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Generation of Dynamic Motion for Anthropomorphic

Systems under Prioritized Equality and Inequality Constraints

L. Saab, N. Mansard, F. Keith, J-Y. Fourquet, P. Soueres

Abstract— In this paper, we propose a solution to compute
full-dynamic motions for a humanoid robot, accounting for
various kinds of constraints such as dynamic balance or joint
limits. As a first step, we propose a unification of task-based
control schemes, in inverse kinematics or inverse dynamics.
Based on this unification, we generalize the cascade of quadratic
programs that were developed for inverse kinematics only.
Then, we apply the solution to generate, in simulation, whole-
body motions for a humanoid robot in unilateral contact with
the ground, while ensuring the dynamic balance on a non
horizontal surface.

I. INTRODUCTION

This paper focuses on whole-body motion generation in

humanoid robotics. We are interested in resolving tasks that

involve simultaneous motion of upper and lower parts of

the body. This gives rise to trajectory equality constraints.

Thus kinematic redundancy and interaction between tasks are

central issues. These problems have already been tackled in

the robotics literature. The first attempts were concerned by

multiple equality constraints at kinematic level in Resolved

Motion Rate Control schemes [15]. Prioritization has been

adopted following the pioneering work of Nakamura [20]

with fixed or adjustable priority [1]. However, in these works,

inequality constraints were not exactly taken into account. To

this end, several authors applied a potential field approach

projected in the null space of equality constraints [12], [19];

whereas others used clamping for joint limit avoidance [3],

[24]. In fact, the kinematic formulation can be written as a

quadratic problem, as proposed in [11], where it is possible

to find an approximate solution based on successive prior-

itization, even when inequality constraints forbid an exact

solution. Whole-body motion is naturally concerned with

dynamics and contact forces. Therefore, a dynamical formu-

lation is necessary and tasks dynamics are written as linear

equalities whose unknowns are the generalized torques. Sev-

eral approaches consider prioritization techniques within a

dynamic formulation given at the operational level. This is

particularly the case for the works by Khatib and colleagues

L. Saab is with CNRS, LAAS, 7, avenue du Colonel Roche, F-31077
Toulouse, France, Université de Toulouse(UPS) lsaab@laas.fr

N. Mansard is with CNRS, LAAS, 7, avenue du Colonel Roche, F-31077
Toulouse, France, Université de Toulouse(UPS) nmansard@laas.fr

F. Keith is with the CNRS-AIST JRL, UMI3218/CRT,
Tsukuba, Japan and the CNRS-UM2 LIRMM, Montpellier, France
francois.keith@aist.go.jp

J-Y.Fourquet is with LGP-ENIT, 47, avenue d’Azereix, 65016, Tarbes,
France, fourquet@enit.fr

P.Soueres is with CNRS, LAAS, 7, avenue du Colonel Roche,F-31077
Toulouse, France, Université de Toulouse(UPS) soueres@laas.fr

[26], [14]. The survey paper [22] gives a good comparison

between operational dynamics approaches. In this family of

methods, prioritization is fixed and inequalities are treated by

projected potential techniques. Recently, different techniques

have been developed: an original scheme to compute a

generic control law from a hierarchic set of both unilateral

constraints and bilateral tasks was proposed in [17] and

solvers of dynamic and static quadratic problems for multi-

contact were designed in [4] .

This paper exploits the quadratic nature of the task space

dynamic formulation including unilateral contact constraints

in order to take into account both equality and inequality

constraints in a way similar to the one proposed at kinematic

level in [11]. Thus, our problem formulation enables the

resolution of different types of dynamic constraints defined

in any order of priority. First, we recall the classical schemes

for inverse kinematics and dynamics in Section II. A generic

formulation is drawn from these schemes, that can be used to

build a unified resolution. In Section III, we prove the equiv-

alence of the unified methodology with the control scheme

of the literature, in the case of the free-floating humanoid

robot. Then, in Section IV, we generalize the hierarchy of

quadratic programs, first used for inverse kinematics only, to

the dynamic case. A set of specific tasks is then explicited

and applied to the humanoid robot model in simulation in

Section V. The experiments consist in performing a whole

body task while preserving the robot balance on a sloping

surface.

II. NUMERICAL INVERSE RESOLUTION

In this section, the inverse algorithms for both kinematics-

based and dynamics-based control are developed. The simi-

larities in term of algorithmic resolution are then drawn and

used to generate common solvers for motion generation.

A. Task function approach

The task-function approach [25] (or operational space

approach [13], [21]) consists in designing the motion to be

performed as a control law in a subspace of small dimension,

and then back-projecting this control law to the state space of

the robot. A task is defined by the triple (e, ė∗, G), where e

belongs to the task space, ė∗ is the reference behavior in the

tangent space to the task space at e, and G is the differential

mapping between the task space and the control space of the

robot:

ė + µ = Gu (1)



where u is the control and µ is the drift of the task. The

interest of defining the robot motion inside a task space rather

than directly at the joint level is double: first, the task space

is chosen such that the control law can be easily designed

(typically, in visual servoing the task space is the space of

measurable visual features), making the link between sensor

feedback and control direct [6]; second, the interference

between two task spaces can be easily prevented and then

concurrent simultaneous objectives can be decoupled, using

a projection operator. To compute a specific robot control u∗

that performs the reference ė∗, any numerical inverse of G

can be used. The generic control law is then

u∗ = G#(ė∗ + µ) (2)

where .# is a generalized inverse operator.

B. Inverse kinematics

In inverse kinematics, the control input u is simply the

robot joint velocity u = q̇. The differential link between

the task and the control is the task Jacobian G = J = ∂e
∂q

.

In that case, the drift µ is null. For inverse kinematics, the

generalized inverse is most of the time the pseudo inverse

denoted by .+ which gives the least Euclidean norm [2], [8].

The control law is then:

q̇∗ = q̇∗1 + Pq̇2 (3)

where q̇∗1 = J+ė∗ and P is the projection operator into

the null space of J, that allows to consider any secondary

control objectives q̇2 without disturbing the realization of

the main objective ė∗ [15]. A typical reference behavior is

an exponential decay of e to zero: ė∗ = −λe, λ > 0.

C. Projected inverse kinematics

The projector P represents the redundancy of the robot

with respect to the task. If a secondary task (e2, ė
∗
2, J2) has

to be performed, then q̇2 can be used as the new control input.

The template (2) is obtained by replacing (3) in ė2 = J2q̇:

ė2 − J2q̇
∗
1 = J2Pq̇2 (4)

In that case, the differential link is the projected Jacobian

G = J2P, and the drift is µ = −J2q̇
∗
1 . The control input q̇∗2

is obtained once more by numerical inversion [28], [1]:

q̇∗2 = (J2P)+(ė2 − J2q̇
∗) + P2q̇3 (5)

where P2 is the projector into the null space of J2P . The

same scheme can be reproduced iteratively to account for

any number of tasks until Pi is null (no more redundancy).

D. Inverse dynamics

In dynamics, the input of the system is the robot motor

torques u = τ . The state of the robot is the pair (q, q̇) which

is linked to the pair (e, ė) in the task space, and the reference

behaviour is homogeneous to an acceleration denoted as ë.

Contrarily to the kinematic case, the mapping to the control

input is obtained in two stages. First, we set the dynamic

equation of the system, typically:

Aq̈ + b = τ (6)

where A is the generalized inertia matrix of the system,

q̈ is the robot configuration second derivative, and b is

the dynamic drift (typically, gravity torques and Coriolis

accelerations). Second, from the derivation of the kinematic

mapping ė = Jq̇, we get:

Jq̈ + J̇q̇ = ë (7)

Multiplying (1) by JA−1, the differential link between τ and

ë is obtained:

ë − J̇q̇ + JA−1b = JA−1τ (8)

This last equation corresponds to the template (2) with G =
JA−1 and µ = −J̇q̇+JA−1b. The inverse dynamics control

law is then directly obtained by inverting G. To fit with the

dynamics of the system, the use of the generalized inverse

operator .#A weighted by A was proposed in [13].1 This

generalized inverse gives the least norm ||τ ||A =
√

τ⊤A−1τ ,

which corresponds to a minimization of the acceleration

pseudo-energy q̈⊤Aq̈ [23]. Introducing τ2 as the torque

devoted to a secondary objective we get:

τ∗ = τ∗1 + Pτ2 (9)

where, τ∗1 = (JA−1)#A(ë − J̇q̇ + JA−1b) and P is the

projector into the null space of JA−1.

E. Projected inverse dynamics

Similarly as before, the differential link is obtained by

replacing τ∗ in the robot dynamics equation.

ë2 + µ2 = G2τ2 (10)

with µ2 = −J̇2q̇ + J2A
−1b− J2A

−1τ∗1 and G2 = J2A
−1P.

The same weighted inverse is used to inverse G2 [26]. As

before, any number of tasks can be added iteratively until

the projector becomes null.

F. Inverse dynamics with rigid contacts

When the robot is in contact with the environment, the

dynamic equation of the system becomes:

Aq̈ + b + J⊤c fc = τ (11)

where Jc = ∂xc

∂q
is the Jacobian matrix of the contact points

xc and fc are the respective contact forces. The rigid contact

implies that there is no motion of the robot contact points:

ẋc = 0, ẍc = 0 ⇒ Jcq̈ = −J̇cq̇ (12)

The torques are then linked to the forces with no dependency

on the acceleration by multiplying (11) by JcA
−1:

JcA
−1J⊤c fc = JcA

−1(τ − b) + J̇cq̇ (13)

In the basic case, JcA
−1J⊤c is invertible, and fc is de-

duced [14]:

fc = (J⊤c )#A−1

(τ − b) + (JcA
−1J⊤c )−1J̇cq̇ (14)

1The weighted generalized inverse of a matrix X by a weight W takes
one of the following forms:

• if X is full row rank: X
#W = WX

⊤(XWX
⊤)−1

• if X is full column rank: X
#W = (X⊤WX)−1

X
⊤

W



since J⊤c is a full column rank matrix. The obtained force

can be reinjected in (11), to obtain the force-free dynamic

equation:

Aq̈ + bp = Pcτ (15)

where Pc = (I − Jc
#A−1

Jc)
⊤ = (I − (JcA

−1)#AJcA
−1)

is the projection operator of the contact, and bp = Pcb +
J⊤c (JcA

−1J⊤c )−1J̇cq̇. A more complete solution for dealing

with redundant contact can be found in [27]. As previously,

the differential link between the task and the torque input is

expressed through the intermediate variable q̈:

ë − J̇q̇ + JA−1bp = JA−1Pcτ (16)

In that case, an interesting task is to control the force fc to

a reference value f∗c . Using e = xc, and setting ë∗ = Λcf
∗
c ,

with Λc = (JcA
−1J⊤c )−1 the apparent mass matrix at the

contact point, it can be shown that fc = f∗c .

G. Generic actuators

In the generic case, the system actuation is given by:

Aq̈ + b + J⊤c fc = J⊤a τ (17)

where Ja gives the link between the motors and the motion.

The case of the robot is a simplification of this more generic

case, since the motors control the joints. Two cases are of

particular interest for us. First, the case of the humanoid

robot or avatar, where some of the state parameters are not

actuated and Ja is a selection matrix. Second, the case of the

cable-driven actuation (typically the human body), where Ja

gives the map of the forces distribution. The task differential

link is obtained as before with G = JA−1PcJ
⊤
a . When the

rank of Ja is smaller than the configuration of the robot, the

system is under-actuated. However, it may have no direct

impact on the task, since G may stay full rank independently

of Ja. But, when the task space is equal to the configuration

space, G = A−1PcJ
⊤
a has at most the rank of Ja and is thus

rank deficient.

III. CASE OF THE FREE-FLOATING DYNAMICS

In this section, we show the equivalence of the gen-

eralization proposed above, with the work on humanoid

robot control using inverse dynamics. The humanoid robot

dynamic model can be written as:

A

[

v̇b

q̈

]

+ b + J⊤c fc = S⊤τ (18)

where S = [0 I] is the matrix selecting the actuated joints

and vb is the velocity of the free floating robot base.

A. Control scheme from [26]

We first recall the control law for such a system proposed

in [26]. In this work, an equivalent Jacobian J⋆ is derived

from the supporting-contact constraint, that acts as a classi-

cal Jacobian, but respects naturally the contact constraint. As

mentioned in (12), the velocity constraint on the supporting

contact implies that the robot velocities (base and joint

together) have to belong to the null space of the support

Jacobian. Given any velocity (vb, q̇)
⊤, the closest acceptable

velocity (v∗b , q̇∗)⊤, is given by:
[

v⋆
b

q̇⋆

]

= P⊤c

[

vb

q̇

]

(19)

Referring to [26], the task velocities can be expressed in

terms of articulated joint velocities as:

ė = J

[

v⋆
b

q̇⋆

]

= J(SP⊤c )
#

q̇⋆ (20)

In this last expression, we can recognize a classical Jacobian,

relying only on the actuated parameters. This equivalent

Jacobian is denoted by:

J⋆ = J(SP⊤c )
#

The chosen generalized inverse for SP⊤c is the A−1-

weighted inverse. It is contact consistent, which means that

it can now be used directly, without any care to the contact

or to the under-actuation. Indeed, the torques that perform

the reference task can then simply be written as a transpose

of the consistent Jacobian [26]:

τ = J⋆⊤F (21)

where

F = Λt|cë
∗ + µt|c

and














Λt|c = (Jt|cA
−1J⊤

t|c)
−1

Jt|c = JP⊤c

µt|c = J
#

t|c

⊤
b− (Λt|cJ̇t|s − J

#

t|c

⊤
J⊤c ΛcJ̇c)

[

vb

q̇

]

where the subscript t|c indicates that the task space quan-

tities are projected in the space consistent with the contact

constraints.

B. Proof of the equivalence with the proposed generic

scheme

As SP⊤c is full row rank, by using the above expressions
of J∗ and F and considering only the task corresponding
torque part, the torque of (21) can be rewritten:

τref = (SP
⊤

c A
−1

PcS
⊤)−1

SP
⊤

c A
−1

PcJ
⊤(JP

⊤

c A
−1

PcJ
⊤)−1

ë
∗

On the other hand, the scheme proposed in Section II can

be written:

τ = (JA−1PcS
⊤)#W ë∗ (22)

with W a user-defined weight matrix. Developing the

weighted inverse gives:

τ = WSP⊤c A−1J⊤(JA−1PcS
⊤WSP⊤c A−1J⊤)−1ë∗

(23)

Choosing W = (SA−1PcS
⊤)−1 = (SP⊤c A−1PcS

⊤)−1;

since A−1Pc = P⊤c A−1, we only need to demonstrate that:

JA−1PcS
⊤(SA−1PcS

⊤)−1SP⊤c A−1J⊤ = (JP⊤c A−1PcJ
⊤)

Applying the A−1 weighted inverse to SP⊤c , the previous

equation reduces to:

J(SP⊤c )#A−1

SP⊤c A−1J⊤ = (JP⊤c A−1PcJ
⊤) (24)



It has also been demonstrated [26] that (SP⊤c )#SP⊤c = P⊤c .

Finally:

JP⊤c A−1J⊤ = (JP⊤c A−1PcJ
⊤) (25)

because P⊤c A−1 = P⊤c A−1Pc [26].

IV. INEQUALITIES IN THE LOOP

So far, we only considered tasks defined by equality

constraints ė = ė∗. However, many objective functions

describing a motion have to be defined by inequalities. Typi-

cally, they are joint limits, obstacles, balance constraint, vis-

ibility of landmark in the field of view or behind occlusion,

actuator limits, etc. A very well-known solution to handle

such constraints is to define a potential function [12], whose

gradient acts as a virtual force that drives the robot away

from the obstacles [19], or that is used to weight the Jacobian

inverse to penalize the motion toward the obstacle [3]. These

solutions take advantage of the null space of the main tasks.

However, there are two main limitations. First, the potential

functions can only be defined at the configuration level and

cannot be used to cope with constraints such as actuator

limits. Second, the potential functions can only be taken into

account when the robot is redundant with respect to the main

task. When there is not enough redundancy to account for

the avoidance field, solutions have been proposed to remove

some parts of the main task [16] or to add properly-chosen

equality constraints at the top-priority level to prevent any

further motion [26], [24]. However, such solutions are very

costly in the neighborhood of several boundaries [17].

A. Quadratic programming

It has been proposed in [11] to replace the pseudo inverses

used in inverse kinematics by a quadratic solver. Since

quadratic solvers are able to handle indifferently equalities

and inequalities, it is then possible to have both inequalities

and equalities in the task definition. The reference part is

then rewritten:

ė∗ ≤ ė ≤ ė
∗

(26)

with ė∗ = ė
∗

in the case of equalities, and ė∗ = −∞ or

ė
∗

= +∞ to handle single-bounded constraints. Most of

the time, unilateral constraints have priority over any other

constraints: typically, joint limits and avoidance would be put

above a grasping task. However to handle less-common cases

(like insuring visibility when performing a visually-guided

grasping), the method proposed in [11] was generalized to

cope with a hierarchy of tasks, including possibly inequalities

at any level. In [5], it was shown that this approach was

applicable at low computation cost on full-size systems such

as humanoid robots.

1) One task, equalities only: When considering a single

task, the inversion (2) corresponds to the optimal solution of

the problem:

min
u
||Gu− ė∗ − µ||2 (27)

2) One task, inequalities and equalities together: It is

straightforward to introduce inequality constraints into a

quadratic program. However, this would introduce also a de-

facto hierarchy between the inequality part and the equalities.

It was then proposed [11], [9] to rely on slack variables. The

quadratic program for both equalities and inequalities is then

written:
min
u,w

||w||2

s.t. ė∗ ≤ Gu− µ + w ≤ ė
∗ (28)

with ė∗ = ė
∗
for the equality parts of the task. The effect

of the slack variable is to relax the parts of the task that are

not feasible, and therefore to insure that the task is fulfilled

at the best (in the sense of the norm of the rest).

3) Two tasks with priority: When the first task is solved,

it was proposed [11] to use the optimal slack denoted by w∗

to formalize the hierarchy with a secondary task. After the

resolution of the first quadratic program, a secondary task is

solved by

min
u,w2

||w2||2

s.t. ė∗ ≤ Gu− µ + w∗ ≤ ė
∗

ė∗2 ≤ G2u− µ2 + w2 ≤ ė
∗
2

(29)

In this secondary program, w∗ is no more a variable. Indeed,

the first task is now priority, and should be solved at least as

accurately as done by the first program. If the two tasks are

not compatible, the second task will be relaxed, and then less

accurately executed, thanks to its slack variable. Similarly,

slack variables can be introduced iteratively for any number

of tasks. In [5], this cascade of quadratic program was

performed by means of a dedicated optimization solver. It

was possible to resolve a set of 4 tasks, for a total of 45

constraints on a 36-degrees of freedom humanoid robot in

3ms. In the sequel, we will use the generalization introduced

in Section II to apply the same dedicated solver for a

hierarchy of tasks while taking into account the full dynamics

of the robot.

B. Weighted inverse

The previous quadratic program gives a least square solu-

tion which corresponds to a least norm for both the parameter

||u|| and the rest of the optimization ||ė∗+µ−Gu||. However,

as shown earlier, a norm for a specific weight is preferred

for the dynamic inverse. It is easy to show that a weighting

of the inverse can be equivalently obtained by adding the

following constraints at the lowest priority:

Gw = ė∗w + µw

with Gw =
√

W, ė∗w = 0, µw = 0
(30)

with
√

W any square root of the weight W (for example, a

Cholesky decomposition of W ). Indeed, the quadratic rest of

such a task is u⊤Wu = ||u||2W . The weighting can then be

obtained by adding this quadratic program at the last stage:

min
u

u⊤Wu

s.t. ∀i, ė∗i ≤ Giu− µi + w∗i ≤ ė
∗
i

(31)



V. EXPERIMENTS

Four different tasks were used during the experiments. The

first one, denoted by eq, is a regulation of the robot posture.

The task space is the actuated-joint space, and the desired

acceleration in this space is a proportional derivative (PD) to

a given reference position at zero velocity:

q̈∗ = −λP (q − q∗)− λD q̇ (32)

In that case, the Jacobian is simply the selection matrix S.

The second task erh is a regulation in position and orientation

of one body of the robot (for example the right hand, or the

head). The reference acceleration is also a PD on the robot:

ẍ∗ = −λP

[

p

rθ

]

− λDẋ (33)

where ẋ is the velocity of the controlled point in its own

frame, and

[

p

rθ

]

is the gap between the current configuration

of the controlled body and the desired value. The third task

ejl is the constraint of joint limits in the actuated-joint space.

The task is defined by a second order Euler integration:

q ≤ q + ∆T q̇ +
∆T 2

2
q̈ ≤ q (34)

where q and q̇ are known before the resolution. Finally,

the last task ebal ensures an immediate balance control, by

preventing the contact points from leaving the ground. The

task space is the space of forces normal to the ground at the

contact, and the task is to prevent them from vanishing:

f⊥ = S⊥Jc
#⊤(S⊤τ − b) ≤ ǫ (35)

where f⊥ are the normal components of the contact forces fc,

S⊥ is the matrix that allows to select the corresponding lines

of the contact Jacobian Jc, and the link with τ is defined by

(14). The parameter ǫ is used to ensure a security margin to

cope with perturbations. We set ǫ = 10N in the experiments.

This last constraint is equivalent to the well-known ZMP

constraint [29], [10] when all the contact points are planar

and horizontal. Indeed, the ZMP is defined as the barycenter

of the contact points weighted by their normal forces:

z =

∑

i∈c f i
⊥pi

c
∑

i∈c f i
⊥

(36)

The ZMP constraint states that the point z must stay inside

the convex hull of the contact points. In the case of a

barycenter, this is equivalent to say that all the weights

must be positive. Since we do not own a torque-feedback

controlled humanoid robot, the experiments were performed

in simulation. We used the dynamic simulator AMELIF [7]

that computes the direct dynamics from the current config-

uration and motor torques, resolves the collision and finally

integrates the result. The control law was integrated in the

control framework SoT [18], using the dedicated inequalities

solver developed for inverse kinematics [5]. We reproduce a

well known experiment of physiology: the subject is asked

to follow an oscillatory reference with the legs. When the

oscillations frequency or amplitude increases, the required

acceleration increases, until the natural contact constraint

is saturated. An opposite oscillation then naturally appears

on the chest to counteract the oscillation of the legs, and

preserve the constraint. When put on a force sensor, the

subject’s ZMP was shown to present a saturation at the

maximum of the amplitude. The robot is standing on one

leg. An oscillatory acceleration is given as reference, that

requires the whole body to remain static, except for one

joint of the support leg. The amplitude of the acceleration

is then increased until the support constraint saturates. To

prove the generality of the proposed balance constraint (with

opposition for example to the ZMP constraint), the robot was

placed on a sloping ground, rotated by an angle of 10deg to

the skyline around the pitch axis of the robot. The robot

configuration at the maximum of the oscillation is shown

in Fig. 1. The robot is bending on its left, with the hip

roll axis moving. The balance-constraint saturation comes

both from the bending (center of mass oustside the support

polygon), and from the acceleration in the opposite direction

required to come back to the rest position. Fig. 2 shows

the normal forces at the four corners of the foot during the

motion. The minimal acceptable force is set to 10N . Around

iteration 1000, the force corresponding to the front right of

the foot saturates. This corresponds to the time of maximal

acceleration. Fig. 3 shows the acceleration of the hip joint

(roll) and chest joint (yaw). The chest joint is required to

remain fixed. However, when the contact constraint saturates,

this part of the task becomes infeasible. Therefore, the chest

is used to compensate for the motion of the hip, and prevent

the foot from leaving the ground. When the acceleration of

the hip decreases, the contact constraint leaves the saturation

area, and the chest comes back to a zero acceleration.

VI. CONCLUSION

Based on a normalization of both the inverse-kinematics

and inverse-dynamics control schemes, a solution was pro-

posed to use the hierarchy of quadratic problems to generate

dynamic movements of a humanoid robot. We proved that the

given solution was generic enough to use existing inverse-

dynamics schemes. The proposed schemes were then applied

to control the robot motion while keeping its dynamic

balance on a sloping ground. Many types of constraints and

tasks can be taken into account within this framework. Future

works will focus on the integration of the most classical ones:

obstacles and occlusion avoidance, and their integration to

generate more complex motions.
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