 1. Thus, there exists at least an admissible tuple, namely (u 1 ), and the existence of a maximal tuple follows immediately.

First, we prove the uniqueness 1 of the linear space generated by maximal admissible tuples.

Lemma 8. Any two maximal admissible tuples generate the same linear space.

Proof. Let (u 1 , u 2 , . . . , u r ) and (v 1 , v 2 , . . . , v s ) be two maximal admissible tuples and let

A = [u 1 , u 2 , . . . , u r ] and B = [v 1 , v 2 , . . . , v s ]
denote the linear spaces generated by this two tuples, respectively. Since (u 1 , u 2 , . . . , u r ) is maximal, (u 1 , u 2 , . . . , u r , v 1 ) is not admissible. On the other hand,

µ(v - 1 ) = 1 so that µ(v - 1 ∩ A ⊥ ) = µ(A ⊥
), and the tuple (u 1 , u 2 , . . . , u r , v 1 ) satisfies condition (ii) of Definition 2. Thus, the reason why this tuple fails to be admissible is that condition (i) is not satisfied, i.e. v 1 belongs to A. Now, suppose that v 1 , v 2 , . . . , v k-1 all belong to A for some k ∈ 2, s , and denote

B k = [v 1 , v 2 , . . . , v k-1
] the linear space they generate. By hypothesis, we have

A ⊥ ⊂ B ⊥ k and µ(v - k ∩ B ⊥ k ) = µ(B ⊥ k ).
This implies µ(v - k ∩ A ⊥ ) = µ(A ⊥ ) and therefore v k must belong to A, otherwise (u 1 , u 2 , . . . , u r , v k ) would be admissible. By induction, we obtain the inclusion B ⊂ A, and the equality A = B follows by interchanging the role of A and B.

Thanks to Lemma 8 we can define the reduced support V of µ as the orthogonal complement of the linear space generated by any maximal admissible tuple (Definition 3). In what follows, we fix a maximal admissible tuple (u 1 , u 2 , . . . , u r ) and set

V = [u 1 , u 2 , . . . , u r ] ⊥ and V + = V ∩   h∈V ⊥ Q -h   .
The reduced support V and the cone V + play a fundamental role in our analysis. First of all, they provide a useful expression for the infimum of the Laplace transform.

Lemma 9. The following equality holds:

inf Q L µ = inf v∈V + V e v,y µ(dy).
1 This property will not be used, but it is a very natural question since the conclusion of Theorem 4 depends on this subspace.

Proof. It follows from the orthogonal decomposition

R d = V ⊕ V ⊥ that inf{L µ (x) : x ∈ Q} = inf{L µ (v + h) : (v, h) ∈ V × V ⊥ , v + h ∈ Q} = inf v∈V + inf h∈V ⊥ ∩(Q-v) L µ (v + h).
Therefore, we have to prove that for all v ∈ V + [START_REF] Port | Brownian motion and classical potential theory[END_REF] inf

h∈V ⊥ ∩(Q-v) L µ (v + h) = V e v,y µ(dy).
Let v ∈ V + . First, for all h ∈ V ⊥ , we notice that

L µ (v + h) V e v+h,y µ(dy) = V e v,y µ(dy), since h, y = 0 for all y ∈ V . Now, pick h ∈ V ⊥ ∩ (Q -v) (such a h exists since v ∈ V + ),
and let λ 1 , λ 2 , . . . , λ r denote its coordinates with respect to the basis (u 1 , u 2 , . . . , u r ) of

V ⊥ . It is clear that h = r k=1 λ k u k will still belong to V ⊥ ∩ (Q -v)
if one increases the value of any λ i . Hence, the equality (7) will follow from (8) lim λr→∞ . . . lim

λ 2 →∞ lim λ 1 →∞ L µ v + r k=1 λ r u r = V e v,y µ(dy).
Since (u 1 , u 2 , . . . , u r ) is admissible, µ(u - 1 ) = 1 and consequently

L µ v + r k=1 λ r u r = u ⊥ 1 e v,y e r k=2 λ k u k ,y µ(dy) + { u 1 ,y <0} e v,y e r k=1 λ k u k ,y µ(dy).
By the dominated convergence theorem, the second integral on the right-hand side of the above equation goes to zero as λ 1 goes to infinity. Hence lim

λ 1 →∞ L µ v + r k=1 λ r u r = u ⊥ 1 e v,y e r k=2 λ k u k ,y µ(dy).
Now, by hypothesis, we have µ(u - 2 ∩ u ⊥ 1 ) = µ(u ⊥ 1 ), so that the same argument as above leads to lim

λ 2 →∞ lim λ 1 →∞ L µ v + r k=1 λ r u r = u ⊥ 1 ∩u ⊥ 2 e v,y e r k=3 λ k u k ,y µ(dy).
The equality in (8) is obtained by using repeatedly the same argument.

Lemma 10. Assume inf Q L µ > 0. Then: (1) µ(V ) > 0. (2) For all v ∈ V + ∩ S d-1 , µ(v -|V ) < 1.
(3) The Laplace transform L µ|V has a global minimum on

V + . (4) inf Q L µ = µ(V ) min V + L µ|V .
Proof. The formula in Lemma 9 shows that inf Q L µ = 0 as soon as µ(V ) = 0. The first item follows by contraposition.

Let v ∈ V + ∩ S d-1
. By definition of V + there exists h ∈ V ⊥ such that u = v + h ∈ Q. For any y ∈ V , we have v, y = u, y and consequently

v -∩ V = u -∩ V.
So, it suffices to show that µ(u -|V ) < 1 and the second assertion of the lemma will follow. By definition,

u = v + h (with v ∈ V , v = 0 and h ∈ V ⊥ ) is linearly independent of V ⊥ = [u 1 , u 2 , .
. . , u r ] and belongs to Q. But by maximality, the tuple (u 1 , u 2 , . . . , u r , u) is not admissible. Thus, we must have µ(u -∩ V ) < µ(V ). This proves the second assertion of the lemma.

The third assertion follows from the second one since V + is a closed cone (see [6, Lemma 4] -note that the hypothesis (H1) is not used for the part of the lemma that we need here).

Finally, the last item is just a reformulation of the formula in Lemma 9.

We shall now give a very simple description of the cone V + associated with the reduced support V . To this end, we define

I = {i ∈ 1, d : e i ∈ V }.
Lemma 11. The cone V + has the following expression:

V + = {x ∈ V : x, e i 0, ∀i ∈ I}.
Proof. We first note that x ∈ h∈V ⊥ Qh if and only if there exists h ∈ V ⊥ such that x + h, e i 0 for all i. But, for i ∈ I, x + h, e i = x, e i since e i ∈ V and h ∈ V ⊥ . Hence, the condition splits into: [START_REF] Billingsley | Convergence of probability measures[END_REF] x, e i 0 for all i ∈ I, and (2) there exists h ∈ V ⊥ such that x + h, e i 0 for all i / ∈ I.

Therefore, it remains to prove that the last condition holds for all x. To this end, recall that V ⊥ = [u 1 , u 2 , . . . , u r ] with u k ∈ Q, and set u 0 = r k=1 u k . Since u 0 , e i = r k=1 u k , e i and u k , e i 0 for all k, we see that u 0 , e i 0 and equality occurs if and only if u k , e i = 0 for all k, which means exactly that e i ∈ [u 1 , u 2 , . . . , u r ] ⊥ = V . Thus, by definition of the set I, we have u 0 , e i > 0 for all i / ∈ I. For any fixed x, this property allows to find λ > 0 such that x, e i + λ u 0 , e i 0 for all i / ∈ I, so that condition (2) holds with h = λu 0 . This proves the lemma.

2.3.

Comparison with the conditioned random walk with increments restricted to the reduced support. As mentioned earlier (see [START_REF] Garbit | Temps de sortie d'un cône pour une marche aléatoire centrée[END_REF]), the infimum of L µ on Q is always an upper bound for the exponential decreasing rate

ρ x = lim inf n→∞ P x µ (τ Q > n) 1/n .
Therefore, our task is to show that it is also a lower bound for ρ x (at least as x → ∞ in the sense of Theorem 4). Let V be the reduced support of µ. From now on, we assume that inf Q L µ > 0, so that µ(V ) > 0 (Lemma 10). Remember that we have introduced the reduced support with the idea that the best way to stay in Q was to never perform any step outside of V . Hence, denoting ξ 1 , ξ 2 , . . . , ξ n the increments of the random walk, it is natural to use the lower bound (9)

P x µ (τ Q > n) 1/n P x µ (τ Q > n, ξ 1 , ξ 2 , . . . , ξ n ∈ V ) 1/n = µ(V )P x µ|V (τ Q > n) 1/n
. A look at the last formula of Lemma 10, (10) inf

Q L µ = µ(V ) min V + L µ|V ,
then explains our strategy: Theorem 4 will follow from a comparison between lim inf n→∞ P x µ|V (τ Q > n) 1/n and min

V + L µ|V .
To simplify notations, set ν = µ|V . For all x in Q, write x = v + w the orthogonal decomposition with respect to V and V ⊥ . Then

P x ν (τ Q > n) = P v ν (S 1 , S 2 , . . . , S n ∈ Q -w). Under P v
ν , the random walk S 1 , S 2 , . . . , S n almost surely belongs to V (since v ∈ V , and ν(V ) = 1). Thus, we have to focus our attention on the geometry of (Qw) ∩ V .

To this end, we recall that

I = {i ∈ 1, d : e i ∈ V }.
We also define

I ⊥ = {i ∈ 1, d : e i ∈ V ⊥ }, and, for x ∈ Q, d(x) = min i / ∈I∪I ⊥ x i .
Notice that ax d(x) implies that a i 0 for all i /

∈ I ∪ I ⊥ . Let V 1 = [e i , i ∈ I] and write V = V 1 ⊕ V 2 the orthogonal decomposition of V . Define the positive orthant of V 1 as V + 1 = {y ∈ V 1 : y, e i 0, ∀i ∈ I},
and notice that Lemma 11 asserts that

V + = V + 1 ⊕ V 2 .
For any y ∈ V , let y (1) and y (2) be the projections of y onto V 1 and V 2 , respectively.

Lemma 12. For all x = v + w ∈ Q, holds the inclusion:

{y ∈ V : y (1) ∈ V + 1 and y (2) -v (2) d(x)} ⊂ (Q -w) ∩ V.
Proof. Let y ∈ V be such that y (1) ∈ V + 1 and y (2)v (2) d(x). We have to show that y + w belongs to Q.

First of all, for any i ∈ I ⊥ , we have e i ∈ V ⊥ so that y + w, e i = v + w, e i = x i 0.

Similarly, since y + w, e i = y (1) , e i for all i ∈ I, the condition y (1) ∈ V + 1 rewrites y + w, e i 0 for all i ∈ I.

It remains to check that the conclusion also holds when i / ∈ I ∪ I ⊥ . To this end, we notice that (v (1) 

+ y (2) + w) -x = y (2) -v (2) d(x).
Therefore, for all i / ∈ I ∪ I ⊥ , v (1) + y (2) + w, e i 0.

But for those indices i, we have e i ⊥ V 1 and consequently y + w, e i = v (1) + y (2) + w, e i 0.

This concludes the proof of the lemma.

This lemma provides the convenient lower bound:

(11)

P x ν (τ Q > n) P v ν (τ V + > n, max k n S (2) 
k -v (2) d(x)).
We now analyse this lower bound with the help of Cramér's transformation. We know by Lemma 10 that there exists v 0 ∈ V + such that

λ := L ν (v 0 ) = min V + L ν > 0.
Let ν 0 be the probability measure on V defined by λν 0 (dy) = e v 0 ,y ν(dy).

Thanks to Cramér's formula (see [START_REF] Garbit | On the exit time from a cone for random walks with drift[END_REF]Lemma 6]), the lower bound in equation ( 11) can be written as

(12) λ n E v ν 0 e -v 0 ,Sn-v , τ V + > n, max k n S (2) 
kv (2) d(x) .

Since v 0 ∈ V + , we have v 0 , e i 0 for all i ∈ I. Define

K = {i ∈ I : v 0 , e i > 0}.
Then v 0 , e i = 0 for all i ∈ I \ K, so that

| v 0 , S n -v | = | i∈K v 0 , e i S (1) n -v (1) , e i + v 0 , S (2) n -v (2) | ( i∈K v 0 , e i + v 0 )d(x),
as soon as | S

nv (1) , e i | d(x) for all i ∈ K and S

nv (2) d(x). Under this additional constraint, the term exp (-v 0 , S n ) inside the expectation in ( 12) is bounded from below by some positive constant that will disappear in the nth root limit.

Therefore, using the notation

ρ x = lim inf n→∞ P x ν (τ Q > n) 1/n , we have (13) ρ x λ lim inf n→∞ P v ν 0 τ V + > n, max k n χ(S k -v) d(x) 1/n where χ(S k -v) = max{max i∈K | S (1) 
kv (1) , e i |, S

k -v (2) }. (2) 
The behavior of this last limit is analysed in Theorem 13. Indeed, the space V where the probability distribution ν lives has the cartesian product structure V = V 1 ⊕ V 2 and the cone writes

V + = V + 1 ⊕ V 2 , where V + 1 is the positive orthant of V 1 .
Furthermore, Lemma 10 asserts that ν = µ|V satisfies assumption (H') of Theorem 13 with respect to V + ; so does ν 0 since ν and ν 0 are absolutely continuous with respect to each other. Thus, it remains to take a look at its expectation m 0 which is given by

m 0 = ∇L ν 0 (0) = λ -1 ∇L ν (v 0 ). Let us write m 0 = m (1) 0 +m (2) 0 with m (1) 0 ∈ V 1 and m (2) 0 ∈ V 2 . Since v 0 is a global minimum point of L ν on V + = V + 1 ⊕ V 2 , it is easily seen that: • m (1) 0 ∈ V + 1 , • m (1)
0 , e i = 0 for all i ∈ K, and • m

(2) 0 = 0. Indeed, for all i ∈ I, we have v i = v 0 , e i 0, and the half-line

{v 0 + te i : t -v i } is included in V + . Therefore, the function t ∈ [-v i , ∞) → f i (t) = L ν (v 0 + te i )
reaches its minimum at t = 0. This implies that m (1) 0 , e i = λ -1 f ′ i (0) 0 with equality if v i > 0, i.e. if i ∈ K. On the other hand, if we take any h ∈ V 2 then the whole line {v 0 + th : t ∈ R} is included in V + , hence the function t ∈ R → L ν (v 0 + th) reaches a local minimum at t = 0. By consequence, its derivative ∇L ν (0), h = λ m 0 , h at t = 0 is always equal to 0. Thus m (2) 0 = 0. Thanks to those properties of ν 0 and its expectation m 0 , we can apply Theorem 13 which ensures the existence of some δ 0 such that lim

R→∞ lim inf n→∞ P v ν 0 τ V + > n, max k n χ(S k -v) R 1/n = 1, for all v ∈ V + δ = {v ∈ V : v i δ, ∀i ∈ I}.
Notice that the probability under consideration reaches its minimum on V + δ when v is the "corner" point v * = δ i∈I e i (this follows by inclusion of events). Hence it follows from (13) that for any 

x = v + w ∈ Q with v ∈ V + δ , ρ x λ lim inf n→∞ P v * ν 0 τ V + > n, max k n χ(S k -v * ) d(x)
ρ x λ = min V + L µ|V .
Theorem 4 then follows from the combination of this inequality with (9) and (10).

The favorable case

In this section, we consider a square integrable random walk (S n ) in R d = R p × R q with distribution µ, mean m and variance-covariance matrix Γ. For all x ∈ R d , we denote by x i , i = 1 . . . d, its coordinates in the standard basis, and x (1) ∈ R p and x (2) ∈ R q its "coordinates" with respect to the cartesian product R p × R q . Let Q denote the positive orthant of R p , i.e. Q = {x ∈ R p : x i 0, ∀i = 1 . . . p}.

We are interested in the tail distribution of the exit time

τ K = inf{n 1 : S n / ∈ K}
of the random walk from the cartesian product

K = Q × R q ,
in the favorable case where m ∈ Q × {0} q , but with the additional constraint that some zero-mean coordinates of the walk stay in a bounded domain. In what follows, we assume the random walk is well oriented (with respect to K), i.e. the probability distribution satisfies the following condition: (H') The support of µ is not included in any half-space

u -= {x ∈ R d : x, u 0} with u ∈ Q × {0} q \ {0}.
Let J be the set of indices j such that m j = 0. Denote by R (J) the subspace of J-coordinates, that is

R (J) = {x ∈ R d : x i = 0, ∀i / ∈ J},
and let x (J) be the projection of x ∈ R d on R (J) . Let also (14)

x J = x (J) = i∈J |x i | 2 1/2
be the norm of the projection of x on the subspace of J-coordinates.

We shall prove in this setting the following result that extends Theorem 13 of [START_REF] Garbit | On the exit time from a cone for random walks with drift[END_REF].

Theorem 13. Assume µ satisfies (H'), and that m ∈ Q × {0} q . Let J be the set of indices j such that m j = 0. There exists δ 0 such that

lim R→∞ lim inf n→∞ P x µ τ K > n, max k n S k -x J R 1/n = 1 for all x ∈ K δ = Q δ × R q .
Theorem 13 will follow from the two propositions below. Roughly speaking, the first one will enable us to push the random walk as far as we want from the boundary of the cone K (with a positive probability): Proposition 14. Under the hypotheses of Theorem 13, there exist γ > 0, b 1 and δ, R > 0 such that

P x µ τ K > bℓ, S bℓ ∈ K ℓ , max k bℓ S k -x J R γ ℓ ,
for all ℓ 1 and x ∈ K δ . Now, as soon as the random walk has reached a point y at a distance R from the boundary, it suffices that the walk stays in B(y, R) so as to be sure that it will not leave the cone. This simple observation will enable us to derive the theorem from the second proposition:

Proposition 15. Assume ( S n ) is square integrable random walk with mean m = 0 and any variance-covariance matrix. Then

lim R→∞ lim inf n→∞ P 0 µ max k n S k R 1/n = 1.
The proofs of Proposition 14 and 15 are deferred to section 3.2 and section 3.3, respectively. First of all, let us explain precisely how the combination of those two propositions leads to Theorem 13.

3.1. Proof of Theorem 13. Proposition 14 ensures the existence of γ > 0, b 1 and δ, R 0 > 0 such that

P x µ τ K > bℓ, S bℓ ∈ K ℓ , max k bℓ S k -x J R 0 γ ℓ ,
for all ℓ 1 and x ∈ K δ . Let ǫ > 0 be given. Applying Proposition 15 to the centered random walk S n = S n -nm, we obtain the existence of a number R R 0 such that

P 0 µ max k n S k R -R 0 (1 -ǫ) n ,
for all n large enough. Now fix ℓ R -R 0 and suppose that y

∈ K ℓ ∩ B J (x, R 0 ). If max k n S k -y R -R 0 ( ℓ),
then:

(1) Clearly, S k belongs to K for all k n. Since S k = S k + km and m belongs to K, the same is true for S k , thus τ K > n.

(2) For all k n, we have

S k -x J = S k -x J S k -y + y -x J R.
Therefore, if we consider only trajectories such that S bℓ ∈ K ℓ and S bℓx J R 0 , and then use the Markov property at time bℓ, we obtain the lower bound

P x µ τ K > n, max k n S k -x J R γ ℓ × inf y P y µ τ K > n -bℓ, max k n-bℓ S k -x J R γ ℓ × inf y P y µ max k n-bℓ S k -y R -R 0 γ ℓ × (1 -ǫ) n-bℓ ,
where the infimum is taken over all y ∈ K ℓ ∩ B J (x, R 0 ). Consequently

lim inf n→∞ P x µ τ K > n, max k n S k -x J R 1/n 1 -ǫ,
and the theorem is proved.

3.2.

Pushing the walk deep inside the cone. This section is devoted to the proof of Proposition 14. In what follows, the distribution µ of the random walk increments is assumed to satisfy assumption (H'). Let m be the expectation of µ and

F = (ker Γ) ⊥ ,
where Γ is the variance-covariance matrix of µ. It is well-known that the smallest affine subspace of R d with full µ-probability is

m + F.
Therefore, assumption (H') ensures that there exists no u ∈ Q × {0} q \ {0} such that m + F ⊂ u -. We define the smoothed support G of the random walk as

G = R + m + F,
and notice that, if started at any point in G, the random walk stays in G forever.

In addition, we assume that m ∈ Q × {0} q , and define the set

J = {j ∈ 1, d : m j = 0} ⊃ p + 1, q .
Finally, let

B J (0, R) = {x ∈ R d : x J < R},
where * J is defined as in (14).

3.2.1. Some geometry. We collect here two technical lemmas related to the geometry of the problem. The first one asserts that the affine support of µ meets the interior of the cone K = Q × R q . This is crucial since otherwise we couldn't expect the walk to go deep inside the cone.

Lemma 16. Assume (H') is satisfied and m ∈ Q × {0} q . Then (15) (m + F ) ∩ K o = ∅ Moreover, for all x ∈ K ∩ G, (16) 
(x + m + F ) ∩ K o ∩ B J (0, 1) = ∅.
Proof. We assume (m + F ) ∩ K o = ∅, and infer the existence of some u ∈ Q × {0} q such that (m + F ) ⊂ u ⊥ , thus contradicting the assumption (H').

Let us first consider the case where F = H is a hyperplane. Then there exists u = 0 such that H = u ⊥ . We shall prove that m ∈ u ⊥ . Suppose on the contrary that m, u = 0, then, possibly changing u to -u, we can assume that m, u > 0. Now, using the homogeneity of H and K o , we see that K o does not intersect with

λ>0 (λm + H) = λ>0 (λu + u ⊥ ) = {x : x, u > 0}.
Therefore, K o is included in u -. But since m ∈ K = (K o ) (this equality holds for any convex set with non-empty interior), we obtain that m, u 0, which contradicts our hypothesis. Hence, m belongs to u ⊥ and m + H = u ⊥ . Finally, the non-intersecting hypothesis rewrites u ⊥ ∩ K o = ∅ and is easily seen to be equivalent to u ∈ ±Q × {0} q .

We now turn to the general case where F is any linear subspace. Since m + F and K o are two disjoints convex sets, it follows from the Hyperplane separation theorem that there exists an affine hyperplane H m that separates m + F and K o . But, since m belongs to both m + F and K = K o , it must belong to H m , and therefore H m = m + H, where H is a linear hyperplane. Now, F being a linear subspace, it can't be on one side of H unless it is contained in H. Therefore, we obtain that m + F ⊂ m + H and (m + H) ∩ K o = ∅, and equation (15) follows by applying the first part of the proof to m + H.

Let us now show that (15) implies (16). Since (m + F ) ∩ K o is non-empty, there is some

f 0 ∈ F such that m + f 0 ∈ K o . Therefore m + αf 0 ∈ K o for all α ∈ (0, 1] (since m ∈ K and K is convex). Fix such an α so small that αf 0 J < 1. For x ∈ K ∩ G, write x = λ 1 m + f 1 with λ 1 0 and f 1 in F , and set f = αf 0 -f 1 . Then, x + m + f = λ 1 m + (m + αf 0 ) ∈ K o . (since λ 1 m ∈ K, m + αf 0 ∈ K o and K + K o ⊂ K o .) In addition, x + m + f J = αf 0 J < 1, thus proving that x + m + f ∈ K o ∩ B J (0, 1).
The second lemma is a technical tool. For any x, y ∈ R d , we write y x iff xy ∈ R + .

Lemma 17. Let (x n ) be a sequence in K ∩ B J (0, 1) ∩ G. There exists a bounded sequence

(y n ) in K ∩ B J (0, 1) ∩ G, such that y n x n and y (J) n = x (J)
n for all n.

Proof.

Since G = R + m + F , where F is a linear subspace of R d , there exist L ∈ M d (R)
and a linear form φ : R d → R, such that

G = {x ∈ R d : L(x) = 0, φ(x) 0}.
Recall that

R (J) = {x ∈ R d : x i = 0, ∀i / ∈ J}.
Let R (I) be its orthogonal complement, i.e.

R (I) = {x ∈ R d : x i = 0, ∀i ∈ J},
and write x = x (I) + x (J) the orthogonal decomposition with respect to R (I) ⊕ R (J) . Let

x n = x (I) n + x (J)
n be an element of K ∩ B J (0, 1) ∩ G and define 

P = {z ∈ R (I) + : L(z) = -L(x (J) n ), φ(z) -φ(x (J) n )}. For all z ∈ R (I) + , notice that z ∈ P iff z + x (J) n ∈ G. Therefore, x ( 
y (I) n M ( L(x (J) n ) + |φ(x (J) n )|),
where M = M (L, φ) only depends on L and φ (and not on x n ). Setting y n = y

(I) n + x (J) n
thus gives a bounded sequence in K ∩ B J (0, 1) ∩ G that satisfies the conditions of the lemma.

3.2.2. Proof of Proposition 14. We begin with a lemma that asserts the existence of a time b and a radius R 0 such that the random walk started at x ∈ K ∩ G with x J R 0 will be at a distance 1 from the boundary of K at time b and still located in B J (0, R 0 ) with a probability that is bounded from below by some positive constant, uniformly in x.

Lemma 18. There exist b 1 and R 0 > 0 such that

inf x∈K∩B J (0,R 0 )∩G P x µ (S b ∈ K 1 , S b J R 0 ) > 0.
Proof. Clearly, the lemma will follow from the existence of an integer n 1 such that inf x∈K∩B J (0,1)∩G

P x √ n µ S n ∈ K 1 , S n J √ n > 0.
So, let us assume that this assertion is false. Then, we can find a sequence of points x n ∈ K ∩ B J (0, 1) ∩ G such that

p n := P xn √ n µ S n ∈ K 1 , S n J √ n → 0.
Thanks to Lemma 17, we can assume that (x n ) is bounded, because for any sequence (y n ) with the same properties as in this lemma, the probability p n where x n is replaced by y n is smaller than p n , by inclusion of events. Furthermore, by extracting a subsequence, it can be assumed without loss of generality that (x n ) converges to some element x of the closed set K ∩ B J (0, 1) ∩ G. Now, let S n = S nnm denote the centered random walk associated with S n . Since * J is left invariant by a translation by m, the probability p n can be written as

p n = P 0 µ x n √ n + S n ∈ K 1 -nm, x n √ n + S n J √ n .
Let η > 0 be fixed. For all n 1/η, holds the inclusion

(K 1 -nm)/ √ n ⊂ K η -m.
Therefore, the probability p n is bounded from below by

P 0 µ x n + S n / √ n ∈ K η -m, x n + S n / √ n J 1 .
Since x n + S n / √ n converges in distribution to x + X, where X denotes a random variable with N (0, Γ) Gaussian distribution, we can use the Portmanteau theorem and let then η ↓ 0 to get the lower bound lim inf n→∞ p n P (x + X ∈ (K om) ∩ B J (0, 1)) .

The random variable x + X admits a positive density with respect to Lebesgue measure on the affine space x + F where F = (ker Γ) ⊥ , and

O := (x + F ) ∩ (K o -m) ∩ B J (0, 1)
is an open subset of x + F . Thus it suffices to prove that O is non-empty to obtain a contradiction. But this is precisely what asserts Lemma 16: Indeed, since x belongs to K ∩ G, we obtain that

(x + m + F ) ∩ K o ∩ B J (0, 1) = ∅.
Hence, substracting m on both sides (recall that * J is left invariant by a translation by m) gives O = ∅.

This implies P(x + X ∈ O) > 0,
thus contradicting our assumption that lim inf p n = 0. Therefore, the lemma is proven.

By Lemma 18, there exist b 1, R 0 > 0 and γ > 0, such that (17)

P x µ (S b ∈ K 1 , S b J R 0 ) 2γ, for all x ∈ K ∩ B J (0, R 0 ) ∩ G.
Let us choose δ > 0 and R R 0 such that

P 0 µ τ K -δ > b, max k b S k J R -R 0 1 -γ.
Then, by inclusion of events, we also have

(18) P x µ τ K -δ > b, max k b S k J R 1 -γ,
for all x ∈ K ∩ B J (0, R 0 ) ∩ G. Indeed, this follows from the relation K + K -δ ⊂ K -δ and the triangle inequality for * J . Now, combining (17) and (18), we obtain that (19)

P x µ τ K -δ > b, S b ∈ K 1 , max k b S k J R, S b J R 0 γ, for all x ∈ K ∩ B J (0, R 0 ) ∩ G. Set p ℓ (x) = P x µ τ K -δ > bℓ, S bℓ ∈ K ℓ , max k bℓ S k J R . Notice that K 1 + K ℓ ⊂ K ℓ+1 .
Hence, if we consider only trajectories such that S b ∈ K 1 and S b J R 0 , and then use the Markov property at time b, we get the lower bound

p ℓ+1 (x) γ × inf y∈K∩B J (0,R 0 )∩G p ℓ (y),
for all x ∈ K ∩ B J (0, R 0 ) ∩ G. This proves that p ℓ (0) γ ℓ for all ℓ 1, and Proposition 14 follows by inclusion of events since K δ + K -δ ⊂ K and K δ + K ℓ ⊂ K ℓ .

3.3. On the exit time from a ball. This section is devoted to the proof of Proposition 15. In what follows, the abbreviation "f.s." stands for "for some". Lemma 19. For every ǫ > 0, there exist δ > 0 and 0 < α < 1 such that

P x ( B t < 1 -δ f.s. t ∈ [α, 1]) 1 -ǫ
for all x ∈ B(0, 1).

Proof. Suppose on the contrary that there is some ǫ 0 > 0 for which we can pick α n ↓ 0, δ n ↓ 0 and x n ∈ B(0, 1) such that

p n := P xn ( B t < 1 -δ n f.s. t ∈ [α n , 1]) < 1 -ǫ 0
for all n. By compactness, it can also be assumed that x nx → 0 for some x ∈ B(0, 1). Now, for any η > 0, we have

p n P x ( B t < 1 -η f.s. t ∈ [α n , 1])
as soon as x nx + δ n η. Hence, taking the limit on both sides and letting η ↓ 0 gives lim inf n→∞ p n P x ( B t < 1 f.s. t ∈ (0, 1]) .

But it follows from the classical cone condition (as found in [7, Proposition 3.3] for example) applied to the ball B(0, 1) that x is regular for B(0, 1), i.e. B t immediately visits B(0, 1) with full probability. Therefore, the last inequality reads lim inf n→∞ p n 1 and contradicts our assumption.

3.3.2.

Application to random walks. In this subsection, (S n ) ∈ R d is a square integrable random walk with increments distribution µ, mean m = 0 and any covariance matrix Γ.

The proof of Proposition 15 is based on the following basic idea. Given ǫ > 0, find R > 0 and a time n 0 1 such that the random walk started at 0 returns to 0 at time n 0 without leaving the ball B(0, R) with probability 1ǫ. If this can be done, then the result follows by concatenation (i.e Markov property). But this is asking for a property stronger than recurrence, thus we can not hope for such a simple argument. Instead of a return to 0, we can ask for a return in some ball B(0, R 0 ), with R 0 R. But then, in view of using concatenation, we need the previous probability to be greater than 1ǫ uniformly for any starting point in the same ball B(0, R 0 ). Lemma 20 below provides a result in this spirit that is sufficient for our purpose. uniform convergence. Since the set of continuous functions w :

[0, 1] → R d such that w(t) < 1 -δ for some t ∈ [α, 1
] is open with respect to the topology of uniform convergence, it follows from the Portmanteau theorem that lim inf

n→∞ P 0 µ ( A n ) P 0 ( x + B t < 1 -δ f.s. t ∈ [α, 1]) 1 -ǫ,
where the lower bound 1ǫ comes from our choice of δ and α. This proves our first claim that lim inf n p n 1ǫ. By a standard compactness argument, this immediately implies that inf x∈B(0,1)

P x √ n µ ( S k √ n f.s. k ∈ [βn, n]) 1 -2ǫ
for all sufficiently large n. Fix such n 0 > 1/β and set ℓ 0 = [βn 0 ] and R 0 = √ n 0 . Then we have 0 < ℓ 0 < n 0 , and the last inequality can be rewritten as inf x∈B(0,R 0 )

P x µ ( S k R 0 f.s. k ∈ ℓ 0 , n 0 ) 1 -2ǫ
In order to complete the proof, it suffices to notice that, for all x ∈ B(0, 1) and R R 0 , we have

P x µ max k n 0 S k R P 0 µ max k n 0 S k R -R 0 .
Since the last probability goes to 1 as R → ∞, it is bounded from below by 1ǫ for all sufficiently large R, and we conclude that for such a choice of R, we have

P x µ max k n 0 S k R and S k R 0 f.s. k ∈ ℓ 0 , n 0 1 -3ǫ
for all x ∈ B(0, R 0 ).

Proof of Proposition 15.

First of all, we notice that the variance-covariance matrix Γ can be assumed to be non-degenerate. Otherwise, the random walk lives on (ker Γ) ⊥ where it has a non-degenerate variance-covariance matrix. Since the projection of a ddimensional ball is still a ball in (ker Γ) ⊥ , the result will follow by application of the non-degenerate case to the projected random walk. As explained earlier, the idea is now to concatenate the "high-probability path" given by Lemma 20. Let ǫ > 0 be given. Thanks to Lemma 20, we can find δ > 0, 0 < R 0 < R and 1 ℓ 0 n 0 such that inf x∈B(0,R 0 )

P x µ max k n 0 S n R, H n 0 1 -ǫ,
where H denotes the first hitting time of the ball B(0, R 0 ) after time ℓ 0 .

For x ∈ B(0, R 0 ) and n n 0 , we use the strong Markov property at time H to get

P x µ max k n S k R P x µ max k n S k R, H n 0 E x µ max k H S k R, H n 0 , P S H µ max k n-j S k R |j=H P x µ max k H S k R, H n 0 × inf y∈B(0,R 0 ) P y µ max k n-ℓ 0 S k R . Thus R(n) := inf x∈B(0,R 0 ) P x µ max k n S k R satisfies the inequality R(n) (1 -ǫ)R(n -ℓ 0 ) for all n n 0 . Since R(n) is clearly decreasing, for n 0 + kℓ 0 n < n 0 + (k + 1)ℓ 0 , we obtain R(n) R(n 0 + (k + 1)ℓ 0 ) (1 -ǫ) k+1 R(n 0 ) (1 -ǫ) n+2 . Hence, lim inf n→∞ R(n) 1/n 1 -ǫ
and this proves the proposition.

Appendix A. Minimal points of a polyhedron

This independent and (nearly) self-contained section provides the material we need for the proof of Lemma 17. The notion of minimality introduced here and the related results are certainly not new, but we were not able to find any reference for them. The arguments developed here are highly inspired by the standard ideas of linear programming theory, as can be found in the book [START_REF] Ciarlet | Introduction à l'analyse numérique matricielle et à l'optimisation[END_REF] for example.

Let 1 m n. We consider here the polyhedron

P = {x ∈ R n + : n i=1 x i C i = b},
where C i , b are any vectors of R m , and x i denote the coordinates of x in the standard basis.

If P is not empty (a condition that we assume from now on), it is a closed convex set. Its extremal points are called the vertices of P . Note that 0 is a vertex iff b = 0. There exist a simple and well known characterization of vertices. To x ∈ P , let us associate the subset I(x) of indices i such that x i > 0. Then x = 0 is a vertex of P iff the vectors {C i , i ∈ I(x)} are linearly independent (see [START_REF] Ciarlet | Introduction à l'analyse numérique matricielle et à l'optimisation[END_REF]). This proves that there is only a finite number of vertices. The fact that there always exist (at least) a vertex is proved in [2, Théorème 10.3-3] for example, and will follow as a by-product of our analysis. and at least one of the u i 's is > 0. For i ∈ I(x), set u i = 0, and let u ∈ R n + denote the vector with coordinates u i . Now, we let t 0 increase until the first time when xtu has a new 0 coordinate, that is we define

t 0 = min{x i /u i : u i > 0} > 0 and set y = x -t 0 u.
Clearly, this new point y satisfies the inequality 0 y < x, and n i=1

y i C i = i∈I(x) (x i -t 0 u i )C i = b.
Thus y < x also belongs to P and, furthermore, satisfies the strict inclusion relation I(y) I(x). If y is not minimal, we repeat the argument (with y, and so on) until a minimal point is reached. The process indeed terminates since the set of positive indices I( * ) is finite and strictly decreasing along the process. This proves the first part of the proposition.

The proof of the second part is quite similar. Let x ∈ P be minimal and suppose it is not a vertex of P . Then, the vectors {C i , i ∈ I(x)} are positively independent (by minimality) but not independent. Therefore, there exist real numbers {u i , i ∈ I(x)}, not all zero, such that i∈I(x) u i C i = 0 and at least one of them is negative (< 0) and another is positive (> 0) (since else -u would contradict the assumption). For i ∈ I(x), set u i = 0, and let u ∈ R n denote the vector with coordinates u i . Now, we let t 0 increase until the first time when x + tu has a new 0 coordinate, that is we define t + = min{-x i /u i : u i < 0} > 0 and x + = x + t + u.

Similarly, we define t -= min{x i /u i : u i > 0} > 0 and x -= xt -u.

These new points x + and x -belong to P m since they clearly are 0, satisfy the equality

n i=1 x ± i C i = i∈I(x) (x i ± t ± u i )C i = b,
and the strict inclusion relation I(x ± ) I(x). Furthermore, x is a convex combination of x + and x -since (t + + t -)x = t + x -+ t -x + .

If x + and x -are both vertices of P , then the proof is finished. Else, we repeat the argument until x is written as a convex combination of vertices. The process indeed terminates since the sets of positive indices I( * ) are finite and strictly decreasing along the process. This proves the second part of the proposition.

For the proof of the third assertion, we first notice that the Manhattan norm x 1 = n i=1 |x i | coincides with the linear form n i=1 x i on R n + . Hence, it easily follows from the second assertion of the proposition that sup x∈Pm x 1 = max{ v 1 : v vertex of P }.

(Recall that there is at least one vertex and only a finite number of vertices.) Let us denote by I the family of subsets I ⊂ 1, n such that {C i , i ∈ I} is a family of linearly independent vectors. Set

R (I) = {x ∈ R n : x i = 0, ∀i ∈ I}.
For all I ∈ I, the linear mapping In view of application to the proof of Lemma 17, we need to extend some of the consequences of Proposition 22 to a larger class of polyhedra. So, let L : R n → R n be a linear mapping and φ : R n → R be a linear form. Fix b ∈ R n , c ∈ R, and consider the polyhedron P = {x ∈ R n + : L(x) = b, φ(x) c}.

Corollary 23. Assume P = ∅. There exists a number M , only depending on L and φ, such that, for all x ∈ P , there exists y ∈ P with y x and y M ( b + |c|).

Proof. We use the very standard trick in linear programming problems that consists in increasing the dimension so that the new form of polyhedra fits with the previous one. Indeed, if we add the "ghost" equation x n+1 = φ(x)c to the system of equalities and inequality that defines P , then the inequality φ(x) c becomes x n+1 0 and the system of equations L(x) = b x n+1 = φ(x)c can be written as

L ′ (x ′ ) = b ′
where x ′ = (x, x n+1 ), b ′ = (b, -c) and L ′ ∈ M n+1 (R) only depends on L and φ. So, define

P ′ = {x ′ ∈ R n+1 + : L ′ (x ′ ) = b ′ }.
Then, the mapping Ψ : x → x ′ = (x, φ(x)c) is a bijection from P onto P ′ . Applying Proposition 22 to P ′ , we obtain the existence of a number M , only depending on L ′ (and thus only depending on L and φ), such that any minimal point y ′ of P ′ satisfies

y ′ 1 M b ′ 1 = M ( b 1 + |c|).
We also know, from the same proposition, that for any x ′ = Ψ(x) ∈ P ′ , there exists y ′ ∈ P ′ such that y ′ x ′ and y ′ is minimal. Taking y = Ψ -1 (y ′ ) gives the expected result.

  R d e z,y µ(dy) is reached at an interior point of the dual cone K * = {x ∈ R d : x, y 0, ∀y ∈ K}.

  I) n ∈ P . It follows from Corollary 23 that there exists y (I) n ∈ P such that y

3. 3 . 1 .

 31 Preliminary estimate for Brownian motion. Let (B t ) denotes a true d-dimensional Brownian motion, i.e. the image of a standard d-dimensional Brownian motion (meaning a collection of d independent one-dimensional Brownian motions) by an invertible linear transformation.

C 1 I 1 I 1 b 1 ,

 1111 I : R (I) → R m , u → i∈I u i C i is a bijection onto its image. Let us denote C -its inverse.If v is a vertex of P , then I = I(v) belongs to I, andi∈I v i C i = b ⇔ (v i ) i∈I = C -1 I b Therefore, v 1 = (v i ) i∈I 1 C -and P m is thus bounded by M b 1 , where M = max I∈I C -1 I 1 .
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Lemma 20. Suppose (here only) that the covariance matrix Γ is non-degenerate. Then, for every ǫ > 0, there exist 0 < R 0 < R and 1 ℓ 0 n 0 such that

S n R and S k R 0 f.s. k ∈ ℓ 0 , n 0 1ǫ for all x ∈ B(0, R 0 ).

Proof. Let ǫ > 0 be given and fix δ > 0 and 0 < α < 1 so that the conclusion of Lemma 19 holds. Also, fix a parameter β ∈ (0, α).

Let (x n ) be a sequence in B(0, 1) that converges to some x ∈ B(0, 1), and set

We shall prove that

To do this, we consider the process with continuous path (Z n (t), t ∈ [0, 1]) defined by

where ξ k = S k -S k-1 and [a] denotes the integer part of a. The probability p n can then be written in terms of the process Z n as P 0 µ (A n ), where

We wish to use the Functional Central Limit Theorem [1, Theorem 10.1] together with the Portmanteau theorem [1, Theorem 2.1] in order to obtain a lower bound for the probability of this event, but the condition that t be rationnal (t = k/n) can not be handled directly, and must therefore be relaxed. To this end, we define

as soon as x nx δ/2 and αβ > 1/n. Thus, for all sufficiently large n, we have

Furthermore, it is a basic result in probability theory that P(B n ) → 0 for any i.i.d. sequence of zero-mean square integrable random variables (ξ k ). Hence, we are left to prove that lim inf n→∞ P 0 µ ( A n ) 1ǫ. Now, since Γ is non-degenerate, the Functional Central Limit Theorem asserts that Z n converges in distribution to a true d-dimensional Brownian motion (with covariance matrix Γ) on the space of continuous functions w : [0, 1] → R d equipped with the topology of For x, y ∈ R n , we write y

x iff xy ∈ R n + and y < x iff y x and y = x. Hence x > 0 means that x 0 and one of its coordinates (at least) is > 0. We shall say that x ∈ P is minimal if P does not contain any y < x.

Let us begin with a useful characterization of minimality:

Lemma 21. An element x = 0 of P is minimal iff the vectors {C i , i ∈ I(x)} are positively independent, that is:

u i C i = 0 and u i 0 for all i ∈ I(x) ⇒ u i = 0 for all i ∈ I(x).

Proof. Let x be an element of P . Assume first that x is not minimal. Then there exist y ∈ P such that y < x. If i ∈ I(x), then y i = x i = 0 (since 0 y i x i = 0). Thus, there is at least one i ∈ I(x) such that y i < x i . Set u i = x iy i for i ∈ I(x). Then, the u i 's are 0 and at least one of them is > 0. Furthermore, i∈I(x)

Hence, the vectors {C i , i ∈ I(x)} are not positively independent.

Conversely, suppose that there exist non-negative numbers u i , i ∈ I(x), not all zero, such that i∈I(x)

For i ∈ I(x), set u i = 0, and let u ∈ R n + denote the vector with coordinates u i . Since one of the u i 's is > 0, we have y = xtu < x for any t > 0. But, if t > 0 is small enough, then y also belongs to R n + (this follows from the fact that x i = 0 ⇒ u i = 0). Furthermore,

Hence, we find some y ∈ P such that y < x, i.e. x is not minimal.

From this lemma, it should be clear that any vertex of P is minimal. Let us denote by P m the set of minimal points of P . The main result of this section is the following: Proposition 22. Assume P = ∅. Then,

(1) For any x ∈ P , there exist y ∈ P m such that y x;

(2) Every y ∈ P m is a convex combination of the vertices of P ;

(3) There exists a number M , only depending on the C i 's, such that P m is bounded by M b .

Proof. Let x ∈ P and suppose that x is not minimal (otherwise there is nothing to prove). Then, by definition, there exist real numbers u i 0, i ∈ I(x), such that i∈I(x)