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This article proposes a method based on wavelet transform
and neural networks for relating pupillary behavior to psycholog-
ical stress. The proposed method was tested by recording pupil
diameter and electrodermal activity during a simulated driving
task. Self-report measures were also collected. Participants per-
formed a baseline run with the driving task only, followed by
three stress runs where they were required to perform the driv-
ing task along with sound alerts, the presence of two human
evaluators, and both. Self-reports and pupil diameter success-
fully indexed stress manipulation, and significant correlations were
found between these measures. However, electrodermal activity did
not vary accordingly. After training, the four-way parallel neu-
ral network classifier could guess whether a given unknown pupil
diameter signal came from one of the four experimental trials
with 79.2% precision. The present study shows that pupil diameter
signal has good discriminating power for stress detection.

1. INTRODUCTION
Stress detection and measurement are important issues in

several human–computer interaction domains such as Affective
Computing, Adaptive Automation, and Ambient Intelligence.
In general, researchers and system designers seek to esti-
mate the psychological state of operators in order to adapt or
redesign the working environment accordingly (Sauter, 1991).
The primary goal of such adaptation is to enhance overall
system performance, trying to reduce workers’ psychophysi-
cal detriment (e.g., Czaja & Sharit, 1993; Dennerlein, Becker,
Johnson, Reynolds, & Picard, 2003; Fujigaki & Mori, 1997).
One key aspect of stress measurement concerns the recording
of physiological parameters, which are known to be modulated
by the autonomic nervous system (ANS). However, despite
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technological progress in biological signal acquisition, infer-
ring psychological significance from physiological signals is
still a major challenge as biological signal analysis has pro-
gressed less intensively (Cacioppo & Tassinary, 1990), and it
can be stated that affect recognition has not reached a satisfying
level yet (Mauss & Robinson, 2009; Van den Broek, Janssen, &
Westerink, 2009).

This study describes a new method for stress measurement
using pupil diameter (PD) signal analysis. It is well known that
pupillometry is a reliable tool for studying cognitive and emo-
tional processes (Granholm & Steinhauer, 2004; Kuhlmann &
Böttcher, 1999). The pupil is the aperture of the iris, the pig-
mented structure containing two antagonistic muscle groups—
the sphincter and the dilator muscles. The former constrict the
pupil; the latter dilate the pupil. The human pupil is known to
reflect the activity of the ANS: In particular, it has been shown
that the pupil enlarges (mydriasis) as a consequence of men-
tal effort exertion and various sources of psychological stress
(see Beatty, 1982; Beatty & Lucero-Wagoner, 2000; Bradley,
Miccoli, Escrig, & Lang, 2008; Goldwater, 1972; Partala &
Surakka, 2003; Vo et al., 2008). After dilation, the pupil
naturally tends to constrict (myosis) back to previous diame-
ter. Thus, we formulated the hypothesis that overall pupillary
activity (i.e., PD oscillations) should be more intense under
stressful conditions: Phasic changes should follow stressful
events. Moreover, mean signal amplitude should also increase,
indicating higher tonic level.

However, the use of PD as a dependent variable in psy-
chological studies has important methodological implications.
The main concern stems from the primary function of the
pupil itself, that is, the regulation of the amount of light that
enters the retina. The so-called light reflex occurs to avoid
overexposure and retinal damage (Loewenfeld & Lowenstein,
1993, p. 136). Such a constriction is rapid (latency within
250 ms from stimulus onset) and proportional to stimulus
intensity, and it is affected by individual differences. The
return to prestimulus diameter (dark reflex) is much slower



(see Beatty, 1986; Bergamin & Kardon, 2003; Ellis, 1981;
Lanting et al., 1990). The near reflex (or accommodation
response), that is, a near object requiring foveal focusing,
causes pupil constriction, accompanied by eyes convergence
and lenses curvature. Although this phenomena could regu-
late human pupil size from 1 up to 10 mm, very small (up
to 0.01 mm) pupillary dilations can be elicited by various
psychological manipulations (see Beatty & Lucero-Wagoner,
2000): The psychosensory reflex denotes pupil dilations evoked
by sensory stimulation, whether auditory, tactile, gustatory,
olfactory, or noxious. Beatty (1986) pointed out that this phe-
nomenon is a sort of bridge between the well-understood light
and near reflexes and the more complex pupillary variations
associated with cognitive processing. Many other factors can
lead to pupil diameter variations: Janisse (1977) identified
23 sources of pupil variation, to which the effect of verbaliza-
tion (Bernick & Oberlander, 1968) could be added. Therefore,
extreme care should be taken to control as many potential
bias sources as possible. Among these, illumination requires
particular attention, although most studies fail to report such
measurements.

Bearing these considerations in mind, there is a substantial
interest and potential benefit in using PD for stress detection in
applied studies: Unlike other physiological measures (e.g., car-
diovascular activity, electrodermal activity, electroencephalog-
raphy, etc.), the pupil can be measured unobtrusively. With
modern devices, one camera is sufficient for pupil tracking, and
there is no need for physical contact. Remote eye trackers have
such properties, and recent research has demonstrated their suit-
ability for pupillometry studies (Klingner, Kumar, & Hanrahan,
2008; Palinko & Kun, 2010, 2011; Palinko, Kun, Shyrokov, &
Heeman, 2012). Besides PD, other eye-movement metrics (e.g.,
saccade parameters) are known to reflect stress-related varia-
tions (see Benedetto, Pedrotti, & Bridgeman, 2011; Di Stasi,
Catena, Cañas, Macknik, & Martinez-Conde, 2013). Efforts are
also being made to unobtrusively measure skin temperature
and other ANS measures with imaging techniques (see, e.g.,
Nhan & Chau, 2010; Shastri, Merla, Tsiamyrtzis, & Pavlidis,
2009).

The present study concerns stress detection in a simu-
lated driving task. With the aim of validating our results
by means of triangulation (Van den Broek et al., 2009), we
recorded—besides PD—participants’ self-reported stress levels
and electrodermal activity (EDA; see section 3.5), a sensi-
tive psychophysiological indicator of stress (Boucsein, 2012,
p. 459).

The article is organized as follows: Existing PD data anal-
ysis techniques are introduced in section 1.1. Experimental
setup and hypotheses of the present study are described
in section 2. Section 3 describes the whole process of
data acquisition and analysis. Statistical results are presented
in section 4. The framework of automatic stress detection
based on Wavelet-Neural Network is outlined in section 5:
Wavelet multiresolution decomposition and Neural Networks

are used for feature extraction and classification, respectively.
Classification results and future challenges are discussed in
section 6.

1.1. Methods for PD Data Analysis
Over the last decades, several methods have been used for

analyzing PD data. The signals coming from PD recordings
have been analyzed in both the time and frequency domains:
State-of-the art is briefly reviewed in this section. Regardless of
the method employed for the analysis, eye-blink artifacts repre-
sent a common problem in video-pupillography: Most systems
measure pupil size upon eye image processing (see Holmqvist
et al., 2010; Wyatt, 2010). During eye-blinks the lid covers
the eye, and the camera cannot detect the pupil. Because eye-
tracking systems deal with this problem (loss of information)
in a variety of ways (Gitelman, 2002), it is impossible to create
a universal procedure to recover missing information. Several
algorithms for eye-blink detection have been proposed, by both
researchers directly interested in the eye-blink phenomenon and
researchers faced with eye-blink artifacts (Pedrotti, Lei, Dzaack,
& Rötting, 2011). Once blink onset and offset have been iden-
tified, missing/corrupted pupil data are usually estimated using
linear (or cubic) interpolation, or even more sophisticated tech-
niques such as moving average or support vector regression (see
Nakayama, Yamamoto, & Kobayashi, 2012). Overall, pupil data
preprocessing is necessary, because it is known that eye-blink
artifacts have an impact on analysis results, both in the time and
frequency domains (Nakayama, 2006; Nakayama & Shimizu,
2002, 2004).

The Task-Evoked Pupillary Response (TEPR) is a useful tool
for PD signal analysis in the time domain. The main contribu-
tions on TEPR come from cognitive psychology. The rationale
underlying this method is the same as the event-related poten-
tial (ERP) in electroencephalography (EEG) measurements.
Because the magnitude of psychologically induced pupillary
responses can be in the order of tenths—even hundredths—
of millimeters, we can be more confident in associating such
responses to a given stimulus if we know the exact time point
of stimulus appearance. Like for event-related potentials, a
time window (e.g., 500 ms) before stimulus onset is used as
baseline, that is, the average PD x̄ for the prestimulus time win-
dow is calculated. Subsequently, x̄ is subtracted from each data
point in the poststimulus time window (e.g., 5 s after stimulus
onset). The resulting waveform—usually an average of sev-
eral measurements (e.g., Figure 3A)—indicates the pupillary
reaction to the stimulus, and parameters such as peak dila-
tion and latency to the peak can be calculated. Beatty (1982)
demonstrated that such parameters are sensitive indicators of
processing load for different cognitive tasks. Although this tech-
nique is appropriate for laboratory studies implying short and
simple tasks, several constraints might undermine its applica-
tion in more complex and dynamic situations. Klingner (2010)
introduced the fixation-aligned pupillary response averaging, in
which eye fixations—instead of experimental stimuli—are used



to temporally align PD time windows. In addition, TEPRs have
been analyzed using principal component analysis and inde-
pendent component analysis in an attempt to reduce the large
number of time points to a smaller set—usually two or three
factors (see Granholm & Verney, 2004; Jainta & Baccino, 2010;
Kuchinke, Vo, Hofmann, & Jacobs, 2007; Verney, Granholm, &
Marshall, 2004).

To the authors’ knowledge, Lüdtke, Wilhelm, Adler,
Schaeffel, and Wilhelm (1998) first introduced the use of Fast
Fourier Transform for pupil signal analysis in the frequency
domain. Analyzing a signal in such domain allows to know,
for example, whether significant changes happen within spe-
cific frequency bands. With the aim of detecting low-frequency
fatigue-related pupillary oscillations, Lüdtke and colleagues
evaluated the mean value of the amplitude spectrum for all
the frequencies at 0.8Hz or lower. Nakayama and Shimizu
(2004) found that the power spectrum density of pupil sig-
nals increases within certain band intervals (0.1–0.5 Hz and
1.6–3.5Hz) as a function of cognitive task difficulty. Lew, Dyre,
Werner, Wotring, and Tran (2008) analyzed PD signals using
the Short-Time Fourier Transform, which allows to extract the
frequency information yet preserving the time domain.

One promising technique for reducing data complexity in
recorded PD signals is wavelet analysis. Marshall (2000, 2002)
first proposed the use of wavelet analysis for analyzing PD time
series, and associated the occurrence of high-frequency varia-
tions (faster than 20 ms, i.e., > 50Hz) to instances of cognitive
load. Since then, to our knowledge, few studies have applied
wavelet transforms to PD signals: Shi et al. (2006) analyzed
pupillary behavior in relation to a user’s visual ability; Pinzon-
Morales and Hirata (2012) evaluated PD oscillations to estimate
sleepiness levels. In the present study, we used the Discrete
Wavelet Transform (DWT) as a tool to extract relevant sig-
nal features (i.e., low-frequency approximation), discarding the
noise that appears in the high-frequency part of the signal (see
section 3.4.4). In this respect, our approach is opposite to the
one proposed by Marshall.

2. METHOD

2.1. Stimuli
Our rationale for stress manipulation implies the repeated

performance of a simple driving task, to which we added

different external stressful stimuli (see section 2.3). The proto-
col was approved by the French National Board of Informatics
and Freedom (declaration n. 0727429; http://www.cnil.fr).
Participants performed a simulated Lane Change Test (LCT),
which consists of driving on a traffic-free straight three-lane
road (see Figure 1A), changing lanes according to the infor-
mation appearing on two identical road signs displayed concur-
rently every 150 m, on both sides of the road (ISO, 2010; Minin,
Benedetto, Pedrotti, Re, & Montanari, 2011; Mitsopoulos-
Rubens, Trotter, & Lenné, 2011).

The driving simulator consisted of seat (Playseat Evolution),
steering wheel and pedals (Logitech G25, no gear-shift was
used), and a 32-in. LCD monitor (Thomson 32LB220B4,
70 × 39cm, 1366 × 768px). The LCT software (http://www.
corys.com) limited the maximum speed at 60 km/hr, so that par-
ticipants could maintain this speed by simple flat-out. Each trial
consisted of 18 lane changes, accomplished over 180 s (ISO,
2010). The average distance between participant and screen was
130 cm.

2.2. Participants
Thirty-three healthy people (all with valid driving license)

participated in the experiment. Seventeen people were allocated
to the experimental group, that is, the group that underwent
stress manipulation, and the remaining 16 were assigned to the
control group (see section 2.3). The experimental group con-
tained nine women (M age = 38 years, SD = 15) and eight men
(M age = 43 years, SD = 9). Eight women (M age = 42 years,
SD = 8) and eight men (M age = 41 years, SD = 13) were
assigned to the control group. All participants read and signed
an informed consent and received a reward for every hour spent
inside the laboratory. Participants were informed that they could
leave the experiment at any time and for any reason. One par-
ticipant from the control group quit the experiment during t2
because of simulator sickness.

Participants’ stress trait was measured with the State-Trait
Anxiety Inventory (STAY-B; Spielberger, Gorsuch, Lushene,
Vagg, & Jacobs, 1983, translated in French by Schweitzer &
Paulhan, 1990). To disclose possible social desirable respond-
ing, we asked participants to fill in the Social Desirability
Scale (DS36; Tournois, Mesnil, & Kop, 2000). The experi-
mental and control groups did not differ in terms of STAY-B

FIG. 1. (A) Lane Change Test scenario. (B) Experimental design.



scores, t(30) = 1.03, ns, or on DS36 scores, t(30) = 0.1, ns, for
self-deception, and t(30) = 0.23, ns, for other-deception.

2.3. Experimental Design and Procedure
Upon arrival at the lab, participants sat in a quiet room

wherein they installed the electrodes for electrodermal measure-
ment on their forehead (see section 3.5), read and signed an
informed consent, and filled in the STAY-B and DS36 question-
naires (see section 2.2). Thereafter, participants moved to the
simulation room, where they received onscreen instructions for
the LCT (see ISO, 2010, Annex A) and performed a 1-min LCT
training to disclose any potential issue (misunderstandings,
simulator sickness, technical equipment, etc.).

Before beginning the LCT sessions, we recorded base-
line physiological signals during a 90-s rest period (t0) in
which participants looked at a static picture of the LCT sce-
nario. Subsequently, participants carried out four LCT trials
(Figure 1B). The control group performed the four driving trials
without any disturbing factor. The experimental group under-
went two types of stressors, announced by means of screen
instructions displayed before the LCT trial started.

Before the second trial (t2), participants were informed that
they would hear a sound if their driving behavior was not appro-
priate (i.e., beginning a lane change as soon as the symbols
appear on a sign, but not before; see ISO, 2010, Annex A).
Indeed, a sound was presented every 20 s, regardless of driving
behavior. To avoid excessive habituation, three different sounds
were used: A 8.6 Hz white noise, a police siren, and a 4 KHz
tone (.wav files are available from the corresponding author).
All sounds lasted 1 s, and they were presented in a pseudoran-
dom order: each sound was presented three times, totaling nine
sound presentations in the second trial.

Before the third trial (t3), participants were informed that
their driving performance would have been evaluated by two
experts. After this announcement, two experimenters entered
the test room. These “fake” experimenters (one man and one
woman) wore white lab coats, they held a copybook which they
used for taking notes, and they stood on the participant’s right
(90◦ of visual angle) so that their presence could be perceived
without disturbing the execution of the driving task. Moreover,
a previously floor-pointed camera was turned toward the partici-
pant, so that she or he would believe she or he was being filmed.
No stressful sounds were presented during the third trial.

Before the fourth trial (t4), participants were informed that
they would have been evaluated by the experimenters and
alerted with sounds in case of incorrect driving behavior.

After each LCT trial, participants reported their perceived
stress level (see section 3.3). Each trial lasted 3 min.

2.4. Hypotheses
For the experimental group, stress level should be lowest at

t1—where simple LCT performance is demanded—and high-
est at t4, where two concurrent stressors are associated with the

LCT task. We cannot predict whether stress level will signifi-
cantly differ between t2 and t3, that is, we do not know a priori
whether alert sounds are more stressful than observers (or vice
versa). What we know is that they are two different types of
stressors, and they could be then classified.

For the control group, we expect stress level to significantly
decrease from t1 to t4 as an effect of habituation.

The two groups should exhibit the same stress level at t1, as
they bear exactly the same conditions until that point. We expect
to find significant between-groups differences at t2, t3, t4.

We expect PD changes to reflect increased stress levels for
the experimental group and decreased stress levels for the con-
trol group. Electrodermal and self-report measures are expected
to correlate with pupillary behavior measures.

3. DATA ACQUISITION AND ANALYSIS

3.1. Apparatus Synchronization
The equipment used in the present study includes an eye

tracker (RED 4, http://www.smivision.com) for PD measure-
ment, an A/D converter (MP36R, http://www.biopac.com)
for measuring illumination and EDA, a PC for stimulus
(LCT) presentation, and a PC running Matlab (http://www.
mathworks.com) for synchronization and auditory stimulus
delivery (psychtoolbox.org; Brainard, 1997; Kleiner, Brainard,
& Pelli, 2007; Pelli, 1997). All the systems were connected on
a local area network, and synchronization was achieved using a
combination of custom software written in Matlab and free soft-
ware (synergy-foss.org). Each single experimental event (e.g.,
beginning of a LCT trial, presentation of a LCT sign, presenta-
tion of a sound, etc.) was marked—via TCP/IP messages—in
the eye tracker’s and A/D converter’s log files for conjoint
offline analysis. A detailed technical description goes beyond
the scope of the present article, and interested readers may refer
to the corresponding author for further information.

3.2. Illumination
Illumination was measured with an Extech 403125 luxmeter

(http://www.extech.com). With the aim of recording the amount
of light that impacted on the participant’ s eyes, the light sensor
was attached to a ceiling-mounted holder, placed 5 cm above
the participant’s head, laterally centered with respect to her
or his nose. The luxmeter was connected to a Biopac MP36R
A/D converter which stored illumination values in lux at 50Hz
sampling rate.

3.3. Visual Analog Scale
After each LCT trial (t1, t2, t3, t4) participants rated their per-

ceived stress level using three on-screen visual analog scales
(VASs). The VAS ranged from 0 (not at all) to 100 (maximum).
The three dimensions were stress (“How much stress were you
feeling during task performance?”), anxiety (“How much anxi-
ety were you feeling during task performance?”), and avoidance



TABLE 1
Correlations Between VAS Dimensions

anxiety t1 anxiety t2 anxiety t3 anxiety t4 avoidance t1 avoidance t2 avoidance t3 avoidance t4

stress t1 .93∗∗ .13
stress t2 .87∗∗ .76∗∗
stress t3 .95∗∗ .51∗∗
stress t4 .61∗∗ .74∗∗
anxiety t1 .18
anxiety t2 .66∗∗
anxiety t3 .52∗∗
anxiety t4 .37∗

Note. N = 32 (one participant quit the experiment after t2 because of simulator sickness).
∗p < .05. ∗∗p < .005.

(“During task performance, to what extent were you willing to
leave the situation?”). Correlation analysis revealed strong cor-
relations between the three dimensions, except between stress t1
and avoidance t1, and between anxiety t1 and avoidance t1 (see
Table 1).

3.4. Pupil Diameter
PD was recorded at 50Hz sampling rate using a SMI RED

4 remote video eye tracker. This system measures pupil size
and eye movements by means of pupil and corneal reflec-
tion tracking (see Holmqvist et al., 2010), and has a precision
of 0.01 mm for PD. PD signal was treated according to the
following procedure:

Step 1. Preprocessing: Eye-blink artifacts were identified and
replaced by linear interpolation (see section 3.4.1).

Step 2. TEPRs extraction: Pupillary responses following sound
presentations (in t2 and t4) were evaluated to confirm the
existence of pupillary reactions to stressful stimuli (see
section 3.4.2).

Step 3. Normalization: PD values in t1, t2, t3, t4 were normalized
for each participant, according to her or his average PD at
rest (see section 3.4.3).

Step 4. Analysis of variance (ANOVA): We tested the hypoth-
esis that our stress manipulation had an effect on average
PD (see section 4.2).

Step 5. Signal approximation extraction: The normalized PD
signals from t1, t2, t3, t4 were transformed by means of
DWT. The Haar wavelet was used to decompose and
transfer the signal into multiresolution representation (see
section 3.4.4).

Step 6. Classification with neural networks: PD signal approx-
imation was used as an input vector (feature) during the
training and test stages (see section 5).

The first step (Preprocessing) is generally necessary regardless
of the aim of any study. Concerning our study, we consider
steps 2 and 4 (TEPRs extraction, ANOVA) mandatory for

theoretically justifying the use of PD as a stress index, as
they demonstrate the sensitivity of PD to stress manipulations.
Normalization (step 3) is necessary because each person has
her or his own PD at rest. Steps 5 and 6 (Signal approxima-
tion extraction and Classification) are an attempt to use PD for
automatic stress measurement in applied contexts. With the aim
of being able to measure stress levels over relatively short peri-
ods, we extracted and analyzed (in steps 4, 5, and 6) only the
first 80s of PD data from each trial.

3.4.1. Pupil diameter preprocessing. The RED 4 provides
two types of pupil measurement: (a) in pixel and (b) in mil-
limeters (Figure 2). In the present study, millimeter values were
preferred for PD signal analysis because they are calculated
taking into account the distance between participant and cam-
era, providing more reliable data than raw pixel measurement.
Nonetheless, the RED 4 outputs useful information for blink
detection in the pixel data. When a blink occurs, zeros—along
with other physiologically impossible values—are recorded in
the pixel output (see Figure 2, bottom line, right-hand scale).
In a statistical perspective, such values can be considered as
outliers of the PD distribution of a given data set. Blinks were
detected as contiguous sets of outliers. Moreover, other blink
markers in the eye-tracking protocol—such as the momen-
tary loss of gaze position during blink—were combined to
foster correct blink detection percentage (for a detailed descrip-
tion of the algorithm, see Pedrotti et al., 2011). Blink onset
was defined as the third sample (60 ms) preceding the first
zero observation: At this point, the lid starts its descent until
the pupil is covered (in 79% of blinks; see Pedrotti et al.,
2011). Blink offset was defined as the first valid sample after
a blink: At this point, the pupil is visible to the eye tracker
camera.

After identifying blink onsets and offsets in the pixel data,
we replaced blink data in the millimeter output by means of
linear interpolation, using blink onset as starting point, and two
samples after blink offset as ending point. An example of the
result of this preprocessing procedure is shown in Figure 2 (top
line, left-hand scale).
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FIG. 2. Pupil output in mm (top line, left-hand scale) and px (bottom line, right-hand scale). Note. Dashed vertical lines indicate blink onsets.

FIG. 3. (A) Pupillary response to stressful sounds (solid line, left-hand scale) under constant illumination (dashed line, right-hand scale). (B) Pupillary response
factor loadings (only loadings > 0.7 are considered for interpretation).

3.4.2. Task-Evoked Pupillary Responses. TEPRs were
extracted —from the experimental group—for each sound
presentation in t2 and t4 (see Figure 1B and section 2.3).
Baseline pupil diameter was computed as the mean PD in
the 200-ms prestimulus time window. Figure 3A shows the
average pupillary response (solid line, left-hand scale) from
288 waveforms (16 participants1 × 9 sounds × 2 trials). The
dashed line (right-hand scale) shows the average illumination,
measured in synchrony with PD (see section 3.1). A typical
phasic pupillary reaction—dilation (mydriasis) followed by

1One participant’s data were excluded because of poor recording
quality.

constriction (myosis)—occurred. With the aim of reducing
the 150 data points (50 points × 3 s, 50Hz sampling rate)
to a smaller set of factors, the data from the 288 TEPRs
extracted were analyzed with a factor analysis using Statistica
(http://www.statsoft.com). The 150 data points were treated as
dependent variables serving as input for factor analysis. Factor
loadings were extracted following a varimax rotation. Two
factors could explain 82.34% of variance in the data, that is,
pupillary response shapes are consistent across individuals and
trials. Factor loadings plotted against time (Figure 3B) clearly
show the separation between the rising (factor 1, mydriasis,
62.91% of explained variance) and falling (factor 2, myosis,
19.43% of explained variance) part of the pupillary response



depicted in Figure 3A. Moreover, the absence of measured rel-
evant illumination changes allows us to associate the recorded
waveform to the stress elicited by experimental manipulation
(sound delivery associated with poor driving performance).

3.4.3. Pupil diameter normalization. The TEPR does not
require previous data normalization, as the baseline PD is
recalculated for each event, based on a short prestimulus time
window (200 ms in our case): This procedure can be viewed as a
sort of normalization, in that a participant- and moment-specific
PD value is subtracted from absolute PD values. However,
before performing any interindividual comparison (such as an
ANOVA), PD values should be normalized, as it is known
that PD at rest differs between people. For each participant,
we calculated mean PD (μPDt0) at rest (t0 in Figure 1B).
Subsequently, μPDt0 was subtracted from each PD data point
in t1, t2, t3, t4. This procedure allows for later comparisons of
PD between participants.

3.4.4. Signal approximation extraction. Combination of
wavelet and neural networks has been accepted as an accu-
rate method for feature extraction and classification (Minu,
Lineesh, & Jessy John, 2010). Any noisy signal imposes some
uncertainty to the calculation and, consequently, to the results.
Therefore, before using PD signal as input for the neural
network classifier, we need to remove noise from the sig-
nal. Denoising could improve classification performance, as it
would increase the signal-to-noise ratio. Moreover, it would
reduce computational costs, that is, a shorter time to obtain
results: This latter aspect is important in a real-time applica-
tion perspective, although we focus on offline analysis for the
present study.

Several mathematical approaches could be used for this pur-
pose: We chose the DWT because (a) it allows removing noise
yet preserving the original shape of the signal and (b) it encom-
passes a down-sampling procedure, which reduces computation
time.

Mathematically, a signal (time series) x (t) ∈ L (R) can be
decomposed into linear combination of a set of n base func-
tions {φ0, φ1, · · · , φn} if the signal is in the space spanned by the
basis. Then, x (t) can be decomposed into a linear combination
of the base functions (Mallat, 1989):

x(t) =
∑

k
ak φk (t) k ≺ n (k ≺ ∞), k ∈ Z (1)

where k is an integer index of the finite or infinite sum
and ak, φk(t) are expansion coefficients and functions, respec-
tively. This representation is the most common form of
multispectrum decomposition. Consider two sets of base
functions:

1. φj,k(t) = 2− j
2 φ (2−jt − kx), j � 0, k ∈ Z

2. φk (t) = e
2f ktj

T

If Item 1 or 2 are substituted in Equation 1, the wavelet and
Fourier decompositions will be achieved, respectively. These
are two well-known examples of decomposition of a signal into

primitive or fundamental constituents of their spaces. In fact,
the Fourier series decomposes a signal into a set of sine and
cosine functions. By DWT in multiresolution analysis, a signal
is represented by a sum of a set of more flexible functions called
mother wavelet, which are localized both in time and frequency.

Any wavelet decomposition consists of two parts: approxi-
mation and detail. Approximation refers to the overall, general
form of the signal (e.g., low-frequency component), whereas
detail better explains the high-frequency information such as
edges, discontinuities, sharp points, and so on. Approximation
and detail coefficients of a given discrete signal x[n] can
be extracted by low-pass and high-pass filtering, respectively.
Figure 4B shows an example of signal approximation extraction
using the Haar wavelet as mother wavelet, and five decom-
position levels (i.e., the output of leveln is used as input for
leveln+1). It seems evident that approximation preserves the
original shape of the signal, whereas noise is discarded: In most
cases, noise resides in the high-frequency part (Hamid, Nawi,
& Ghazali, 2011). In the original signal (Figure 4A) 4,000 data
points (coefficients) are needed to describe 80 s of pupil diam-
eter (sample rate is 50Hz). Each wavelet decomposition level
encompasses a down-sampling by a 2 factor. After five decom-
positions, sampling rate is reduced from 50Hz to 1.5625Hz, and
125 coefficients are sufficient to describe 80 s of pupil diameter.
The vectors containing the 125 coefficients will be used as input
for a neural network classifier (see section 5).

3.5. Electrodermal Activity
Skin conductance (SC) was recorded using the exosomatic

method with Direct Current (Boucsein, 2012). Two Biopac
EL507 disposable circular electrodes (Ag/AgCl, 1cm diameter
circular contact area, 0.5% Chloride) were attached to the par-
ticipant’s forehead. Although palmar and plantar zones would
be preferable for EDA recording, as they have higher sweat
glands density (Dawson, Schell, & Filion, 2000; Sato, Kang,
Saga, & Sato, 1989), the driving task employed in the present
study required both hands and feet to be completely free. The
electrodes were fixed to the skin upon participant’s arrival at
the lab, assuring a minimum delay of 15 min before the record-
ings started. This time is sufficient to allow good electrical
contact between the skin and the electrode surface. An elastic
headband was used to prevent artifacts due to wire movements
(Boucsein et al., 2012). The electrodes were connected to the
Biopac MP36R A/D converter (50Hz sampling rate). For the
EDA recording channel, a low-pass filter was applied (35Hz
cutoff frequency). SC signals were treated with the following
procedure:

Step 1. Filtering: A low-pass filter was applied, with 2Hz cutoff
frequency.

Step 2. Down-sampling: Sampling rate was reduced from 50Hz
to 10Hz.

Step 3. Transformation: Data were transformed with the for-
mula y = log(1 + x) (Boucsein, 2012). The respective units
are labeled as log μS.



FIG. 4. (A) Preprocessed pupil diameter from trial t2 of Participant 7. (B) Signal approximation after five wavelet (Haar) decomposition levels.

FIG. 5. (A) Skin Conductance Response to stressful sounds. (B) Skin Conductance Response factor loadings (only loadings > 0.7 are considered for
interpretation).

Step 4. SC Response (SCR) extraction: SCRs were extracted
following sound presentations in t2 and t4 (experimental
group). The average SC in the 200-ms prestimulus time
window was subtracted from each SC data point in the 10-s
poststimulus time window. Figure 5A shows the average
SCR from 288 sound presentations (16 participants2 ×
9 sounds × 2 trials). Like for PD data (see section 3.4.2),
we used SCR time-series as input for factor analysis: Two

2One participant was excluded because of too many artifacts in the
SC record.

factors could explain 75.52% of variance (54.24% Factor
1, 21.28% Factor 2). Figure 5B shows factor loadings plot-
ted against time. Unlike for TEPRs, the temporal separation
between the two factors (roughly at 4 s) does not match the
peak of the average SCR (Figure 5A): Factor interpretation
is harder in this case; however, the overall proportion of
explained variance tells that SCRs, like TEPRs, have a
uniform structure across participants and trials.

Step 5. Non-Specific Electrodermal Response Frequency
(NS.EDR freq.) extraction (see section 4.3.1)

Step 6. EDA Area extraction (see section 4.3.2)



4. RESULTS

4.1. Visual Analog Scale
VAS stress scores from 32 participants3 were analyzed with

a repeated-measures ANOVA (rmANOVA) using trial (t1, t2,
t3, t4) as within-factor and group (experimental, control) as
between-factor (see Figure 6). A Trial × Group interaction
effect was found, F(3, 90) = 5.41, p < .005, η2

p = .15. The
effect of group is also significant, F(1, 30) = 7.25, p < .05,
η2

p = .19, with higher scores for the experimental group.
The difference on VAS stress scores between the experimen-

tal and control group is not significant at t1, F(1, 30) = 0.03, ns.
VAS stress scores are significantly higher for the experimental
group at t2, F(1, 30) = 10.06, p < .005, η2

p = .25; t3, F(1, 30) =
7.79, p < .01, η2

p = .21; t4, F(1, 30) = 5.64, p < .05, η2
p = .16.

A trial effect, F(3, 48) = 4.6, p < .01, η2
p = .22, was found

within the experimental group: VAS stress scores are signifi-
cantly higher at t2 with respect to t1, F(1, 16) = 8.72, p < .01,
η2

p = .35; at t3 with respect to t1, F(1, 16) = 9.78, p < .01,
η2

p = .38; at t4 with respect to t1, F(1, 16) = 4.46, p = .05,
η2

p = .22. The differences between t2 and t3, t2 and t4, t3 and t4
are not significant.

Within the control group, there is no trial effect.

4.2. Pupil Diameter
Before carrying out any between-groups comparison at t1,

t2, t3, t4, we verified that average PD at rest (t0) did not dif-
fer between the experimental and control groups. Preprocessed

3One participant quit the experiment after t2 because of simulator
sickness.

average PD was calculated for 16 participants of the experi-
mental group (one participant was excluded because of poor
recording quality) and for 13 participants of the control group
(two participants were excluded because of poor recording qual-
ity, and one participant was excluded because she quit the
experiment after t2). The data were analyzed in an independent
samples t test, which confirmed no difference on average PD at
t0 between the two groups, t(27) = 1.52, ns.

We then tested the hypothesis that stress manipulation had
an effect on mean PD across the experimental trials t1, t2, t3,
t4. Normalized average pupil diameters were calculated for the
experimental group (16 participants; one was excluded because
of poor recording quality) and the control group (13 partici-
pants; two were excluded because of poor recording quality,
one was excluded because she quit the experiment after t2)
at t1, t2, t3, t4. Data were analyzed with a rmANOVA, using
trial (t1, t2, t3, t4) as within-factor and group (experimental,
control) as between factor. A significant Trial × Group inter-
action effect was found, F(3, 81) = 9.14, p < .001, η2

p = .25
(see Figure 7). The effect of group was also present, F(1, 27)
= 4.01, p = .05, η2

p = .13, in that normalized average pupil
diameter was higher for the experimental with respect to the
control group. When t1 was removed from the within fac-
tors (as stress manipulation effectively started at t2), the effect
of group emerged more clearly, F(1, 27) = 6.31, p < .05,
η2

p = .19.
There was no difference between the experimental and con-

trol group at t1, F(1, 27) = 0.05, ns, whereas PD was signifi-
cantly larger for the experimental group at t2, F(1, 27) = 6.93,
p < .05, η2

p = .2; t3, F(1, 27) = 5.35, p < .05, η2
p = .16; t4,

F(1, 27) = 5.31, p < .05, η2
p = .16.

FIG. 6. Average VAS scores (stress dimension) for each group and experimental trial. Note. Vertical bars denote 95% confidence intervals (mean ± 2SE). N = 32
(17 experimental + 15 controls).
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FIG. 7. Normalized average pupil diameter (left-hand scale) and average illumination (right-hand scale) for each group and experimental trial. Note. Vertical bars
denote 95% confidence intervals (mean ±2SE). N = 29 (16 experimental + 13 controls).

The effect of trial was significant, F(3, 45) = 3.45, p < .05,
η2

p = .19, within the experimental group: PD was significantly
larger at t2 with respect to t1, F(1, 15) = 12.63, p < .005,
η2

p = .46; t3 with respect to t1, F(1, 15) = 7.42, p < .05,
η2

p = .33. The differences between t1 and t4, t2 and t3, t2 and
t4, t3 and t4 were not significant.

Within the control group, the effect of trial was significant,
F(3, 36) = 7.22, p < .001, η2

p = .37: PD significantly decreased
at t2 with respect to t1, F(1, 12) = 7.7, p < .05, η2

p = .39; at
t3 with respect to t1, F(1, 12) = 13.74, p < .005, η2

p = .53;
at t4 with respect to t1, F(1, 12) = 12.83, p < .005, η2

p = .52.
The differences between t2 and t3, t2 and t4, t3 and t4 were not
significant.

4.3. Electrodermal Activity
4.3.1. Nonspecific Electrodermal Response Frequency.

NS.EDR freq., that is, the number of SCRs in absence of
apparent stimulation, is thought to be an indicator of negatively
tuned emotional states such as stress (Boucsein, 2012), in
that NS.EDR freq. should increase under stressful conditions.
NS.EDR freq. scores were analyzed with an rmANOVA using
trial (t1, t2, t3, t4) as within factor and group (experimen-
tal, control) as between factor. No significant effects were
found.

4.3.2. EDA area. The area (computed as time-integral)
below a SC waveform can be used as a measure of emotional
arousal (see Bach, Friston, & Dolan, 2010; Boucsein, 2012).
Because SC level has great interindividual variability, we sub-
tracted the estimated tonic level from each SC time series
before computing area measures. Tonic level was estimated by
means of deconvolution using the Ledalab package (Benedek

& Kaernbach, 2010; http://www.ledalab.de). Figure 8A shows
an example of the tonic-level estimation used in this study.
The SC waveform—after subtraction of the estimated tonic
level—shows a zero baseline (Figure 8B), making it possible
to compare SC between individuals. These SC vectors were
used as input for calculating area scores on a trial-by-trial basis.
Areas were calculated by trapezoidal numerical integration
using the Matlab trapz function. Area scores were then analyzed
with an rmANOVA using trial (t1, t2, t3, t4) as within factor and
group (experimental, control) as between factor. No significant
effects were found.

4.4. Bivariate Analysis
4.4.1. Correlation between subjective and physiological

measures. It appears that normalized average VAS and PD
scores have a similar pattern across the experimental trials, for
both the experimental and control groups (see Figures 6 and7).
For the experimental group, both stress measures show a steep
increase at t2 with respect to t1, followed by a decrease at t3.
Finally, another increase occurs at t4. For the control group, both
measures decrease at t2 and maintain a relatively stable level
until t4. Significant correlations were found between normal-
ized average PD and VAS stress scores at t1 (r = .4, p < .05), t2
(r = .41, p < .05), t3 (r = .44, p < .05), and t4 (r = .4, p < .05).

4.4.2. Correlation between PD and illumination.
Illumination is an important factor influencing PD (see
section 1). In this experiment, both stimulus and ambient
illumination were kept constant during the whole experiment.
Despite this, illumination data analysis revealed a slight illu-
mination decrease for the experimental group at t3 and t4 (see
Figure 7). Postexperiment investigations revealed that the cause



FIG. 8. (A) Skin conductance (solid line) and tonic level (dashed line) estimated by deconvolution (Benedek & Kaernbach, 2010). (B) Skin conductance minus
tonic level, showing a zero baseline. The time-integral of this time series is used as EDA area measure.

could be attributed to the presence of the “fake” experimenters
in the test room. Any displacement in the test room—even
apparently insignificant ones like removing a chair—could
cause an illumination change, indexed by the high sensitivity
of the luxmeter. Although such subtle changes are below visual
threshold and could not influence pupil size (Loewenfeld &
Lowenstein, 1993), we tested whether normalized average PD
was correlated with average illumination at t1, t2, t3, t4. No
significant correlations were found.

5. CLASSIFICATION OF PD WITH NEURAL NETWORKS
After verifying the sensitivity of PD to stress manipulations

(see section 4.2), we used PD signal approximation as input for
a classifier. Statistical analyses support our choice of PD as a
stress measure, in that average PD is significantly larger for the
experimental group—with respect to the control group—at t2,
t3, t4, whereas there is no difference at t1. This is in line with our
predictions, as there was no stress manipulation until the end of
t1 , that is, the two groups were exactly in the same conditions
before t2. Further support for this consideration comes from the
subjective stress ratings (VAS; see section 4.1).

The aim of this analysis stage is automatic stress classifi-
cation using normalized pupil diameter as the only informa-
tion source: for this purpose, we use only PD data from the
experimental group, that is, the group that underwent stress
manipulation.

Following our experimental plan (Figure 1B), four classes
should be used—one class for t1, one class for t2, one class
for t3, and one class for t4. The hypothesis underlying the
experimental plan was that participants in the experimental

group would feel more stressed as the experiment went on,
with t4 being the most stressful trial because of the cumula-
tive effect of stressful sounds and human observers. Indeed,
statistics revealed that PD significantly increased only at t2 and
t3 with respect to t1, that is, differences between the different
types of stressors (sound at t2, observation at t3, and their combi-
nation at t4) could not be revealed using statistical linear models
(see section 4.2). Such statistics rely on mean and variance as
basic features for discrimination. In contrast, neural networks
have a nonlinear characteristic, which is imposed by nonlin-
ear transfer functions such as logsig, tansig, and so on. Such a
more sophisticated classifier could improve discrimination per-
formance using the whole signal (or its approximation) as input.
Specifically, PD signal approximations (see section 3.4.4) were
used as input features for classification.

The classification procedure involves two stages. In Stage 1
(training), four binary neural network classifiers are trained.
Each of these classifiers operates in one-versus-all mode, that
is, the aim of the training here is to maximize recognition pre-
cision of one class with respect to all the other classes (e.g.,
maximize recognition of t1 with respect to t2, t3 and t4).

In Stage 2 (test), the four binary classifiers are put in paral-
lel. An unknown, unlabeled PD signal approximation �x′ is given
as input to each of the four binary classifiers. Each classifier
returns a score y (between 0 and 1), which can be interpreted
as the probability that �x′ belongs to a certain class (i.e., the
degree to which an instance is a member of a class; see Fawcett,
2006). The final decision is made according to the highest score
attributed to �x′ by each of the four binary classifier.

Data from 10 participants (randomly selected) were used
in the training stage (10 participants × 4 classes, totaling



40 signals). Data from the remaining six participants were
used in the test stage (6 participants × 4 classes, totaling
24 signals). Implementation details are outlined in the following
sections.

5.1. Binary Classifiers Architectures
Figure 9 shows a schematic representation of the one-versus-

all classification procedure: an 80-s artifact-free PD signal �x′
(preprocessed normalized PD) is decomposed by means of
DWT (see section 3.4.4) using the Haar mother wavelet. Signal
approximation �x′ is extracted and given as input to a binary neu-
ral network classifier. The classifier returns a score y. In an ideal
situation, the binary classifier “t1 vs. t2,t3,t4” (i.e., the classifier
specialized for recognizing PD signals coming from t1 trials)
assigns a score y = 1 to an input signal �x′ recorded during a t1
trial, and a score y = 0 to an input signal �x′ recorded during a t2,
t3, or t4 trial.

Table 2 summarizes architectural details of the four one-
versus-all binary classifiers.

5.2. Binary Classifiers Training
Each of the four binary classifiers was trained separately

using the Matlab Neural Network Training tool (nntool). The
Levenberg-Marquardt algorithm, which updates weight and
bias values according to gradient descent and other conjugate
gradient methods (Moré, 1978), was selected. Parameter values
are reported in Table 3.

5.3. Four-Way Parallel Classifier Architecture
Figure 10 depicts the scheme of the four-way parallel

classification procedure. An unknown, unlabeled PD signal
approximation �x′ (i.e., �x′ has never been used in the training
stage) is given as input to each of the four binary classifiers.
Each classifier returns a score y. Scores are stored in the 4-D
vector �y. In the example in Figure 10, the binary classifier “t1
vs. t2,t3,t4” assigned a score of 0.9 to �x′. All the scores assigned
to �x′ from the other binary classifiers are lower than 0.9; thus we
conclude that �x′ comes from a t1 trial.

5.4. Four-Way Parallel Classifier Test
Data from six participants were used for test, totaling 24

(6 participants × 4 classes) signal approximations �x′. The four-
way parallel classifier has a precision of 79.2%, that is, five
misclassifications out of 24 signals. Detailed confusion matrix
is shown in Table 4.

6. DISCUSSION
Among several psychophysiological correlates of stress—

such as cardiovascular activity, electrodermal activity,
respiration—we focused on PD because it can be measured in
a completely unobtrusive manner. This makes PD particularly
attractive in a real-life implementation perspective, where
stress level could be measured automatically, by using video
cameras. We proposed a method for relating PD behavior
to psychological stress and tested its validity in a simulated
driving experiment. For ethical reasons, experimental stressors

FIG. 9. Schematic representation of the one-versus-all binary neural network classifier.



TABLE 2
Neural Network Classifiers Architectures

Network
Hidden Layer I
No. of Neurons

Hidden Layer I
Transfer
Function

Hidden Layer II
No. of neurons

Hidden Layer II
Transfer
Function

Output Layer
No. of

Neurons

Output Layer
Transfer
Function

t1 vs. t2,t3,t4 15 tan-sigmoid 8 log-sigmoid 1 pureline
t2 vs. t1,t3,t4 14 tan-sigmoid 7 log-sigmoid 1 pureline
t3 vs. t1,t2,t4 11 tan-sigmoid 6 log-sigmoid 1 pureline
t4 vs. t1,t2,t3 11 tan-sigmoid 6 log-sigmoid 1 pureline

Note. Architecture details of the four binary classifiers (see Figure 9). Each classifier is designed to maximize recognition of one class with
respect to all the other classes (e.g., maximize recognition of t1 with respect to t2, t3, t4).

TABLE 3
Parameter Values of the Neural Network Training Algorithm

Parameter epochs time goal gradmin μ μ dec μ inc μ max

Value 1000 infinite 0 1e-08 0.001 0.1 10 1e10

Note. epochs = maximum number of iterations; time = time limit before algorithm stops;
goal = target gradient value; gradmin = minimum gradient magnitude; μ = convergence factor
(see Barman & Chowdhury, 2012).

FIG. 10. Schematic representation of the four-way parallel neural network classifier.



TABLE 4
Four-Way Classifier Confusion Matrix

Predicted

t1 t2 t3 t4

Actual
t1 66.7% 0 33.3% 0

(4) (2)
t2 0 83.3% 0 16.7%

(5) (1)
t3 0 0 83.3% 16.7%

(5) (1)
t4 0 16.7% 0 83.3%

(1) (5)

Note. Numbers in parentheses indicate frequencies.

were conceived to elicit moderate stress levels, as confirmed
by subjective ratings (VAS) results (see Figure 6). The fact that
PD could index such mild variations is encouraging for further
developments in which higher stress levels could be detected.

We proved the sensitivity of PD as a stress concomitant,
in both event-related and general state paradigms. For the
event-related part, we showed how pupillary responses (TEPRs)
follow the presentation of auditory stimuli associated with poor
task performance: Participants in the experimental group were
told that they would hear a sound alert if their driving behav-
ior was not appropriate. Because of the simplicity of the driving
task (LCT), participants were expected to feel disoriented, irri-
tated, frustrated at every sound presentation: During t2 and t4
they performed exactly the same driving task as t1, with the
exception that sounds alerts occurred every 20 s regardless
of driving performance. Thus, the TEPR reflects momentary
stressful stimuli delivery, given that the exact time point of stim-
ulus presentation is known. This technique is useful for basic
research in controlled experiments, but it requires high control
because every task-relevant event needs to be marked for offline
analysis. In more naturalistic environments, tasks can have com-
plex structures: Stressful events might not be predictable and
localized in time a priori. Moreover, the small magnitude of
the TEPR (roughly 0.1 mm as in Figure 3A) makes it partic-
ularly prone to confounding factors such as measurement noise
and other sources of pupillary variation. For applied contexts, a
valuable stress assessment method should be blind to both the
temporal occurrence of stressors and the structure of the task.

The TEPR issues could be partially overcome using a more
general-state measure (i.e., normalized average PD). This mea-
sure was influenced by the experimental manipulation as well.
If we look at between-groups comparisons (i.e., experimental
vs. control), normalized average PD is definitely a powerful
discriminator because it significantly increased at t2, t3, and
t4. Furthermore, it showed no between-groups difference at t1,

confirming its reliability. For within-groups analysis, however,
discrimination becomes more challenging, as we are looking for
subtle differences between stress induced by sounds and human
observers (and combination of both), and we don’t know a pri-
ori which one is more stressful: Within the experimental group,
significant differences were found only between the nonstress
trials (t1) and stress trials (t2, t3); that is, we could not discrim-
inate between t2 and t3, t2 and t4, t3 and t4. Moreover, although
average PD is higher at t4 with respect to t1 (see Figure 7),
the difference is not statistically significant: Two factors could
explain this. First, humans are likely influenced by habitua-
tion: At t4, participants have already had some experience with
both sounds (since t2) and observers (since t3); thus it is rea-
sonable that they feel less stressed at t4. Moreover, at t4 they
perform the LCT for the fourth time, which should also lower
the stress induced by the LCT itself. We suggest that habitu-
ation (to both the LCT and the stressors) played a major role
than the summation of two stressors (these two stressors are
no more a novelty at t4). Second, we are dealing with linear
statistical models (ANOVA) and it should be clear that psy-
chophysiological phenomena cannot be completely described
in this domain.

With the aim of improving discrimination performance in a
real-life oriented context, we devised an automated classifier.
The results provided by the classifier are promising, yet we
underline that they come from PD data recorded under con-
trolled illumination. Designing such an autonomous stress mea-
surement system, which relies solely on a short period of a
time series (or a real-time signal), raises at least one question:
What would happen if the level of noise increases, for exam-
ple, because of environmental effects? In the case of PD, we
can regard environmental illumination as a major noise source.
Because in our experiment illumination was controlled, we
cannot answer this question with empirical evidence. Neural
networks were essentially inspired from studies of brain struc-
ture (Widrow, Gupta, & Maitra, 1973), and they are known to
be remarkably tolerant to noise in input data. However, fur-
ther research is needed to integrate—in our system—pupillary
light reflex information, which could be estimated by measuring
illumination and other factors (e.g., Watson & Yellot, 2012).

Concerning EDA measures, we obtained contrasting results:
Event-related concomitants of stressful sounds (i.e., SCRs)
were found, and factor analysis confirmed their relatively sta-
ble response behavior (75.52% of explained variance with
two factors). However, NS.EDR freq.—an indicator of adverse
emotional states in human–computer interaction (Boucsein,
2012)—did not return the expected results, in that it did not
increase with stress level. It is known that NS.EDR freq.
calculation can provide different results depending on event-
detection algorithms: Overlapping SCRs are likely, especially
in applied contexts such as the present experiment. We tried
to overcome this problem by extracting an area measure of
EDA, but the results remain unclear: It might be that the stress
level in our experiment is too low—according to subjective



measures—to be indexed by electrodermal measures. Another
possible and more “technical” explanation could be the fact
that we placed the electrodes on the participants’ foreheads—
because of experimental constraints (i.e., driving task)—instead
of using palms and soles as recording sites: Dawson et al. (2000)
suggested that emotion-evoked sweating is more evident in pal-
mar and plantar zones because of higher sweat gland density
(600/cm2 for palms, 700/cm2 for soles, 181/cm2 for the fore-
head; see Sato et al., 1989). Finally, recent studies suggested
that EDA signals have less discriminating power—compared
to PD signals—for stress classification (Ren, Barreto, Gao, &
Adjouadi, 2013; Zhai & Barreto, 2006).

Subjective ratings showed moderate yet significant corre-
lations with normalized average PD. Although this result is
encouraging, we remark that relying only on ANS measures
is not the key for automatic stress measurement. A widely
accepted perspective states that emotions are organized accord-
ing to two principal dimensions, that is, arousal and valence
(Mauss & Robinson, 2009). The former ranges from states of
low activation (e.g., calm) to states of high activation (e.g.,
excited), whereas the latter counters positively tuned states (e.g.,
happy) versus negatively tuned ones (e.g., angry). Whereas
ANS measures are known to be reliable indexes of arousal, they
don’t give us indications about valence (see, e.g., Janisse, 1977).
Thus, pupil diameter could increase because of positive stress
(eustress) or negative stress, in the same way. In the present
study, we examined the valence dimension by means of sub-
jective ratings. However, this requires some active intervention
by the user’s side, which is not suitable for an automatic stress
measurement system. In this perspective, automatic valence
indexes will be investigated in future research, with particular
attention toward facial expressions: Like for PD, these measures
can be acquired unobtrusively by using video cameras.
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