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Cooperativity between Integrin Activation and Mechanical Stress
Leads to Integrin Clustering
O. Ali, H. Guillou, O. Destaing, C. Albigès-Rizo, M. R. Block, and B. Fourcade*
INSERM U823-CNRS ERL 5284, Institut Albert Bonniot, Equipe Dysad, Site Santé, La Tronche, Grenoble cedex 9, France
ABSTRACT Integrins are transmembrane receptors involved in crucial cellular biological functions such as migration, adhe-
sion, and spreading. Upon the modulation of integrin affinity toward their extracellular ligands by cytoplasmic proteins (inside-
out signaling) these receptors bind to their ligands and cluster into nascent adhesions. This clustering results in the increase
in the mechanical linkage among the cell and substratum, cytoskeleton rearrangements, and further outside-in signaling. Based
on experimental observations of the distribution of focal adhesions in cells attached to micropatterned surfaces, we introduce
a physical model relying on experimental numerical constants determined in the literature. In this model, allosteric integrin
activation works in synergy with the stress build by adhesion and the membrane rigidity to allow the clustering to nascent
adhesions independently of actin but dependent on the integrin diffusion onto adhesive surfaces. The initial clustering could
provide a template to the mature adhesive structures. Predictions of our model for the organization of focal adhesions are
discussed in comparison with experiments using adhesive protein microarrays.
INTRODUCTION
Integrins (1) are allosteric transmembrane adhesive proteins
with a key role in cell-substrate adhesion and in mechano-
transduction, a process by which mechanical forces are
transduced into biochemical signals (2). This inside-outside
signaling relies on intracellular soluble factors such as talin
being able to bind to the integrin cytoplasmic tail (3–5).
They induce a conformational change from an inactivated
to an activated state with an increase in affinity for the
extracellular matrix (6). A general property of all adhesive
structures—in their nascent, focal, or fibrillar states—is the
recruitment and the clustering of integrins together with
compositional changes depending on their maturation stage.
Understanding the coupling between integrin activation and
integrin clustering is of crucial importance, because integrin
activation and clustering regulate cell adhesion and migra-
tion through mechanotransduction.

In this article, we focus on the physical mechanisms that
regulate lateral assembly of integrins, i.e., initial clustering,
in the absence of F-actin (7) but that are talin-dependent.
Talin-binding-mediated activation of integrins is b-subunit-
specific and occurs with a weak affinity (8–10). In this limit,
we show that integrin activation and integrin clustering
can be described within the same inside-outside signaling
framework. The essential ingredient of our model is the
switch between the two integrin affinity states when this
switch is induced by a diffusible factor. Previous work
(11) has shown that talin binding in the absence of force or
other proteins is sufficient to induce the activated form of
integrin. To this end, we develop an elementary mechano-
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transduction model based on an activator field to mimic
the role of talin regulating integrin binding to the extracel-
lular matrix.

Due to the competition between the stress and the allo-
steric activation, talin concentration is increased by diffu-
sion on stressed integrins. This, in turn, provides a robust
mechanism for integrin clustering into stationary structures.
The existence of such clusters can be experimentally tested
by modifying the elementary molecular modules for integ-
rins activation and adhesion (12). As a result, we show
that affinity regulation can induce by itself the clustering
in nascent adhesion complexes that provide the template
of mature focal adhesion patterns (7,13). The principal
result reported in this article is that neither direct nor indi-
rect interaction with actin cytoskeleton is necessary to
trigger the initial clustering which results only from the acti-
vation field sensed by the stressed integrins.

By comparison, former theoretical works have already
emphasized the role of acto-myosin mechanical forces for
the maturation focal adhesions (14). Stress-sensing models
such as the clutch model studied in Bruinsma (15), aniso-
tropic growth of focal adhesions in the direction of the
applied force by Nicolas et al. (16,17), force-induced
recruitment of integrin partners by Besser et al. (18), or
integrin redistribution caused by substrate rigidity by Novak
et al. (19) have already been modeled. This article, however,
introduces what we believe to be a new mechanotransduc-
tion model—one that should be valid for nascent focal
adhesions and which does not require the acto-myosin
activity but only talin binding to integrins.

To make connections with experimental studies, we
include in this article experimental results for cells adhering
on adhesive protein microarrays. In the last section, our
model will be discussed in the light of these experimental
doi: 10.1016/j.bpj.2011.03.028
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findings by predicting different geometries integrin clusters
depending on the size of the adhesive spots.
METHODS

Materials

Alexa 488-, 546-, and 633-conjugated secondary antibodies were from

Invitrogen (Carlsbad, CA). TRITC-conjugated phalloidin and Pluronic

F127 is from Sigma Aldrich (l’isle d’Abeau, France).
Cell culture

NIH 3T3 fibroblasts were cultured in a-MEM (GIBCO-Invitrogen, Oxon,

UK) supplemented with 10% inactivated fetal calf serum, penicillin, and

streptomycin and were harvested with trypsin/EDTA. Cells were plated

with 60,000 cells in 2 mL on microstructured arrays (area of 440 mm2)

in 30-mm Petri dishes and were left to spread for 4 h.
Micropatterning and functionalization

Patterned protein glass coverslips were performed according to Guillou

et al. (20) with slight modifications. Glass coverslips (22 � 22 mm)

were washed in a solution of sulfuric acid and hydrogen peroxide

(7:3, vol/vol) for 30 min, dried, and then dipped for 1 h in a solution

of octadecyltrimethoxysilane and aminopropyltrimethoxy silane

(3:1, mol/mol; Sigma-Aldrich) in toluene. Positive photoresist resin (Ship-

ley, S1805; Rohm & Haas Electronic Materials, Villeurbane, France) was

spin-coated and cured according to the manufacturer’s protocol to form

a uniform, UV-sensitive film 0.5-mm thick. The coated coverslips were

then insolated with UV light using a Karl Süss aligner (MJB3; SUSS

MicroTec, Saint-Jeoire, France) at 436 nm and 15 mJ/cm2 through a chro-

mium mask.

The irradiated pattern was revealed with microposit developer concen-

trate in deionized water (1:1, vol/vol, Shipley, MF CD-26; Rohm & Haas

Electronic Materials, Marlborough, MA). The patterned coverslips were

incubated for 1 h at 37�C in a solution of gelatin-RITC and 10 mg/mL

vitronectin in phosphate-buffered saline (PBS). Substrates were rinsed in

PBS and then in absolute ethanol in an ultrasonic water bath to dissolve

the photoresist resin. Finally, either antiadhesive triblock copolymer

Pluronic F127 (Sigma Aldrich) at a concentration of 4% in water for 1 h

30 min at 37�C, or a solution of FN7–10-FITC (Fibronectin type II domains

7–10 conjugated to FITC) at 5–15 mm mL in PBS, was adsorbed to the

complementary pattern revealed after resin dissolution by ethanol for 1 h

at 37�C. After a last rinse in PBS, 155 cells/mm2 were seeded and incubated

overnight, before fixation and staining.
FIGURE 1 Fibroblasts adhering on fibronectin-patterned substrates.

(Left panel) Cells adhering to 4 � 4 mm fibronectin plots. (Right panel)

Cells adhering to 2 � 2 mm plots. Adhesive plots are visualized by

Alexa350-labeled fibronectin. Actin filaments are labeled with TRITC

phalloidin and focal adhesion by a monoclonal anti vinculin antibody

and a Alexa488-labeled secondary antibody. For the largest plots, the focal

adhesion complexes split into two parts with two stress fibers connecting

opposite plots. For the smallest plots, however, the focal adhesive clusters

appear homogeneous with only one stress fiber emerging from the adhesion

complexes. The transition from one to two adhesive spots on the same plot

is geometry-independent, as all cells adhering to square or triangular

lattices exhibit the same behavior.
RESULTS

Cell were spread on protein microarrays with adhesive spots
of either 4 � 4 mm or 2 � 2 mm made of the fibronectin
cellular attachment domain (FN 7–10) and separated by
antiadhesive surfaces of polyethylene oxide. On these
surfaces, the final shape of spread cells is not predetermined
because the cells can use one adhesive spot or another.
Indeed, when the lateral distance between two consecutive
islands was no more than 8 mm, NIH 3T3 cells attached
and spread on the array in a manner similar to that usually
observed on uniformly coated surfaces (not shown),
whereas when the distance between adhesive islands
Biophysical Journal 100(11) 2595–2604
increased up to 16 mm, most of the cells adopted simplified
shapes corresponding to thermodynamic metastable
states (21).

Vinculin staining of focal adhesions that are sustained
by integrin clusters revealed that only external adhesive
islands were used as attachment sites. This is due to pattern
symmetries which imply that the resulting force applied
by the stress fibers on an internal adhesive island is zero.
Therefore, the lack of mechanical cues did not allow focal
adhesion assembly on these spots. On 4 � 4 mm adhesive
islands with 16-mm spacing (Fig. 1, left panels), however,
one could always detect two focal adhesions by adhesive
island even when the cells were only using two fibronectin
spots. This latter result clearly demonstrates that tensions
along actin stress fibers connected to focal adhesions are
not the driving forces for integrin clustering. Surprisingly,
when the dimensions of the adhesive plots were reduced
to 2� 2 mm, a single integrin clustering connected to fuzzier
actin stress fibers was observed on external adhesive islands
(Fig. 1, right panels). Even in the angles where orthogonal
forces occurred, a single focal adhesion was detected. These
experimental data indicated that, in addition to the tensions
that promote focal adhesion growth, an additional mecha-
nism is required to explain the splitting of adhesive clusters
at constant tension.



FIGURE 3 Plot of the effective source function f(f, h0) as a function of

f for different values of h0. The figure shows f(f, h0) for four different

values of the strain index h0. For h0>hc1 , f(f, h0) has three roots instead

of one. (Tooth-shaped curve) The bN approximation, as taken in the text

when passing from Eq. 15 to Eq. 17. (Final curve for hc2<h0) Nearly-satu-

rated regime where fI ¼ f/(Km þ f) instead of fI ¼ f/Km as in the three

previous plots. In this case, the source function f(f, h0) has only one zero

for some value of h(x0).

TABLE 1 List of symbols with typical values used in this work

Symbol Meaning Typical value

kb Effective spring constant for

integrin-substrate rigidity

0.3 mN.m–1 (36)

1/b Effective residence time of talin 80–100 s (37,38)
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DISCUSSION AND THEORY

Preliminaries

For what follows, it will be useful to consider the cycle of
elementary reactions for talin as shown in Fig. 2. In the
cytosol, talin is in the inactivated state with concentration
fc. When adsorbed on the membrane, talin changes confor-
mation and is activated by binding to PiP2 (22). Once acti-
vated, talin diffuses on the membrane and interacts with
integrin receptors under the control of other proteins such
as RIAM (5) and kindlins (23). Finally, downstream of in-
tegrin activation, talin ubiquitination, and degradation leads
to disassembly of adhesive clusters (24).

In particular, as shown in Huang et al. (24), increasing the
rate of talin degradation by increasing the affinity of talin to
ubiquitin ligase Smurf1 not only increases the turnover of
focal adhesions but also, additionally, increases noticeably
their number and their size (see Fig. 3 in Huang et al.
(24)). This indicates that talin degradation may also be
involved at the early stages of nascent adhesions and focal
adhesion maturation processes.

Overall, the cycle can be represented as

./
n1

f/
g1

fd

fþ I#
kþ1

k�1

fI/
g2

fd þ I;
(1)

where talin is activated at a rate n1 with concentration f and
can reversibly bind to an integrin I with rate constants k51.
Membrane-bound talin is also irreversibly inactivated at
a rate g1. Finally, g2 is an irreversible dissociation rate and
simulates adhesion complex disassembly by degradation.

Table 1 gives the order of magnitude of key physical
constants used in our model. Among them, the lifetime 1/
bx 100 s of talin in its activated state gives a characteristic
diffusion length

l ¼
ffiffiffiffiffiffiffiffiffiffiffi
Df=b

q
x2� 4 mm:
FIGURE 2 Schematic view of the talin activation cycle (after (44)). (Step

1) Talin in its inactivated state (fc) in the cytosol. (Step 2) Talin is recruited

at the membrane (fm) and is activated by binding to PIP2. In this activated

state, f, talin interacts with the integrins (Step 3). The equilibrium between

activated talin f and the integrin (the bound complex is denoted fI)

is crucial. (Step 4) Talin unbinds from the integrin and goes back to its

cytosolic state (fc).
This characteristic length is comparable to critical size wc

of the adhesive spots above which the focal adhesion
clusters split into two clusters. Henceforth, the ratio of the
diffusion length, l, to the spot size, w0, will play a key
role in determining different families of solutions for
integrin clustering.

In general, the concentrations depend both on space
coordinates x and on time t. If x is taken along the cell
adhesive substrate, f(x, t) is the surface concentration of
talin in the activated state and fI(x, t) is the average number
of talin per integrin. If n0(x, t) is the total concentration of
integrins, n0fI is the concentration per unit of surface of
talin-integrin complexes. We will refer to this state as the
‘‘adsorbed phase’’.
h0 Range for the elastic strain 1–15 nm

Dn Integrin diffusion constant 10�3–10�2 mm2.s–1 (39)

Df Effective diffusion constant

of PIP2 bound talin

0.2 mm2.s–1 (40)

nN Averaged integrin density

at zero stress

100–500 mm–2 (13)

l0 Length of the extracellular

domain of an integrin

10 nm (5,41)

k–1 Rate dissociation constant for

the talin-integrin complex

10�4–10�3 s–1 (25)

AI Interaction energy between talin

and integrin

x10–20 kBT (43)

AIfI, 0 Talin-integrin interaction energy

at zero stress

x1–5 kBT

K0
e ¼ nb=n0 ¼ Ke;0e

bAIfI;0 at zero stress 10�3

Km Equivalent Michaelis-Menten

constant for talin degradation

x103–104 mm�2

1/b kBT x 4.1 pN.nm

Biophysical Journal 100(11) 2595–2604



2598 Ali et al.
In what follows, we will work in the quasi-steady-state
approximation where fI is in equilibrium with the local
concentration of talin f(x, t). When talin is bound to an
engaged integrin, it cannot diffuse and local equilibrium
fixes an algebraic condition between f(x) and fI. This rela-
tionship is found from the last step of Eq. 1 and reads as

fI ¼ f=ðfþ KmÞ with Km ¼ k�1 þ g2

kþ1

x
g2

kþ1

; (2)

whereKm is aMichaelis-Menten constant with the dimension
of a concentration. The last approximation points out the
importance of two pathways for talin unbinding, one of
which is stress-sensitive. Typically, the dissociation rate k–1
is ~7.4 10�4 s–1 (25) and if g2 is of the same order of
bx 10�2 s�1, the variations ofKmwith k–1 can be neglected.
Thus, Km is independent of the strain which influences
the off-rate of talin unbinding. Using kþ1 x 103 l $ Mol�1

(25), we find Km ¼ 103–4 molecules per mm2.
Two limit cases will be of interest. For small concentra-

tions f, fI is simply proportional to f. In the saturated limit,
however, fI is independent of f and approaches unity. To
summarize for later use, we have

fIxf=Km when f � Km; (3)

fIx1 when f[Km: (4)
Other nonlinearities with fI ¼ afg/(1 þ fm) where a, g,
m positive numbers can be included in the model without
qualitative changes.
Model for integrin activation and engagement

Step 3 of Fig. 2 corresponds to the reversible binding of talin
to integrin. In our model, these kinetic rate constants are
determined by talin allosteric activation of integrins and
by elasticity.

We recall that talin binding to an integrin induces a confor-
mational change for the integrin receptor proteins. According
to Anthis et al. (10), the integrin extracellular domain is in its
extended conformation in the activated state with talin bound
to the intracellular tail. In this state, an integrin is bound to its
ligand. By contrast, in the other state, the head is in the bend
conformation. In this nonactivated state, the integrin has
a smaller probability to bind to its ligand. Henceforth, we
will consider the very large affinity limit for extracellular
ligand binding where an activated integrin is engaged,
whereas a nonactivated one is free to diffuse. To summarize,
binding talin to an integrin introduces a conformational
change between two states with respective density nu, b,
where the density of integrin is conserved nu þ nb ¼ n0.

Local equilibrium between these two states is always
achieved at a timescale much smaller than the typical
timescale for concentration changes due to diffusion. Let
Ke(fI, h) be the effective equilibrium constant for integrin
engagement. Ke(fI, h) depends both on the adsorbed talin
Biophysical Journal 100(11) 2595–2604
field fI(x, t) and on a strain field h(x) and local equilibrium
implies that the density of bound integrins obeys

nbðf; hÞ ¼ n0

1þ KeðfI; hÞ�1
: (5)

Taken together, fI(x, t) and h(x) play antagonistic roles for
adhesion when the concentration of talin f(x) is homoge-
neous. On the one side, binding talin favors adhesion and
thus increases the affinity constant for the extracellular
matrix. On the other side, stretching the integrin extracel-
lular head with a length l(x) that differs from a reference
length l0 x 10 nm induces a stretching energy ½kbh(x)

2

with h(x)¼ l(x) – l0. By definition, kb is an effective rigidity
constant which includes substrate deformability. Following
Bell et al. (26), Ward et al. (27), and Munevar et al. (28),
this energy is of the order of a few kBT x 4 pN.nM and
adds up to the bare energy difference Dfu, b between the
two integrin states. This regime is only valid for l smaller
than a maximum extension (x25 nm), and we will hence-
forth restrict ourselves to this range.

Because binding talin decreases the free energy of the
activated state, we haveDfu, b¼ – AIfIwhere –AI is the inter-
action energy between talin and the cytoplasmicb-subunit. In
the zero stress limit where fI¼ fI

0, we have AIf
0
Ix 2.5 kBT

(9,29). Summing the allosteric and the elastic contributions
gives the enthalpy difference between the two states

DHu;b ¼ Dfu;b þ 1

2
kbhðxÞ2: (6)

Using the Van ’t Hoff law, the equilibrium constant follows

KeðfI; hÞ ¼ Ke;0e
�b

�
1
2
kbhðxÞ2�AIfI

�
; (7)

where K0
e ¼ Ke, 0 exp(AIfI

0) is the equilibrium constant in
the absence of stress. This state is a reference state and
the principle of the model is to perturb this reference state
by strain elasticity with h(x) > 0. Ke

0 fixes the number of
bound integrins by Eq. 5 and is thus a small number
(Ke

0 ¼ 10�3 in this work).
To comment Eq. 7 further, we note that NMR studies as in

Anthis et al. (10) indicate that the interaction between the
two different talin isoforms and the membrane-proximal
domain of an integrin is specific of the integrin species. In
parallel, small variations of the talin-integrin interaction AI

lead to very different values of the equilibrium constant
from Eq. 7 when the talin concentration varies. This, in
turn, will demonstrate that integrin clustering behavior is
specific of the integrin family.
Integrin engagement is stress-dependent

In our model, allosteric activation and tail elasticity
contribute to the chemical potential m(fI, h) per integrin.
This chemical potential will influence the desorption rate
k–1 in Eq. 1 and, thus, will modify the equation of motion



Stress, Integrin Activation/Clustering 2599
for talin diffusing on the membrane. To compute the chem-
ical potential, we neglect all entropic contributions and
retain the most singular part as

mðfI; hÞx
d

dfI

�
1

2
nbðfI; hðxÞÞkbhðxÞ2

�����
gIðf;fIÞ¼ 0

; (8)

which follows from Eq. 6 times the probability density to
find an integrin in its activated-engaged state. From Eq. 5,
nb(fI, h) is steplike when f varies at constant strain
h(x) ¼ h0. Taking the derivative as done in Eq. 8 introduces
a d-like singularity in the chemical potential when talin allo-
steric activation compensates strain elasticity

AIfI ¼ 1

2
kbh

2
0 �

1

b
ln

�
K0

e

�
; (9)

which is approximately equal to 10 kBT for h0 ¼ 5–10 nm.
Because the chemical potential depends on the strain h(x)

by Eq. 8, varying h(x) influences integrin engagement and
talin concentration. Experimentally, h(x) can be varied in
numerous ways. For example, the use of micropatterned
substrates concentrates the stress at the margin of the adhe-
sive spots. Another way is to probe h(x) directly, using
single molecule assays to stretch the integrin head in the
nanometer range.

Henceforth, we will work in the thermodynamic
ensemble where the strain is fixed at a given function h(x).
For numerical and analytical convenience, h(x) will be taken
as a Gaussian h0 exp(–x

2/2w0
2) of width w0 and height h0.

As shown below, the state of the system is globally indepen-
dent of exact analytical form of h(x) as long as h(x) can be
greater than some threshold value on a region of size w0

larger than the diffusion length
ffiffiffiffiffiffiffiffiffi
D=b

p
.

Talin equation of motion

Step 3 of Fig. 2 is the adsorption-desorption process for the
dynamic of the activated talin f(x), which is otherwise
allowed to diffuse on the membrane with diffusion constant
Df. The chemical potential of Eq. 6 influences the desorp-
tion rate of talin-integrin bound state to the free state.
At the end, the theory is self-consistent, because this desorp-
tion rate for talin-integrin unbinding depends on the local
concentration f.

To derive this self-consistent equation, we define a refer-
ence state concentration f0 of talin at zero stress (i.e., h(x)¼
0; see Appendix A). When measured with respect to this
reference state, f / f0, the equation of evolution for the
relative excess of concentration f is written as

vtf ¼ DfDf� bfþ 1

2
GIkbh

2vnb
vfI

����
gðf;fIÞ¼ 0

; (10)

where the last term is proportional to the excess of chemical
potential in the bound phase due to strain elasticity. Physi-
cally, this term describes how an excess of talin compensates
for the increase of the desorption rate due to integrin engage-
ment. Using the model of Eq. 1, this equation is derived in
Appendix A under the assumption that the kinetic rate
constant for talin desorption is influenced by the chemical
potential of Eq. 8, which contains stress elasticity. The diffu-
sion-reaction equation, Eq. 10, is thus equivalent to the one
used to study the growth of focal adhesions (see Besser
et al. (18), but with a talin-dependent strain elasticity.

In Eq. 10, GI is a kinetic coefficient between the talin
bound and free states and is proportional to the off-rate of
the talin-integrin unbinding. Because GI is proportional to
AI, i.e., GI reflects the talin affinity for an integrin, GI is
also b-subunit specific. The last term is proportional to the
density n0 of integrins. As the bare affinity K0

e is small,
nb(fI, h) is a step function when fI varies. Thus, vnb/vfI

has a singularity to mimic the switch in integrin affinity
toward its ligand (30). This term depends on f by the
quasi-steady-state condition gI(f, fI)¼ 0. Thus the dynamic
of the field f(x) depends on diffusion by Df, on the resi-
dence time of talin in its activated state by b, and, finally,
on the strain h(x). This equation describes how elasticity
provides a positive feedback loop for integrin activation
when the source term in Eq. 10 is maximum.
Integrin equation of motion

Equation 10 gives the correct evolution of f(x) as long as
the integrin density n0(x) does not respond to the variations
of f(x). Because the integrin diffusion constant is smaller
than the one for talin, this approximation holds at very short
times. At longer times, however, there is a change in integrin
concentration n0 ¼ nu þ nb, because unbound integrins nu
diffuse (diffusion constant Dn). Because of local equilib-
rium, the equilibrium constant gives the fraction of bound
to unbound integrins as

nbðx; tÞ
nuðx; tÞ ¼ KeðfI; hÞ: (11)

As a result, the effective diffusion equation for the integrin
concentration field n0(x, t) reads as

vn0
vt

¼ DnD

�
n0

1þ KeðfI; hÞ
�
: (12)

Equation 12, together with Eq. 10, gives a complete system
for a given strain profile h(x).
Effective diffusion-reaction equation

The essential property of our model is that it describes integ-
rin activation in cooperation with changes in talin concentra-
tion. From now on, we will concentrate in the small talin
concentration limit with fI¼ f (see Eq. 3). The large f limit
of Eq. 4, where fI saturates, is studied in the last section.
Mathematical analysis will focus on the one-dimensional
Biophysical Journal 100(11) 2595–2604
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case when the typical radius of curvature of the adhesive spot
is larger than the diffusion length

ffiffiffiffiffiffiffiffiffi
D=b

p
.

Using the two equations of motion, we solve the problem
as follows. In the symmetric case h(x) ¼ h(–x), Eq. 12 has
the unique solution

n0ðx; tÞ ¼ nN
1þ K0

e

½1þ KeðfI; hÞ�: (13)

Because Eq. 10 is valid for an arbitrary integrin density n0,
we use Eq. 13 in Eq. 10. As a result, we solve the effective
reaction-diffusion equation

vf

vt
¼ DfDfþ f ðf; hÞ; (14)

with the source function f(f, h)

f ðf; hÞ ¼ �bfþ 1

2
kbhðxÞ2 GI

1þ K0
e

nN

1þ KeðfI; hÞ�1

����
fI ¼f=Km

:

(15)

To mimic adhesive spots surrounded by nonadhesive
islands, boundary conditions are chosen so that both the
strain h(x) and the concentration f(x) vanish at infinity.

The characteristic shapes of f(f, h) are given in Fig. 3 in the
small and large h(x) ¼ h0 limits. For h0<hc1, f(f, h(x)) has
only one zero whereas, for h0>hc1, it has three zeros f1, 2, 3.
In that case, the system is again bistable. Thus, for an homo-
geneous strain profile hðxÞ ¼ h0>hc1 , the effective diffusion
equation can be used to describe lateral excitation of a signal
which propagates with a threshold response. The existence of
three zeros for the source functions f(f, h) at fixed h ¼ h0 is
a characteristic property of reaction-diffusion systems with
propagating wave solutions. Henceforth, we will study
stationary solutions of Eq. 14with vf/vt¼ 0. These solutions
may be seen aswaves pinned by strain elasticity, because they
are concentrated where the stress is maximum.
Integrin clustering is stress-dependent
and is characterized by two families of solutions

In the allosteric model for integrin activation of Eq. 6, the
elastic stress competes with the talin field to regulate integ-
rin activation and engagement. When activated talin diffuses
on the membrane, however, this competition leads on an
amplification loop. To bias this competition, we vary the
strain profile by changing h0 and compute the stationary
solutions for f(x) and nb(x). Stability of these solutions
with respect to variations in integrin concentration is
checked using the equivalent equations (Eqs. 10 and 12)
for different initial conditions in the regime where f3 in
Fig. 3 tends smoothly to zero when x goes to infinity. Other
strain functions h(x) with characteristic variations on a width
w0 have been tested without qualitative changes. Solving the
model amounts to comparing numerical solutions with
asymptotic results, as done in the next section.
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Small stress regime fI ¼ f/Km: numerical results

Fig. 4, a–c, for the talin and integrin concentration fields
demonstrates that stress leads to integrin clustering. Depend-
ing on the strain, this clustering is described by two families
of solutions.

Solution family type 1

For small stress values, h<hc1 , clustering corresponds to
a unique centered distribution of f which increases rapidly
with h0. These solutions correspond to the long dashed
curves shown in the figure and they will be compared to
the analytical solution in the next section. Type 1 solutions
are always characterized by a centered maximum of talin
concentration at the origin The distribution of bound integ-
rins follows from the solution of f(x) because

nb
nN

¼ Keðf; hÞ
1þ K0

e

; (16)

where nN is fixed by the condition at infinity. Type 1 solu-
tions for nb are characterized by a maximum at the origin.
Only near bifurcation points, type 1 solutions for nb may
exhibit a local minimum.

Solution family type 2

At larger strain, h>hc1 where the source function from Eq.
15 possesses three zeros, there is a new family of solutions.
Type 2 solutions are characterized by a distribution of talin
with a double symmetric maximum. These maxima merge
with the centered maximum of type 1 solution when
h ¼ hc1 . Using Eq. 16, the distribution of bound integrins
is always symmetric with respect to the origin and concen-
trates rapidly at the margin of the zone where the stress is
applied when h0 is increased above hc1 . Type 1 and 2 solu-
tions exist for h>hc1 if the diffusion length is small enough
with respect to the characteristic width w0 of the strain h(x),
D bw2

0 << 1. They are both stable for a large class of initial
conditions (using Eqs. 10 and 12).
Small stress regime fI x f/Km: analytical results

To get insights into the two families of stationary solutions,
we approximate the source function f(f, h) by its b / N
limit. In this case, the Boltzmann function converges to
the Heaviside q[x] function with two inclines (see red curve
of Fig. 3). The source function in Eq. 15 becomes

fDðf; hÞ ¼ �bf þ 1

2

GI

1þ K0
e

nNkbhðxÞ2q
�
AIf=Km

� 1=2kbhðxÞ2þ1=bln K0
e

	
:

(17)

We call this the ‘‘bN model’’ and solve exactly for f(x) as
done in the Supporting Material. From this solution, we
find n0(x) and nb(x) using Eqs. 11 and 13. Plots of solutions



FIGURE 4 (a) Plot of the type 1 family talin concentration AIf1(w0x)/Km

for parameter values taken from Table 1. (Dashed curve) Approximate

analytical solution with c ¼ 0 (see the Supporting Material). Otherwise,

numerical solutions and thick curves corresponding to type 1 solutions of

the bN model coincide on the scale of the figure. (Thin curve) Asymptotic

expansion of the analytical solution given by Eq. S10 in the Supporting

Material. It shows that asymptotic results are already reliable even ifffiffiffiffiffiffiffiffiffi
D=b

p ¼ 0:28w0 as in the case of this figure. Color-code (from the top to

the bottom curve) indicates that 1/2bkbh0
2 decreases stepwise (15, 7.5,

4.5 to 3), with the largest value in green. (b) Plot of the type 2 family solu-

tions AIf2(w0x)/Km. (Dashed curves) Numerical solutions. Thick and

dashed curves coincide when f3* goes to zero smoothly as jxj goes to

infinity. (Circles) Boundary points x0 for type 2 solutions where the solution

passes through the singularity of the bN model. Decreasing h0 changes the

solution until it matches a type 1 solution at the bifurcation point. The color

code (from the top to the bottom curve) for panel b is the same as for panel

a. (c) Plot of the density of engaged integrin nb(w0x) for centered type 1 and

type 2 solutions for the same parameters (½bkbh0
2 ¼ 4.5). For convenience,

type 1 solutions have been scaled down by a factor 10 (w0 ¼ 10 mm).
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of this asymptotic model are also given in Fig. 4, a and b, for
comparison with numerical data.

Type 1 solutions

Fig. 4 a corresponds to this case. This solution has amaximum
(see Eq. S10 of the Supporting Material). In the small diffu-
sion length limit D/bw0

2, we find (see thin curve in Fig. 4 a)

f1ðx ¼ 0Þx1

2
kbh

2
0

GInN

b
�
1þ K0

e

�: (18)

As expected, the concentration of talin increases with
rigidity. Decreasing b, or equivalently increasing the life-
time of activated talin, has the same effect. From this, we
find that the density of bound integrins for type 1 solution
is asymptotically given by

nb;1ðx ¼ 0Þ
nN

xK0
eexp



1

2
bkbh

2
0

�
AIGInN

bKm

�
1þ K0

e

�
��

: (19)

What the model predicts is thus a local increase of f, and
therefore of fI, to counterbalance the negative effect of
the strain h0 on integrin engagement. Because of the expo-
nential dependence, Eq. 19 is very sensitive to variations
in strain h0 and to changes in parameters. If the talin-integrin
interaction energy AI is multiplied by a factor 2, GI changes
by a factor of 4 and the exponential in Eq. 19 is raised to the
same power. Such a sudden increase in integrin density upon
small changes in AI is the distinctive mark of a positive feed-
back loop contained in the model.

Type 2 solutions

In contrast to type 1 solutions, solutions of type 2 are char-
acterized by a minimum of talin concentration at the origin.
The width of this depletion zone is set by the diffusion
length l with f(x) f cosh(x/l). Thus, for type 2 solutions,
the effect of the strain is to exclude talin proteins from the
center with a maximum of concentration at a characteristic
distance 5 w0. The calculation reported in the Supporting
Material demonstrates that type 2 solutions cannot be con-
structed if the ratio l/w0 is too small. In this regime, diffu-
sion smoothes out any irregularity in the strain profile h(x)
and, by symmetry, the concentration field of talin can only
have a centered maximum.

Fig. 5 a shows how the distribution of talin evolves when
w0 decreases at fixed strain h0. Starting at large width w0, the
distribution shrinks and the minimum is less pronounced as
diffusion is more and more effective. At a critical width wc,
the two maxima merge at the origin. Below wc, the unique
solution is of type 1 with a centered maximum. Fig. 5 b is
the accompanying figure for the distribution of bound integ-
rins. Although the distribution of talin is centered below the
bifurcation point, the distribution nb(x) may have a minima
in its immediate vicinity.

The condition for existence of a type 2 solution in the
Supporting Material is given by the matching conditions
Biophysical Journal 100(11) 2595–2604



FIGURE 5 (a) Plot of the talin density AIf(w0x)/Km as a function of x.

Decreasing the ratio w0/l at fixed strain h0 decreases the characteristic

distance between the two maxima. Decreasing this ratio further leads to

a critical width where type 2 solutions stop existing. For w0 < wc, the

only solution is of type 1 and corresponds to the centered distribution shown

in this figure. (b) Plot of nb(w0x)/nN. Although AIf1(w0x)/Km is always

maximum at the origin, nb(x) for type 1 solution can be minimum in the

near vicinity of the bifurcation point. In both figures, wc x 25 mm (for

both figures, l ¼ 2.8 mm and the color-code (from the top to the bottom

curve) indicates that w0 decreases in steps of 1 mm from 6 to 2 mm).
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of the two branches below and above the singularity given
by the q function in Eq. 17 when f2(x) satisfies the condition
in Eq. 9. These conditions result from conservation laws
which imply that concentration and current are conserved
quantities when f(x) passes through the singularity at x ¼
x0. For all curves of Fig. 4 b, this point is indicated by
a dot. At bifurcation, this point coincides with the origin.
From this, we compute the critical width wc at given h0
(see Eq. S16 in the Supporting Material with x0 ¼ 0)

l2

u2
c

¼ 1

2
kb

GIAI

b
�
1þ K0

e

� nN
Km



1� 2

ln K0
e

bkbh20

�
: (20)

As a result, the critical width decreases with AI and with
the strain h0. Using Table 1, Fig. 5 a gives a value for wc

of ~2–3 mm.
Equation 20 is derived for a Gaussian profile h(x) ¼ h0

exp [–x2/(2w2
0)]. Numerical experiments with other strain

profiles show small changes in the critical width wc for
different strain functions h(x). A reason for this is that the
Biophysical Journal 100(11) 2595–2604
source function from Eq. 17 is independent of the strain
profile near the origin, so that the cosh(x/l) solution is
universal and independent of the profile h(x).
Large stress regime: extension of the linear
model to include the saturation limit of the bound
talin field fI

Clearly, the linear regime fI ¼ f/Km is only valid at small
strain h0, and fI must saturate above a critical value fixed
by the equivalent Michaelis-Menten constant as in Eq. 4.
As f increases with h0 (see Eq. 18 for type-1 solutions),
the boundary value f above which the linear regime
breaks-down sets an equivalent condition for h0.

In this saturated limit where fI tends to 1, the equilibrium
concentration of talin bound to integrin is independent of f,
because all integrins are already activated. In that case, the
equivalent source function for reaction-diffusion has only
one fixed point instead of being tooth-shaped as in Fig. 3.
Let us call hc2 , the value of h0 above which the equivalent
source function f(f, h0) has only one zero. For h0>hc2,
type 1 solutions cease to exist. Numerically, adding Lange-
vin noise to the equation of motion or steric repulsion
between integrins leads to the same effect when n0(x) is
large because the saturated limit for type 1 solutions is
very sensitive to fluctuations in integrin density.
DISCUSSION AND CONCLUSION

To conclude, our approach leads to integrin clustering and
embodies collective effects between different families of
integrins. Thermodynamics provides an effective activation
potential so that there is no need for direct or indirect inter-
actions between the integrin receptors for clustering. The
model can be represented as an effective reaction-diffusion
system with the conclusion that integrin clustering is driven
by integrin activation imposed by mechanical constraints.
Mixing elasticity and chemical reactions reproduces the
characteristic properties of excitable media, which has
already been evoked in Wang et al. (31) for the mechanical
activation of Src.

Activation mediated by talin binding depends on the
b integrin cytoplasmic subunits and this dependence is
explicit in the model through the interaction energy param-
eterAI. Small variations of this parameter lead to exponential
variations of talin concentration, and influencesmarkedly the
locus of bifurcation lines. Testing the role of a5b1 and avb3
integrins for mechanotransduction has already been
proposed in Roca-Cusachs et al. (32). Because our model
links integrin activation to mechanical stress, we propose to
test further these differences by varying other parameters
such as the width of the zone where the stress is applied.

These results are with respect to the experimental findings
of the first section. In our work, advanced lithography tech-
niques allow us to control the size of the adhesive spots at



Stress, Integrin Activation/Clustering 2603
the cell-substrate contact interface. For this, we take the
width w0 as the typical size of the adhesive spots, which
corresponds in the model to the parts of the contact zone
where the integrins are submitted to a stress. Although our
model applies only at short timescales after the first contacts
and integrin ligation, we propose that it serves as a template
to discuss more mature focal adhesion complexes which
develop from these nascent adhesion clusters.

In short, by imposing a mechanical constraint, the model
predicts different spatial organization for cell receptors
which, thereby, may alter the specificity of their signaling
functions. This hypothesis is explicit in Paszek and Weaver
(33) and Salaita et al. (34), and a mark of our model is to
define a framework from only three experimentally acces-
sible quantities.
APPENDIX A

To find the local free energy per unit surface area, we work in the frame-

work of a lattice gas model where each site can be occupied by an integrin

of density n0. Activated talin is free to diffuse on the membrane seen an

adlayer and it can get reversibly adsorbed on the sites occupied by the

integrins:

f ðfI; hÞ ¼


� AIfI þ

1

2
kbhðxÞ2

�
nbðfI; hÞ: (21)

To evaluate m([fI], h) as in Eq. 8, we consider only the most singular term

n0DmðfI; hÞ ¼


þ 1

2
kbhðxÞ2

�
vnb
vfI

����
fI ¼f=Km

; (22)

Note that the derivative disappears if talin had a very high affinity for integ-

rin, because nb would not vary.

Introducing the rate of production n1 for activated talin, the equation of

motion is

vf

vt
¼ DDfþ n1 � g1f� n0kþ1fþ n0k�1;0e

bDmðfI ;hÞfI;

(23)

which, together with Eq. 2, can be used to find the stationary solutions.

A convenient way to solve Eq. 23 is to introduce a reference state at zero

stress h(x)¼ 0. This reference state f0 is homogeneous and solves the equa-

tion of motion,

n1 � g1f0 � n0kþ1f0 þ n0k�1;0e
bDmðfI;0;0ÞfI;0 ¼ 0; (24)

with the steady-state condition equation, Eq. 2, at zero stress. Thus, f0 is an

increasing function of the rate of n1 with which talin is activated by binding

talin to the membrane with PIP2. If this rate is large enough, as is generally

the case because PIP2 is produced at a very large rate, this state can used as

a reference state.

Making the change of variable f / f0 þ f, we look for a solution

f(x, t) proportional to the rigidity kb. To linear order, ebDm x 1 þ bDm,

because Dm is linear in kb. We find that the relative excess of concentration

f(x, t) is solution of the equation used in text

vf

vt
¼ DDf� bfþ 1

2
GIkbhðxÞ2vnb

vf
; (25)
b ¼ g1 þ n0kþ1 � n0k�1;0; (26)
G ¼ b2k A f ; (27)
I �1 I I;0

k�1;0 þ g2

fI;0 ¼

kþ1

f0; (28)

vn K0�1ebð1=2kbhðxÞ
2�AIfÞ
b

vf
¼ n0

e�
1þ K0�1

e ebð1=2kbhðxÞ2�AIfÞ	2; (29)

with K0
e evaluated in the reference state at zero stress:

K0
e ¼ Ke;0e

bAIfI;0 : (30)

To make this evolution equation as simple as possible, we have neglected

terms fvnb/vf which are next order in kb and saturate in the large f-limit

by the condition Eq. 2. Finally, fewer singular contributions to the chemical

potential such as nb(f, h), which appear when taking the derivative Eq. 8,

will change the low f limit of f(f, h0) in Fig. 3 without affecting the bistable

characteristic property.
SUPPORTING MATERIAL

Eighteen equations are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(11)00376-6.

We thank V. Lorman and C. Picart for careful reading of the manuscript and

useful comments.

This research was supported from the CellTissue grant No. GDR 3070. This

work is supported in part by the NanoFab micro fabrication facility of Louis

Neel Institute (Centre National de la Recherche Scientifique UPR 5051).

This work is also supported by the ‘‘Ligue Nationale contre le Cancer’’
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